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Abstract

Refinement typing algorithms are hard to design and understand. Liquid Haskell (LH) has

powerful features like modular, recursive refinement of inductive data. But Liquid Haskell

is relatively hard to understand as it lacks an explicit phase distinction between indices and

programs. Index based systems like Dependent ML (DML) tend toward less power but, en-

joying an index-program phase distinction, are easier to understand. We apply techniques

from logic, type theory, and category theory to design a correct and simple bidirectional

typing algorithm for modular recursive index refinements. We use focusing to design log-

ically a call-by-push-value (CBPV) with algebraic datatypes. CBPV is a language known

empirically to have good semantic properties even in the presence of computational effects

like nontermination and errors. Bidirectional type theories are a reliable way to combine

rich type checking and inference. We prove our declarative system is semantically sound

for standard mathematical models (domains). We prove our algorithmic system is decid-

able, sound, complete. Focusing and bidirectional typing combine elegantly with a new

concept: value-determined existentials of input types under focus are guaranteed to be

solved at the end of focusing stages, clearly outputting constraints decidable by an SMT

solver. We believe this work improves our understanding of liquid refinement typing, and

we hope it can guide or serve as the foundation for implementations thereof.
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Chapter 1

Introduction

1.1 Type Systems and Their Refinement

Software failure tends to be bad. The Mars Climate Orbiter was destroyed partly due to

a unit mismatch [Oberg, 1999]. A cryptographic library leaked secrets due to ill-formed

network requests [Durumeric et al., 2014]. Therac-25 killed people by radiation overdose

due to a race condition [Leveson and Turner, 1993]. Preventing software failure tends to

be good. To do so there are many ways proposed: developmental methodologies, unit

testing, static analysis, programming paradigms, proof assistants, formal verification, type

systems, and so on. Type systems [Cardelli, 1996], in particular, check and infer types,

which specify program properties that help to ensure programs don’t go wrong.

Type systems can check and infer types of programs either statically, before program

execution, at compile time, or dynamically, during program execution, at run time. It is

usually preferable to check and infer types statically (if possible) rather than dynamically

because dynamic typing incurs a cost in space and time when running the program. There

is no general-purpose (Turing complete) programming language that can verify whether
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an arbitrary program written in it satisfies an arbitrary semantic property: by Rice’s the-

orem [Rice, 1953], all non-trivial properties of programs are undecidable. However, by

using type annotations and requiring syntax to be structured in a certain way, we can work

around Rice’s theorem and design reasonable type systems, with sensible syntax, and with-

out requiring too many annotations, in which many apparently non-trivial properties can be

verified automatically. These properties help to ensure that our programs won’t go wrong

when run.

Indeed, “well-typed programs cannot ‘go wrong’ ” [Milner, 1978], but only relative to

a given semantics (if the type system is proven sound with respect to it and nothing goes

wrong in the real world, like the runtime C library, the hardware, or the electric supply).

Unfortunately, well-typed programs go wrong, in many ways that matter, but about which

a conventional type system cannot speak: divisions by zero, out-of-bounds array accesses,

information leaks. To prove a type system rules out (at compile time) more run-time errors,

its semantics must be refined. However, there is often not enough type structure with which

to express the semantics statically. So, we must refine our types with more information

that tends to be related to programs. Great care is needed, though, because incorporating

too much information (such as nonterminating programs themselves, as may happen in a

dependent type system, where arbitrary programs may be used in types) can spoil good

properties of the type system, like the soundness and decidability of type checking and

inference.

Consider the inductive type List A of lists with entries of type A. Such a list is either

empty/nil ([]) or a term x of type A together with a tail list xs (that is, x :: xs). In a typed

functional language like Haskell or OCaml, the programmer can define such a type by

specifying its constructors:



1.1. TYPE SYSTEMS AND THEIR REFINEMENT 3

data List Type where
[] : List A
(::) : A→ List A→ List A

Suppose we define, by pattern matching, the function get, that takes a list xs and a

natural number1 y, and returns the yth element of xs (where the first element is numbered

zero):

get [] y = error “Out of bounds”
get (x :: xs) zero = x
get (x :: xs) (suc y) = get xs y

A conventional type system has no issue checking get against, say, the type

List A→ Nat→ A

(for any type A), but get is possibly unsafe because it throws an out-of-bounds error when

the input number is greater than or equal to the length of the input list2. If it should be

impossible for get to throw such an error, then get must have a type where the input number

is restricted to natural numbers strictly less than the length of the input list. Ideally, the

programmer would simply refine the type of get, while leaving the program alone (except,

perhaps, for omitting the first clause, the one throwing the out of bounds error).

This, in contrast to dependent types [Martin-Löf, 1984], is the chief aim of refinement

types [Freeman and Pfenning, 1991]: to increase the expressive power of a pre-existing

(unrefined) type system, while keeping the latter’s good properties, like typing soundness

and decidability of typing, so that programmers are not too burdened with refactoring their

code or manually providing tedious proofs if they don’t need to. In other words, the point of

refinement types is to increase the expressive power of a given type system while preserving

1In this thesis we always count 0 as a natural number (in addition to 1,2, . . . ).
2The length of a list is its (natural) number of elements.
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high automation (of typing for existing programs), whereas the point of dependent types

is to be maximally expressive, which necessarily comes at the cost of automation (which

dependent type system designers may try to increase after the fact of high expressivity,

possibly using refinement types).

To refine get’s type so as to rule out, statically, run-time out-of-bounds errors, we need

to compare numbers against list lengths. Thus, we refine the type of lists by their length:

{ν : List A | len ν = n}, the type of lists ν of length n. This type looks a bit worrying,

though, because the measurement, len ν = n, seems to use a recursive program, len. The

structurally recursive

len [] = 0
len (x :: xs) = 1+ len xs

happens to terminate when applied to lists, but there is no general algorithm for deciding

whether an arbitrary computation terminates [Turing, 1936]. As such, we might prefer not

to use ordinary recursive programs directly in our refinement types at all. Indeed, doing

so would seem to violate a phase distinction3 [Moggi, 1989a, Harper et al., 1990] between

the static (compile time) specification and the dynamic (run time) program, which seems

indispensable for decidable typing.

The refinement type system Dependent ML (DML) [Xi, 1998] provides a phase distinc-

tion in refining ML by an index domain which has no run-time content.4 Type checking

and inference in DML is only decidable when it generates constraints whose validity is de-

cidable. In practice, DML did generate decidable constraints, but that was not guaranteed

by its design. To define the refinement type of lists of length n in DML we have to add an
3A language has a phase distinction if it can distinguish aspects that are relevant at run time from those

that are relevant only at compile time.
4Perhaps today “Refinement ML” might seem more appropriate than Dependent ML. However, when

DML was created, “refinement types” meant datasort refinement systems specifically. Nonetheless, the ab-
stract of Xi [1998] describes DML as “another attempt towards refining . . . type systems . . . , following the
step of refinement types (Freeman and Pfenning 1991).”
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index representing n to the datatype and modify its constructors like so:

data List Type Nwhere
[] : List A 0
(::) : A→ List A k→ List A (k+1)

It is not too hard to see that this style of specification quickly becomes unpleasantly

crowded when we want to add more properties, especially if those properties can start re-

ferring to each other (within the type of one constructor). Not only that, but any annotations

using an indexed type would have to be modified to reflect any changes in the index (any

new properties added). However, logically we should be able to specify these different

properties independently and then invoke them by name as needed in our annotations. The

refinements of conventional DML are unfortunately not modular in this way. Theoretically

speaking, we should be able to make it so, though, because Atkey et al. [2012] showed

these two approaches to refining inductive types are equivalent (albeit in a different setting,

fibrational semantics for dependent type theory).

On the plus side, DML’s distinction between indices and programs allows it to sup-

port refinement types in the presence of computational effects (such as nontermination,

exceptions, and mutable references) in a relatively straightforward manner. Further, the

index-program distinction clarifies how to give a denotational semantics: a refinement type

denotes (read: “means”) a subset of what the type’s erasure (of indexes) denotes and a pro-

gram denotes precisely what its erasure denotes. Dependent type systems, by contrast, do

not have such an erasure semantics.

It seems liquid type systems [Rondon et al., 2008, Kawaguchi et al., 2009, Vazou et al.,

2013, 2014] achieve highly expressive and modular, yet sound and decidable recursive

refinements [Kawaguchi et al., 2009] of inductive types by a kind of phase distinction:

namely, by restricting the recursive predicates of specifications to terminating measures
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(like len) that soundly characterize, in a theory decidable by off-the-shelf tools like SMT

solvers, the static structure of inductive types. Unlike DML, liquid typing can, for example,

modularly add the measure of whether a list of natural numbers is in increasing order (along

with other measures), while remaining decidable. However, liquid typing’s lack of index-

program distinction makes it unclear how to give it a denotational semantics, and has also in

the past led to subtleties involving the interaction between effects and evaluation strategy

(we elaborate later in this section and Chapter 3). Vazou et al. [2014] appear to provide

a denotational semantics in Section 3.3, but this is not really a denotational semantics in

the sense we desire, because it is defined in terms of an operational semantics and not a

separate and well-established mathematical model (such as domain theory).

Let’s return to the get example. Following the tradition of index refinement [Xi, 1998],

we maintain a phase distinction by syntactically distinguishing index terms, which can

safely appear in types, from program terms, which cannot. In this approach, we want to

check get against a more informative type

∀l : N. {ν : List A | len ν = l}︸ ︷︷ ︸
List(A)(l)

→{ν : Nat | ν < l}→ A

quantifying over indexes l of sort N (natural numbers) and requiring the accessing number

(second argument) to be less than l. However, this type isn’t quite right, because Nat is a

type and N is a sort, so writing “ν < l” confounds our phase distinction between programs

and indexes. Instead, the type should look more like

∀l : N. {ν : List A | len ν = l}→ {ν : Nat | index ν < l}→ A

where
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index zero = 0
index (suc y) = 1+ index y

computes the index term of sort N that corresponds to a program term of type Nat, by a

structural recursion homologous to that of len. The third clause of get has a nonempty

list as input, so its index (length) must be 1+m for some m; the type checker assumes

index(sucy)< 1+m; by the aforementioned homology, these constraints are again satisfied

at the recursive call (indexy < m), until the second clause returns (0 < 1+m′). The first

clause of get is impossible, because no natural number is less than zero. We can therefore

safely remove this clause, or (equivalently) replace error with unreachable, which checks

against any type under a logically inconsistent context, such as l : N,n : N, l = 0,n < l in

this case.

get : ∀l,n : N. {ν : List A | len ν = l}→ {ν : Nat | index ν = n}∧ (n < l)→ A
get [] y = unreachable -- l = 0 and n : N so n≮ l
get (x :: xs) zero = x
get (x :: xs) (suc y) = get xs y

Applying get to a list and a number determines the indexes l and n. We say that l and

n are value-determined (here by applying the function to values). If (perhaps in a recursive

call) get is called with an empty list [] and a natural number, then l is determined to be 0,

and since no index that is both negative and a natural number exists, no out-of-bounds error

can arise by calling get. (Further, because l : N strictly decreases at recursive calls, calling

get terminates.)

While this kind of reasoning about get’s refinement type may seem straightforward,

how do we generalize it to recursion over any algebraic datatype (ADT)? What are its log-

ical and semantic ingredients? How do we use these ingredients to concoct a type system

with decidable typing, good (localized) error messages and so on, while also keeping its
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metatheory relatively stable or maintainable under various extensions or different evalua-

tion strategies?

Type systems that can do this kind of reasoning automatically, especially in a way that

can handle any evaluation strategy, are hard to design correctly. Indeed, the techniques

used in the original (call-by-value) liquid type system(s) [Rondon et al., 2008, Kawaguchi

et al., 2009] had to be modified for Haskell, essentially because of Haskell’s call-by-name

evaluation order [Vazou et al., 2014]. The basic issue was that binders can bind in (static)

refinement predicates, which is fine when binders only bind values (as in call-by-value), but

not when they bind computations which may not terminate (as in call-by-name). Liquid

Haskell regained (operational) typing soundness by introducing ad hoc restrictions that

involve approximating whether binders terminate, and using the refinement logic to verify

termination.

Levy [2004] introduced the paradigm and calculus call-by-push-value (CBPV) which

puts both call-by-name and call-by-value on equal footing in the storm of computational

effects (such as nontermination). CBPV subsumes both call-by-name (CBN) and call-by-

value (CBV) functional languages, because it allows us to encode both via type discipline.

In particular, CBPV polarizes types into (positive) value types P and (negative) computa-

tion types N, and provides polarity shifts5 ↑P (negative) and ↓N (positive); the monads

functional programmers use to manage effects arise as the composite ↓↑−. These polarity

shifts are the same as those arising from the focusing technique of proof theory. CBPV can

be derived logically by way of focalization of intuitionistic logic [Espírito Santo, 2017],

which is the approach we take: see Chapter 4. CBPV is a good foundation for a refinement
5We note a few differences from some of the usual CBPV notation and terminology. In CBPV, ↑− is

usually written F− and ↓− is usually written U− (or similar). Think liFt and thUnk. Also, usually in
CBPV positive/value types and negative/computation types use the same capital letter like A, B, and C but
computation types are underlined A. We use A, B, and C for types, P, Q, and R for positive types and N, M,
and L for negative types.
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typing algorithm: designing refinement typing algorithms is challenging and sensitive to

effects and evaluation strategy, so it helps to refine a language that makes evaluation order

explicit. We leverage focusing and our technique of value-determined indexes (a novelty

in the DML tradition, as it were, which was inspired by the practical experience of Liquid

Haskell) to guarantee (like Liquid Haskell) the generation of SMT-solvable constraints.

Andreoli [1992] introduced focusing to reduce the search space for proofs (programs)

of logical formulas (types), by exploiting the property that some inference rules are in-

vertible6. At roughly the same time, Girard [1991] independently introduced (weak—

explained later) focusing for classical logic to restore an analogue of the Church–Rosser

property for cut elimination. In relation to functional programming, focusing has been

used, for example, to explain not only the interaction between evaluation order and effects

[Zeilberger, 2009] which was at one point problematic for Liquid Haskell, but also features

such as pattern matching [Krishnaswami, 2009], and also to reason about contextual pro-

gram equivalence [Rioux and Zdancewic, 2020]. Focusing has been applied to design a

union and intersection refinement typing algorithm [Zeilberger, 2009]. As far as we know,

prior to this work focusing has not been used directly to design an index refinement typing

algorithm.

Another special ingredient, bidirectional typing [Pierce and Turner, 2000] systematizes

the difference between input (type checking) and output (type inference), and seems to fit

nicely with focused systems [Dunfield and Krishnaswami, 2021]. Bidirectional typing has

its own practical virtues: it is easy to implement (if inputs and outputs fit together properly,

that is, if the system is well-moded); it scales well (to refinement types, higher-rank poly-

morphism [Dunfield and Krishnaswami, 2019], subtyping, effects—and so does CBPV); it

6An invertible rule is one in which its conclusion implies its premises, so no information is lost in moving
from its conclusion to any of its premises.
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leads to localized error messages; and it clarifies where type annotations are needed, typi-

cally in reasonable positions (such as at the top level) that are helpful as machine-checked

documentation. In our system, annotations are needed only for recursive functions (to ex-

press termination refinements) and top-level definitions. Judgments other than typing ones

can also be bidirectional, so perhaps the more general technique we are using here could

be called mode-conscious judgment.

By focusing on the typing of function argument lists and results, our focused system

guarantees that value-determined existential indexes (unification variables) are solved be-

fore passing output constraints to an SMT solver. For example, when our system infers a

type for get([3,1,2],2), we first use the top-level annotation of get to synthesize the type

↓(∀l,n : N. {ν : List A | len ν = l}→ {ν : Nat | index ν = n}∧ (n < l)→↑A)

(in which we have added polarity shifts ↓− and ↑− arising from focusing). The downshift

↓− takes a negative type to a positive type of suspended computations. Second, we check

the argument list ([3,1,2],2) against the negative (universally quantified) type. The upshift

↑− takes a positive type A to negative type ↑A (computations returning a value of type

A). In typechecking the argument list, the upshift signifies the end of a focusing stage, at

which point the first argument value [3,1,2] will have determined l to be 3 and the second

argument value 2 will have determined n to be 2, outputting an SMT constraint without

existentials: 2 < 3.

A focused and bidirectional approach therefore appears suitable, both theoretically and

practically, for designing and implementing an expressive language for refinement typing

that can handle any evaluation strategy and effect. We design a foundation on which to

build liquid typing features that allows us to establish clear semantic correctness results,
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as well as the completeness of a decidable bidirectional typing algorithm. In other words,

this thesis is a first step toward metatheoretically reconciling DML and Liquid Haskell,

using the proof-theoretic technique of focusing. The main technique is focusing, which we

combine naturally with bidirectional typing and value-determined indexes (the latter being

a key ingredient to make measures work). We show that bidirectional typing and logical

focusing work very well together at managing the complex flow of information pertaining

to indexes of recursive data. In particular, value-determined existential indexes of input

types are solved within focusing stages, ultimately leading to the output of constraints in

the quantifier-free fragment solvable by SMT solvers.

A thesis is a goal and a method of obtaining it. The goal of this thesis is to create a foun-

dation for refinement typing that seeks the best of both worlds: Dependent ML and Liquid

Haskell. Dependent ML, due to its phase distinction between static indices and dynamic

programs, is relatively easy to understand, but it does not necessarily generate SMT solv-

able constraints and it is inconvenient to refine types as it is not modular like Liquid Haskell.

Liquid Haskell guarantees SMT solvable constraints and greatly alleviates the modular-

ity problem, but it is relatively hard to understand and to prove important metatheoretic

properties of it. The method of this thesis is essentially “the”7 Curry–Howard–Lambek

correspondence—whose historical predecessor is the Brouwer–Heyting–Kolmogorov in-

terpretation of intuitionistic logic [Troelstra, 2011]—between proofs in a logic, programs

in a typed programming language, and morphisms in a category.

We begin logically with an application of the technique of focusing from proof theory,

add recursion and ADTs, prove this (declarative) unrefined system is semantically correct,

soundly add a declarative refinement layer with an erasure semantics, and prove it also has

7It’s really a family of correspondences, not specifically about one particular (intuitionistic) logic. Classi-
cal sequent calculus, for example, also has a Curry–Howard correspondence.
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nice algorithmic properties (by way of an equivalent algorithmic system).

1.2 Thesis

The combination of logical focusing, bidirectional typing, categorical semantics, and our

novel concept of value-determined indexes is an elegant foundation for a semantically cor-

rect and decidable typing algorithm for index refinements (à la Dependent ML) of algebraic

data modularly by measures (à la Liquid Haskell).

1.3 Contributions

Our two key contributions are both a declarative/logical/semantic and an algorithmic ac-

count of modular, recursive, index-based refinement of algebraic data types. For the logical

account, we design a declarative type system in a bidirectional and focused style, resulting

in a system with clear operational and denotational semantics8 and soundness/correctness

proofs, and which is convenient for type theorists of programming languages. The declara-

tive system conjures index solutions to existentials. For the algorithmic account, we design

a type system mirroring the declarative one but mechanically solving existentials, and prove

it is decidable, as well as sound and complete. We contribute:

• A polarized declarative type system, including (polarized) subtyping, universal types,

existential types, and index refinements with ordinary SMT constraints, as well as

modular, recursive predicates on inductive data (simple functional index “programs”

which can express things like “this list is in increasing order”).

8The operational semantics and the denotational semantics of a system is meant to capture the “mean-
ing” of the system, but the former tends to capture more the computational sense and the latter more the
mathematical reference.
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• A proof that declarative typing is stable under substitution, which requires proving,

among other things, that subtyping is transitive and typing subsumption is admissi-

ble.9

• An operational semantics of the declarative system which is based on an extension

of cut elimination in intuitionistic sequent calculus and which is tied to the erasure

of type annotations.

• A clear denotational semantics of the declarative system, based on elementary do-

main theory.

• Operational type soundness and the equivalence of the operational and denotational

semantics.

• A typing soundness proof with respect to our denotational semantics, which implies,

relatively easily, both the refinement system’s logical consistency and total correct-

ness (at least denotationally)—even if the programs are non-structurally recursive.

To prove typing soundness, we prove that value-determined index dependencies are

sound: that is, semantic values uniquely determine value-determined index depen-

dencies, semantically speaking (in particular, see Lemmas 7.1 and 7.2). Operational

total correctness is a corollary of denotational total correctness and computational

adequacy (which is the larger half of the equivalence of the operational and denota-

tional semantics).

• A polarized subtyping algorithm, together with proofs that it is sound, complete and

decidable.
9A proposed inference rule is admissible with respect to a system if, whenever the premises of the pro-

posed rule are derivable, we can derive the proposed rule’s conclusion using the system’s inference rules.
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• A polarized typing algorithm, together with proofs that it is sound, complete and

decidable. Completeness relies on the combination of our novel concept of value-

determined indices, focusing, and bidirectional typing. In particular, see Lemmas

9.6, 9.13, and 9.14.

We relatively easily obtain both semantic and algorithmic results for a realistic lan-

guage essentially by starting with one technique (based on fundamental logical principles):

focusing.

Definitions and proofs are organized in the appendix.

1.4 Methodology

We apply techniques drawn from the Holy Trinity10 of computation [Harper, 2011]

so that we can prove important properties of our system largely using structural induction

[Burstall, 1969]. Here are some of the main concepts we draw from logic, languages, and

categories:

(1) Logic and type theory

• Focused proof search and its resulting polarized type structure [Andreoli, 1992]

• Judgments11 and their presuppositions [Martin-Löf, 1996]

• Bidirectional typing [Pierce and Turner, 2000]

(2) Languages

10I use this terminology with my tongue in my cheek (though maybe there is more to the devotional
connotation than we would like to admit; regardless, we happen to find ourselves somewhere in this crusade).

11Martin-Löf [2011] gave a talk arguing about the history of how “judgment” came to be a term of logic.
An interesting point that comes up in the questions is the tension between the logical and the juridical but this
tension is not exclusive to the term judgment.
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• Call-by-push-value [Levy, 2004] (basically lambda calculus with syntax for

binding computations and returning values)

• Type annotations (bidirectional typing), let-normality [Flanagan et al., 1993]

(3) Category theory

• Semantics of algebraic datatypes [Goguen et al., 1977]

• Fibrational interpretation of refining inductive types [Atkey et al., 2012]

The steps we take:

(1) We begin in Chapter 4 with a standard intuitionistic sequent calculus:

a certain presentation of a fragment of LJ [Gentzen, 1935].

We briefly study cut elimination in it.

(2) We strongly focalize the logic,

in a style like Simmons [2014] and Espírito Santo [2017], preferring the latter, with

a view toward functional programming and in particular modular refinement of alge-

braic datatypes. We briefly study cut elimination in it.

(3) We apply a series of transformations to turn it from a proof search algorithm to a

fairly standard looking CBPV programming language. These transformations should

be sound and complete but I have not had time (or interest) to check this. However, I

show directly that the overall result is equivalent to the unfocused logic.

(4) We bidirectionalize the unrefined language to get an unrefined bidirectional type sys-

tem for it. Its operational semantics is given in terms of its erasure to program terms
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(that is, proof terms) without type annotations: erasing a type annotation takes an

analytic12 cut and makes it non-analytic.

(5) In Chapter 5 we add algebraic data types and obtain our declarative unrefined system.

The operational semantics is extended. We prove the operational and denotational

semantics are equivalent.

(6) We prove that unrefined typing is stable under syntactic substitution.

(7) We give the unrefined system a denotational semantics and prove it is sound. We

prove syntactic substitution is semantically sound in the unrefined system.

(8) We add index refinements in Chapter 6, obtaining the declarative refined system.

We pay close attention to the organization of judgments and their presuppositions,

especially formation (well-formedness) presuppositions, where the new concept of

value-determined indices is used.

(9) We prove that refined typing is stable under syntactic substitution.

(10) We give the refined system a denotational semantics and prove it is sound in Chapter

7. Total correctness and logical consistency of the refined system are easy corol-

laries. Total correctness and computational adequacy implies programs with total

refinement types terminate when run on an abstract machine. We prove syntactic

substitution is semantically sound in the refined system.

(11) We design an algorithmic system (Chapter 8) and prove (Chapter 9) it is decidable,

as well as sound and complete with respect to the declarative system.
12In the sense of the cut formula or type occurring (as an annotation) in the proof/program term. This

usage is not standard in type theory, but it seems completely analogous to the situation in proof theory where
a cut formula is defined to be analytic if it occurs as a subformula of the conclusion judgment.
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1.5 Overview

Chapter 2 gives examples.

Chapter 3 briefly discusses salient historical background and related work, and provides

an overview of the thesis. (Some future work is also discussed.)

Chapter 4 begins with a standard intuitionistic sequent calculus, focalizes it, and then

applies a few transformations to design the core for our unrefined system. We study cut

elimination, the basis of the operational semantics of our system.

Chapter 5 discusses the unrefined system with algebraic datatypes and recursion added.

We prove unrefined typing is stable under syntactic substitution, and that the unrefined

system and syntactic substitution in it is semantically sound (at domains). We prove that

the operational semantics (based on cut elimination in the pre-recursion system obtained by

annotation erasure) and the denotational semantics of the unrefined system are equivalent.

Chapter 6 discusses the refined system with modular recursive refinements added.

Chapter 7 discusses the semantics and typing soundness of the refined system.

The total correctness and logical consistency of the refined system are corollaries. Together

with computational adequacy, total correctness implies that (totally) refined programs never

diverge operationally.

Chapter 8 discusses the algorithmic system.

Chapter 9 discusses the metatheory of the algorithmic system:

decidability, soundness, completeness.

Chapter 10 concludes and discusses future work.
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1.6 Updates

• Fixed a bug in Lemma 9.13 (Main Complete) by restricting the form of unrolled

values v of into(v): in particular, ∄x. v =
−−−→iinjki

(−−−−→j⟨_ j,−⟩ x
)

• Deleted a parenthetical in the first section of this introduction

• Made minor typographical changes such as the font of index spines
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Chapter 2

Examples

We show how to verify a non-structurally recursive mergesort function in our system:

namely, that it terminates and returns an ordered list with the same length as the input

list. We only consider sorting lists of natural numbers Nat, defined as ∃n : N.Nat(n). For

clarity, and continuity with Chapter 1, we sometimes use syntactic sugar such as clausal

pattern-matching, combining let-binding with pattern-matching on the let-bound variable,

using “if-then-else” rather than pattern-matching on boolean type, and combining two or

more pattern-matching expressions into one with a nested pattern such as x :: y :: xs.

Given type A and n : N, we define List(A)(n) by {ν : List A | len ν = n}. Modulo a

small difference (see Sec. 6.4), our unrolling judgment unrolls List(A)(n) to

(
1∧ (n = 0)

)
+
(
A×∃n′ : N.

{
ν : List A

∣∣ lenν = n′
}
∧ (n = 1+n′)

)
which is a refinement of 1+(|A| × List |A|). This is an unrolling of the inductive type,

not the inductive type itself, so we must roll values of it into the inductive type. We use

syntactic sugar: namely, [] stands for into(inj1()) and x :: xs stands for into(inj2 ⟨x,xs⟩).

Just as we need a natural number type associating natural number program values with
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natural number indexes, we need a boolean type of values corresponding to boolean in-

dexes. To this end, define the measure

ixbool : (1+1)→ B
ixbool true = tt
ixbool false = ff

Given b : B, the singleton type of a program value corresponding to index boolean

b is Bool(b) = {ν : Bool | ixbool ν = b}. Our unrolling judgment (Sec. 6.4) outputs the

following type, a refinement of the boolean type encoded as 1+1:

(
1∧ (b = tt)

)
+
(
1∧ (b = ff)

)
We encode true as into(inj1()) which has singleton type Bool(tt), and false as into(inj2())

which has singleton type Bool(ff). The boolean type Bool is defined as ∃b : B.Bool(b).

Assume we have the following:

add : ↓(∀m,n : N.Nat(m)→ Nat(n)→↑Nat(m+n))
sub : ↓(∀m,n : N. (n≤ m)⊃ Nat(m)→ Nat(n)→↑Nat(m−n))
div : ↓(∀m,n : N. (n ̸= 0)⊃ Nat(m)→ Nat(n)→↑Nat(m÷n))
lt : ↓(∀m,n : N.Nat(m)→ Nat(n)→↑∃b : B.Bool(b)∧ (b = (m < n)))
len : ↓(∀n : N.List(Nat)(n)→↑Nat(n))
[] : List(Nat)(0)
(::) : ↓(∀n : N.Nat→ List(Nat)(n)→↑List(Nat)(1+n))

The SMT solver Z3 [de Moura and Bjørner, 2008], for example, supports integer di-

vision (and modulo and remainder operators); internally, these operations are translated to

multiplication. Here, we are considering natural number indexes, but we can add the con-

straint n ≥ 0 (for naturals n) when translating them to integers in an SMT solver such as

Z3. Integer division (nonlinear integer arithmetic) in general is not SMT decidable, but for

this mergesort example, n is always instantiated to a constant (in this case, the numeral 2),
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which is decidable. Note that Z3 supports division by zero, but our div has a guard requir-

ing the divisor to be nonzero (n ̸= 0), so we need not consider this. Division on naturals

takes the floor of what would otherwise be a rational number (for example, 3÷2 = 1).

First, we define the function merge for merging two lists while preserving order. It

takes two vectors (lists indexed by length) as inputs and has a termination-ensuring guard

that requires the output list to have a length that is the sum of the two input lengths. Since

at least one list decreases in length at recursive calls, so does the sum of their lengths,

implying the function terminates when applied.1

merge : ∀n,n1,n2 : N. (n = n1 +n2)⊃ List(Nat)(n1)→ List(Nat)(n2)
→↑List(Nat)(n)

merge [] xs2 = returnxs2
merge xs1 [] = returnxs1
merge (x1 :: xs1) (x2 :: xs2) =

if lt(x1,x2) then
let recresult =merge(xs1,(x2 :: xs2));
let result = x1 :: recresult;
returnresult

else
let recresult =merge((x1 :: xs1),xs2);
let result = x2 :: recresult;
returnresult

In a well-typed let-binding let x=g; e the bound expression g is a value-returning com-

putation (that is, has upshift type), and e is a computation that binds to x the value (of

positive type) resulting from computing g. (Liquid Haskell, lacking CBPV’s type distinc-

tion between computations and values, instead approximates whether binders terminate to

a value.) Since x has positive type, we can match it against patterns (see, for example, the

final clause of split, discussed next).

1Economou et al. [2023] used a ghost parameter, a program value representing the sum n, but we don’t
need such a ghost in the upgraded system presented in this thesis: n1 and n2 are determined so n = n1 + n2
determines n.
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We now define the function split that takes a list and splits it into two lists. It is a

standard “every-other” implementation, and we have to be a bit careful about the refinement

type so as not to be “off by one” in the lengths of the resulting lists.

split : ∀n : N.List(Nat)(n)→↑(List(Nat)((n+1)÷2))× (List(Nat)(n− ((n+1)÷2)))
split [] = return⟨[], []⟩
split [x] = return⟨[x], []⟩
split x1 :: x2 :: xs =

let recresult = split(xs);
match recresult {
⟨xs1,xs2⟩ ⇒ return⟨x1 :: xs1,x2 :: xs2⟩
}

We are ready to implement a mergesort that is verified to terminate and to return a list

of the same length as the input list. We introduce syntactic sugar for a let-binding followed

by pattern-matching on its result.

mergesort : ∀n : N.List(Nat)(n)→↑List(Nat)(n)
mergesort [] = return []
mergesort [x] = return [x]
mergesort xs = -- n≥ 2

let ⟨leftxs,rightxs⟩= split(xs);
let sortleftxs =mergesort(leftxs);
let sortrightxs =mergesort(rightxs);
returnmerge(sortleftxs,sortrightxs)

Note that mergesort is not structurally recursive: its recursive calls are on lists obtained

by splitting the input list roughly in half, not on the structure of the list (− ::−).

Suppose we want to change the refinement of mergesort to verify that the output is

in increasing order. In DML style we would have to edit the types of the separate data

constructors, which quickly gets unwieldy. Instead, we treat measures that belong together

independently of other measures that have nothing to do with them. We can modularly

change the refinement type of our mergesort function to verify what we want.
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measure isincr
isincr [] y = true
isincr (x :: xs) y = (x≥ y)∧ isincr xs x

mergesort : ∀n : N. {v : NatList | lenv = n}→ ↑{v : NatList | lenv = n && isincrv0 = true}

If we add indices representing finite multisets (of natural numbers, say) [Piskac and

Kuncak, 2008] we can use a bag measure to verify that mergesort returns a permutation of

the original list.

measure bag
bag [] = /0
bag (x :: xs) = {x}& bag xs

If two lists have the same bag of elements then they have the same length, so we can do

away with the len measurement.

mergesort : ∀X : bag(N). {v : NatList | bagv = X}
→ ↑∃Y : bag(N). {v : NatList | isincrv0 = true && bag v = Y}∧Y = X

Let’s consider a few more examples. In these examples whenever we speak of a Tree

we mean a binary tree with natural number keys at nodes.
data Tree where

leaf : Tree
node : Nat→ Tree→ Tree→ Tree

Example 2.1 (Trees With Keys In Range).
inrange : Tree→ N→ N→ B
inrange leaf x y = x≤ y
inrange (node k l r ) x y = x≤ k∧ k ≤ y∧ inrange(l,x,y)∧ inrange(r,x,y)

DigiTree= {v : Tree | inrange v 0 9 = tt}

Example 2.2 (Rose Trees [Bird and Wadler, 1988, Meertens, 1988]). In Haskell a rose

tree is usually a labelled node together with a list of rose subtrees. Ignoring polymorphism
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(labels are naturals), we can specify this as an ADT refinement. We write applications (of

index variables) to index spines, which are lists of indices and left and right projections .1

and .2.
data PreRoseTree where

node : Nat→ PreRoseTree→ PreRoseTree
nil : PreRoseTree
cons : PreRoseTree→ PreRoseTree→ PreRoseTree

rt : PreRoseTree→ B×B
rt (node n y) = (rt(y, .2),ff)
rt nil = (ff, tt)
rt (cons x y) = (ff, rt(x, .1)∧ rt(y, .2))

RoseTree= ∃a. {v : PreRoseTree | rt v = a}∧a.1

Example 2.3. Trees where for each node, the number of descendent leaves of that node is

less than that node’s key.
f : Tree→ N×B
f leaf = (1, tt)
f (node k l r) = (f(l, .1)+ f(r, .1), f(l, .1)+ f(r, .1)< k∧ f(l, .2)∧ f(r, .2))

∃a. {v : Tree | f v = a}∧a.2

Example 2.4 (Well Scoped Lambda Terms). We use de Bruijn indices, which are natural

numbers, to represent variable binding in lambda abstraction.
data LambdaTerm where

var : Nat→ LambdaTerm
lam : LambdaTerm→ LambdaTerm
app : LambdaTerm→ LambdaTerm→ LambdaTerm

wellscoped : LambdaTerm→ N→ B
wellscoped (var n) c = n < c
wellscoped ( lam a) c = wellscoped(a,1+ c)
wellscoped (app a b) c = wellscoped(a,c)∧wellscoped(b,c)

WellScopedLambdaTerm = {v : LambdaTerm | wellscoped v 0 = tt}
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Example 2.5 (Red-Black Trees [Okasaki, 1998]). Let tt represent the color black and let

ff represent red. A red-black tree is a colored (binary) tree such that

(1) Every leaf is black

(2) Every child of a red node is black

(3) For every node, each path to a leaf has the same number of black nodes

The sort (B×N)×B represents (color× black height)× validity where validity refers to

whether or not the (colored and binary) tree is a valid red-black tree.
data ColoredTree where

leaf : ColoredTree
node : Bool→ ColoredTree→ ColoredTree→ ColoredTree

rb : ColoredTree→ (B×N)×B
rb leaf = ((tt,0), tt)
rb (node c l r ) =

if c = tt -- black
then ((tt,1+ rb(l, .1, .2)), rb(l, .1, .2) = rb(r, .1, .2))
else

((ff, rb(l, .1, .2)), rb(l, .1, .2) = rb(r, .1, .2)∧ rb(l, .1, .1) = rb(r, .1, .1)∧ rb(r, .1, .1) = tt)

RedBlackTree= ∃a. {v : ColoredTree | rb v = a}∧a.2
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Chapter 3

Background

This thesis is a step toward reconciling Dependent ML and Liquid Haskell. The main thing

we get from DML is the index-program distinction. Liquid Haskell provides or inspires

mainly three things. First, the observation of difficulties with effects and evaluation order

inspired our use of CBPV. Second, we study measures, which are modular. Third, our con-

cept of value-determined indices was inspired by the observation that variables appearing

in liquid refinements correspond to inputs or outputs of functions. We contend that this

thesis lays an index-based foundation for studying liquid refinement typing.

Before diving into the details of our systems, in this chapter we give an overview of

the central logical, semantic, type-theoretic, and algorithmic issues informing their design.

Ultimately, the main technique we use, which we think allows us to obtain both semantic

and algorithmic results in a largely straightforward way, is focusing.

Let us take a step back, or spread our wings, take flight and have a bird’s-eye view.

The goal of this thesis is to design a refinement type system for a functional program-

ming language. And the method? Well, Harper [2011] blogged about the central organizing

principle of the theory of programming languages. This blog post has one of my favorite

quotes:
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The central dogma of computational trinitarianism holds that Logic, Languages,

and Categories are but three manifestations of one divine notion of computa-

tion. There is no preferred route to enlightenment: each aspect provides in-

sights that comprise the experience of computation in our lives.

Computational trinitarianism entails that any concept arising in one aspect

should have meaning from the perspective of the other two. If you arrive at

an insight that has importance for logic, languages, and categories, then you

may feel sure that you have elucidated an essential concept of computation—

you have made an enduring scientific discovery.

I do not claim to have made an enduring scientific discovery with this thesis (that’s up to

among other factors its future reception by the scientific community). Nor am I necessarily

committed philosophically to this view of science. But in this thesis we do draw from logic,

languages, and categories in a somewhat unified way. Anyway, Harper [2016] textbooked

the following, in case the reader wants something more authoritative than a blog post,

though it does not mention categories.

The unification of logic and programming is called the propositions as types

principle. It is a central organizing principle of the theory of programming lan-

guages. Propositions are identified with types, and proofs. . . programs. A pro-

gramming technique corresponds to a method of proof; a proof technique. . . a

method of programming.

More details can be found at the nLab entry for “computational trilogy” [nLab authors,

2024]. Adding physics and topology, perhaps we get the or a Holy Quincunx, but we’re

straying too far afield [Baez and Stay, 2011]. Let us stay focused.
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Harper [2016] concisely reviews the history of statically typed languages:1

The concept of the static semantics2 of a programming language was histor-

ically slow to develop, perhaps because the earliest languages had relatively

few features and only very weak type systems. The concept of a static se-

mantics in the sense considered here was introduced in the definition of the

Standard ML programming language [Milner et al., 1997], building on much

earlier work by Church and others on the typed lambda-calculus [Barendregt,

1993]. The concept of introduction and elimination3, and the associated inver-

sion principle4, was introduced by Gentzen in his pioneering work on natural

deduction5 [Gentzen, 1935]. These principles were applied to the structure of

programming languages by Martin-Löf [1979], Martin-Löf [1984].

Since we will begin with logic, let’s discuss it a bit more. Gentzen created his sys-

tem of natural deduction to represent formally the reasoning of mathematicians in a way

more natural (in the sense of more faithful to real mathematical practice) than Hilbert-style

logical systems. Gentzen’s natural deduction most naturally resulted in a formalization of

intuitionistic logic, but mathematicians tended to reason classically (and they still largely
1Our citations in the quote differ slightly from the original source. I add my own footnotes.
2In this dissertation, a static semantics is a type system.
3Rules for introducing and eliminating logical connectives in natural deduction. In sequent calculus,

there are left and right introduction rules instead (no top-down elimination rules). A cut-free sequent calculus
therefore satisfes the subformula property that for each rule all formulas in its prerequisite sequents are
subformulas of formulas in its concluded sequent.

4The inversion principle is basically that the introduction rules and elimination rules in natural deduction
are inverses. This has also been called harmony in some of Frank Pfenning’s notes and stability/harmony by
Dummett [1991]. In sequent calculus, the inversion principle is that the left and right introduction rules are
inverses. The inversion principle entails the Hauptsatz of Gentzen [1935]. But the inversion principle and its
name came from work by Paul Lorenzen in the 1950s and Dag Prawitz uses it about a decade later to study
normalization (an analogue to cut elimination) in natural deduction [Moriconi and Tesconi, 2008].

5Where he also invented sequent calculus, though natural deduction is anticipated by the work of the
ancient philosopher Aristotle [Martin-Löf, 2011] and sequent calculus and proof theory in the work of the
ancient Stoics [Bobzien, 2019].
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do at this time, I’m guessing). Gentzen therefore invented sequent calculus as a mathemat-

ical tool to study formally judgments of consequence in classical logic, which pays closer

attention to the way assumptions and conclusions are used, formalized by structural rules

for manipulating sequences of assumptions and conclusions: exchange, weakening, con-

traction. He also studied intuitionistic sequent calculus. Both of his inventions—natural de-

duction and sequent calculus—were made in Gentzen’s 1934/1935 PhD dissertation. This

thesis will begin (in the next chapter) with a standard intuitionistic sequent calculus which

is equivalent to a fragment (we omit universal and existential quantification over formulas,

which corresponds to type polymorphism) of what Gentzen created. But the point of it is

to be the core of a typed functional language, so let’s move on to type systems.

A type system is a set of typing judgments together with rules for deriving them.

3.1 Typing

A typing judgment is derived by inference rules and asserts the type of a program term.

For example Γ ⊢ e : A asserts that assuming or under the context Γ (assigning types to

program variables), program term e has type A. Usually we presuppose metavariables in a

judgment like Γ , e, and A are elements of languages generated by context-free grammars in

Backus–Naur form. Assuming Γ is a given input, there are at least three ways to implement

Γ ⊢ e : A.

(1) Both e and A are inputs, and we check that e has type A (type checking).

(2) Given e as input, infer (output) a type A such that e has type A (type inference).

(3) Output a program e that has given input type A (program synthesis).
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Using terminology from automated deduction and logic programming [Warren, 1978], we

call the input or output status of a metavariable in a judgment its mode.

In complexity theory, it tends to be easier to check a given solution to a problem than

to find one. Similarly, while inferring types is often desirable (it can be convenient for the

programmer not to have to specify all the types), it tends to be computationally intractable

as we move toward systems with richer types; but checking programs against given types

is relatively easy.

The richer the type system, the harder it is to infer types. For example, System F,

which extends the simply-typed lambda calculus with parametrically polymorphic types,

makes type inference and type checking (without type annotations) undecidable [Wells,

1999, Pierce, 2002]. The Hindley–Milner type system for the lambda calculus is a restric-

tion of System F that has a decidable inference algorithm called Damas–Milner [Damas

and Milner, 1982], even without type annotations. However, it does not scale to more ex-

pressive systems, such as those with higher-rank polymorphism (functions that take poly-

morphic functions as arguments). This is why, for example, GHC, a Haskell compiler, has

moved beyond Hindley–Damas–Milner (toward bidirectional typing) even though it serves

as GHC’s foundation; OCaml’s type system has also done so for features such as so-called

generalized algebraic data types (GADTs). Extending Hindley–Milner with datasort refine-

ments retains decidability of type inference; however, type inference for index refinements

in DML is undecidable (but its bidirectional typing is decidable, assuming the index con-

straints it generates are decidable, but this is not guaranteed in general) [Dunfield, 2007b].

Dependent type inference is undecidable [Dowek, 1993] but again annotations can be used

to obtain decidability.
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Bidirectional typing As we enrich our type systems, we can manage the resulting in-

crease in complexity by systematically combining both checking and synthesis/inference

(or input and output) modes: bidirectional typing [Pierce and Turner, 2000]. Bidirectional

typing is a popular way to implement a wide variety of systems, including dependent types

[Coquand, 1996, Abel et al., 2008], contextual types [Pientka, 2008], and object-oriented

languages [Odersky et al., 2001]. Decidable and practical typing for higher-rank poly-

morphism was first achieved via bidirectional typing [Peyton Jones et al., 2007]. Modern

presentations (à la ours, or vice versa really, though ours is not fundamentally about higher-

rank polymorphism and unfortunately lacks polymorphism altogether) frame it more log-

ically [Dunfield and Krishnaswami, 2013], and include extensions to GADTs [Dunfield

and Krishnaswami, 2019]. The price programmers pay is the obligation to provide more

type annotations. Fortunately, in practice, few annotations seem to be required, and any-

way bidirectional typing clarifies where annotations are needed: for example, Dunfield and

Krishnaswami’s type system [Dunfield and Krishnaswami, 2013] only requires annotations

for polymorphic and reducible expressions. Further, annotations are machine-checked doc-

umentation.

Dunfield and Krishnaswami [2013] also present a bidirectional type system for higher-

rank polymorphism, but framed more proof theoretically; Dunfield and Krishnaswami

[2019] extend it to a richer language with existentials, indexed types, sums, products, equa-

tions over type variables, pattern matching, polarized subtyping, and principality tracking.

The algorithmic system of this thesis adapts some key techniques from these papers: in-

stead of conjuring indices we introduce existential variables to the input context and output

a context with solutions leading to the extension of the context with more information. The

bidirectional system of this thesis uses logical techniques similar to these systems but it
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does not consider polymorphism. However, whoever (maybe me) extends the system with

polymorphism in future work may want to consult these two papers.

Bidirectional typing is helpful not only in terms of scalability, but also in improving

the quality of error messages (by localizing them). Bidirectional type systems are also

relatively easy to implement, if their typing rules are mode-correct: a rule is mode-correct

if the input metavariables of its premises are known (based on the conclusion’s inputs and

outputs of previous premises), and if the conclusion’s outputs are known when all premises

are derived. The design principles of bidirectional typing are explored in a recent survey

[Dunfield and Krishnaswami, 2021].

The survey paper by Dunfield and Krishnaswami [2021] discusses bidirectional typ-

ing’s connections to proof theory. Basically, good bidirectional systems tend to distinguish

checking and synthesizing terms or proofs according to their form, such as normal or neu-

tral. In natural deduction, following the Pfenning recipe described in the survey tends to

lead to a sensible bidirectional system. Rather than natural deduction, we begin (Chapter 4)

with sequent calculus which only has introduction rules. To implement a typing judgment

in a sequent calculus it is natural to begin with the goal (conclusion) and works upward

(toward premises) relative to the presentation of inference rules (premises above, conclu-

sion below). If a metavariable occurs in premises of a rule but not in its conclusion then

its mode in an implementation must be an output (in our system, this only happens at cut

rules), otherwise it is an input. Though we do not do this in the thesis, we can then add

more inference to the system; the point of this thesis is to find a good starting point.

In our system, we distinguish judgments as checking or synthesizing by replacing the

usual colon (:) in a type assignment judgment by ⇐ (checking) or ⇒ (synthesizing). In

other judgments, sometimes other symbols indicate that a metavariable is an output: the
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metavariables on the right of a ⊣ or / or ⊜ of a judgment, or in rightmost square brackets

[−] (like the value-determined dependencies ξ of type well-formedness Ξ ⊢ A type[ξ ]), are

always outputs.

3.2 Dependent Typing and Refinement Typing

From the perspective of a functional programmer, to a first approximation, dependent typ-

ing and refinement typing might seem to be almost the same thing. However, whereas

dependent typing seems to begin with high expressivity and then attempts to recover au-

tomation, refinement typing seems to begin with high automation and then attempts to

recover expressivity.

Dependent types, historically preceding index refinements, were introduced by Martin-

Löf [1971, 1975] and first used to define a programming language by Martin-Löf [1979].

Mechanical proof assistants such as Agda [Norell, 2008], Rocq [Bertot and Castéran,

2013], and Lean [de Moura et al., 2015] rely on dependent types. Dependent types allow

one to index types by general program terms (not just indices written in a more restrictive

language to preserve properties of the unrefined type system); in refinement types, by con-

trast, the index domain (and ideally, in the liquid style, the constraints mentioning them)

is deliberately restricted to preserve desirable properties of the underlying system such

as decidability (of type inference in ML, for example), enabling automatic and decidable

type inference/checking. Dependent types hence tend to be much more expressive than re-

finement types: the starting point is full spectrum dependency [Angiuli and Gratzer, 2024].

However, type checking and inference in dependent type systems is undecidable in general.

In a fully dependent setting, one must manually provide proofs for things that cannot be

automated which is more likely to arise given its relatively relaxed language. In refinement
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type systems, by contrast, we usually begin with a less expressive decidable type system

(like ML) and then enrich the types with refinements in such a way that programmers do

not need to refactor their code or provide manual proofs for their original programs to type-

check. This approach seems to make it easier to prove results but it is much less expressive:

the structure of the underlying type of a refinement type cannot vary with its indices.

Considering an example from Angiuli and Gratzer [2024], in Agda, a dependently typed

functional language and proof assistant, we can define the type

nary : Type→ Nat→ Type
nary A 0 = A
nary A (suc n) = A→ nary A n

and the function

apply : {A : Type} {n : Nat}→ nary A n→ Vec A n→ A
apply x [] = x
apply f (x :: xs) = apply ( f x) xs

where Vec A n is a type6 of lists of length n (specified similarly to List A n in Chapter 1) but

the dependent type (here, {−} indicates implicit universal quantification)

{A : Type} {n : Nat}→ nary A n→ Vec A n→ A

is not a refinement of any (simple7) unrefined type because nary A n is not a function type

at n = 0 but is a function type at n > 0.

Semantically, refinement type systems seem to differ from dependent type systems

mainly in that they refine a pre-existing type system, so that erasure of refinements always

preserves typing of programs.

6In this thesis we write List A n but using Vec is common.
7Noam Zeilberger informs me that it should be possible to have these kinds of examples in a type refine-

ment system with a top/universal type.
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More on dependent types and systems using them Many dependent type systems im-

pose their own restrictions for the sake of decidability. In Cayenne [Augustsson, 1998],

typing can only proceed a given number of steps. All well-typed programs in Epigram

[McBride and McKinna, 2004] are required to terminate so that its type equivalence is de-

cidable. Epigram, and other systems [Chen and Xi, 2005, Licata and Harper, 2005], allow

programmers to write explicit proofs of type equivalence.

Systems like ATS [Xi, 2004] and F⋆ [Swamy et al., 2016] can be thought of as combin-

ing refinement and dependent types. These systems aim to bring the best of both refinement

and dependent types, but ATS seems more geared to practical, effectful functional program-

ming (hence refinement types), while F⋆ is more geared to formal verification and depen-

dent types. Unlike our system, they allow the programmer to provide proofs. The overall

design of ATS is closer to our system than that of F⋆, due to its phase distinction between

statics and dynamics; but it allows the programmer to write (in the language itself) proofs

in order to simplify or eliminate constraints for the (external) constraint solver: Xi calls

this internalized constraint solving. (It should be possible to internalize constraint solving

to some extent in our system, but we don’t try to do so in this thesis.) Liquid Haskell has a

similar mechanism called refinement reflection [Vazou et al., 2017] in which programmers

can write manual proofs (in Haskell) in cases where automatic Proof by Logical Evaluation

and SMT solving fail.

Both ATS and F⋆ have a CBV semantics, which is inherently monadic [Moggi, 1989b].

Our system is a variant of CBPV, which subsumes both CBV and CBN, and is also in-

herently monadic. These systems consider effects other than divergence, like exceptions,

mutable state and input/output, which we hope to add to our system in future work; this

should go relatively smoothly precisely because CBPV is monadic. The system F⋆ allows
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for termination metrics other than strong induction on natural numbers, such as lexico-

graphic induction, but we think it would be straightforward to add such metrics to our

system (which only has induction on natural numbers), in the way discussed in Sec. 6.5.

Refinement typing Although a rich type system such as Haskell’s can prevent a large

number of runtime errors, it can’t catch them all. A division by zero can cause a runtime

error, even though its arguments have integer type. An array index can have integer type,

but cause an out-of-bounds error. A sorting function may output a list, but a classical type

system cannot statically guarantee that it outputs sorted lists. Refinement types, however,

can express these more precise program properties; a refinement type system can check

these without making the programmer do much more work than otherwise (besides speci-

fying the refinements in type annotations).

It seems Constable [1983] was first to introduce the basic idea of refinement types

(though not by that name) in the sense of logical subsets of types, writing {x:A|B} for the

subset type classifying terms x of type A that satisfy proposition B. However, we cannot

really call these refinement types in the sense intended by this thesis because type checking

with arbitrary B is undecidable and impractical. Freeman and Pfenning [1991] introduced

refinement types (in a sense aligning with this thesis) to the programming language Stan-

dard ML via datasort refinements—inclusion hierarchies of ML-style (algebraic, inductive)

datatypes—and intersection types for Standard ML: they showed that full type inference

is decidable under a refinement restriction, and provided an algorithm based on abstract

interpretation. The dangerous interaction of datasort refinements, intersection types, side

effects, and call-by-value evaluation was first dealt with by Davies and Pfenning [2000] by

way of a value restriction on intersection introduction; they also presented a bidirectional

typing algorithm.
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Dependent ML (DML) [Xi, 1998, Xi and Pfenning, 1999] extended the ML type dis-

cipline parametrically by index domains. DML is only decidable modulo decidability of

index constraint satisfiability. DML uses a bidirectional type system with index refinements

for a variant of ML, capable of checking properties ranging from in-bound array access [Xi

and Pfenning, 1998] to program termination [Xi, 2002]. DML, similarly to our system,

collects constraints from the program and passes them to a constraint solver, but does not

guarantee that they are SMT solvable (unlike our system). This is also the approach of

systems like Stardust [Dunfield, 2007a] (which combines both datasort and index refine-

ments, and supports index refinements that are not value-determined, that is, invaluable

refinements, which we do not consider) and those with liquid types [Rondon et al., 2008].

Liquid Haskell and Dependent ML are based on a Hindley–Milner approach; typically,

Hindley–Damas–Milner inference algorithms [Hindley, 1969, Milner, 1978, Damas and

Milner, 1982] generate typing constraints to be verified [Heeren et al., 2002]. We expect

that index refinements subsume datasort refinements but have not checked this rigorously.

One application of DML was to eliminate statically via types manual array bounds and

list tag checking [Xi and Pfenning, 1998]. Deviating slightly from the original notation and

terminology, with index refinement types, we can write the type of get as follows.

get : ∀n : N. ∀l : N. (n < l)⊃ Nat n→ List A l→ A

For a constraint ϕ and type A, the guarded type ϕ ⊃ A reads “ϕ implies A”, and is equiv-

alent to A if ϕ is true, and otherwise represents unusable programs. As such, a successful

call to get cannot be out of bounds (assuming hardware does not malfunction and the im-

plementation is correct). We may regard the constraint n < l as a precondition à la Hoare

logic [Hoare, 1969]. Similarly, we can statically encode postconditions:
abs : ∀n : Z. Int n→∃m : Z. (Int m)∧ (m≥ 0)∧ (m = n∨m = 0−n)
abs n = i f n >= 0 then n e l s e 0 − n
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specifies that abs returns a natural number of magnitude equal to its input. A value of

asserting type P∧ϕ has type P and also satisfies ϕ .

Liquid types are another way of representing refinement types. A liquid type is basically

a base type together with a predicate on it, expressed like set comprehension: for example,

the type {ν : Nat | ν ≤ 10} represents values ν of base type Nat that are at most 10. In a

liquid type system, templates can be provided by the programmer so that the type system

can try to infer refinements (such as ν ≤ 10 above). In our system, we decompose this into

the normal form {ν : Nat | index ν = a}∧ a ≤ 10 using a measurement index ν = a and

an assertion a ≤ 10. Liquid types have been applied to programming languages such as

OCaml [Kawaguchi et al., 2009], Haskell [Vazou et al., 2014], and C [Rondon et al., 2012].

A key novelty of liquid type systems is the ability to refine inductive types, such as lists,

modularly by a restricted but practical class of inductive functions called measures: for

example, one may express the type of lists of increasing integers. Such are called recursive

refinements [Kawaguchi et al., 2009]. The main engine behind liquid types is a subtyping

judgment that generates logical constraints whose validity are automatically decidable by

a constraint solver, such as a satisfiability modulo theory (SMT) solver like Z3 [de Moura

and Bjørner, 2008].

Algebraic data types and measures A novelty of liquid typing is the use of measures:

functions, defined on algebraic data types, which may be structurally recursive, but are

guaranteed to terminate and can therefore safely be used to refine the inductive types over

which they are defined.

For example, consider the type BinTree A of binary trees with terms of type A at leaves:

data BinTree Type where
leaf : A→ BinTree A
node : BinTree A→ BinTree A→ BinTree A
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Suppose we want to refine BinTree A by the height of trees. Perhaps the most direct way to

specify this is to measure it using a function hgt defined by structural recursion:

hgt : BinTree A→ N
hgt leaf = 0
hgt (node t u) = 1+max(hgt(t),hgt(u))

As another example, consider an inductive type Expr of expressions in a CBV lambda

calculus:

data Expr where
var : Nat→ Expr
lam : Nat→ Expr→ Expr
app : Expr→ Expr→ Expr

Measures need not use recursive calls. For example, if we want to refine the type Expr to

expressions Expr that are values (in the sense of CBV, not CBPV), then we can use isval:

isval : Expr→ B
isval (var z) = tt
isval (lam z expr) = tt
isval (app expr expr′) = ff

Because isval isn’t recursive and returns indexes, it’s safe to use it to refine Expr to expres-

sions that are CBV values: {ν : Expr | isval ν = tt}. But, as with len (Chapter 1), we may

again be worried about using the seemingly dynamic, recursively defined hgt in a static

refinement type. Again, we need not worry because hgt, like len, is a terminating function

into a decidable logic [Barrett et al., 2009]. We can use it to specify that, say, a height

function defined by pattern matching on trees of type {ν : BinTree A | hgt ν = n} actually

returns (the program value representing) n for any tree of height n. Given the phase dis-

tinction between indexes (like n) and programs, how do we specify such a function type?

In this thesis we use refinement type unrolling and singletons.
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Unrolling and singletons Let’s consider a slightly simpler function, length, that takes a

list and returns its length:

length []= zero
length (x :: xs) = suc (length xs)

What should be the type specifying that length actually returns a list’s length? The

proposal ∀n : N. List(A)(n)→ ↑Nat does not work because Nat has no information about

the length n. Something like ∀n : N.List(A)(n)→↑(n : Nat), read literally as returning the

index n (and not the program value corresponding to it), would violate our phase distinction

between programs and indices. Instead, we use a singleton type in the sense of Xi [1998]: a

singleton type contains just those program terms (of the type’s erasure), that correspond to

exactly one semantic index. For example, given n : N, we define the singleton type Nat(n)

(which may also be written Nat n) by {ν : Nat | indexν = n} where

index : Nat→ N
index zero= 0
index (suc x) = 1+ index(x)

specifies the indexes (of sort N) corresponding to program values of type Nat.

How do we check length against ∀n : N. List(A)(n)→ ↑(Nat(n))? In the first clause,

the input [] has type List(A)(n) for some n, but we need to know n = 0 (and that the index

of zero is 0). Similarly, we need to know x :: xs has length n = 1+ n′ where n′ : N is the

length of xs. To generate these constraints, we use an unrolling judgment (Sec. 6.4) that

unrolls a refined inductive type. Unrolling puts the type’s refinement constraints, expressed

by asserting and existential types, in the structurally appropriate positions. An asserting

type is written Q∧ϕ (read “Q with ϕ”), where Q is a (positive) type and ϕ is an index

proposition. If a term has type Q∧ϕ , then the term has type Q and also ϕ holds. (Dual to

asserting types, we have the guarded type ϕ ⊃M, which is equivalent to M if ϕ holds, but

is otherwise useless.) We use asserting types to express that index equalities like n = 0 hold
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for terms of inductive type. We use existentials to quantify over indexes that characterize

the refinements of recursive subparts of inductive types, like n′. For example, modulo a

small unimportant difference (see Sec. 6.4), List(A)(n) unrolls to

(
1∧ (n = 0)

)
+
(
A×∃n′ : N.

{
ν : List A

∣∣ lenν = n′
}
∧ (n = 1+n′)

)
That is, to construct an A-list of length n, the programmer (or library designer) can either

left-inject a unit value, provided the constraint n = 0 holds, or right-inject a pair of one

A value and a tail list, provided that n′, the length of the tail list, is n− 1 (the equations

n = 1+ n′ and n− 1 = n′ are equivalent): thus the output of unrolling corresponds to a

usual data specification but without named constructors. These index constraints are not a

syntactic part of the list itself. That is, a term of the above refined type is also a term of the

type’s erasure (of indexes):

1+(|A|× (List |A|))

where |−| erases indexes. Dual to verifying refined inductive values, pattern matching on

refined inductive values, such as in the definition of length, allows us to use the index re-

finements locally in the bodies of the various clauses for different patterns. Liquid Haskell

similarly extracts refinements of data constructors for use in pattern matching.

The shape of the refinement types generated by our unrolling judgment (such as the

one above) is a judgmental and refined-ADT version of the fact that generalized ADTs

(GADTs) can be desugared into types with equalities and existentials that express con-

straints of the return types for constructors [Cheney and Hinze, 2003, Xi et al., 2003]. It

would be tedious and inefficient for the programmer to work directly with terms of types
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produced by our unrolling judgment, but we can implement (in our system) singleton re-

finements of base types and common functions on them, such as addition, subtraction,

multiplication, division, and the modulo operation on integers, and build these into the sur-

face language used by the programmer, similarly to the implementation of Dependent ML

[Xi, 1998].

More on liquid types Rondon et al. [2008] introduced logically qualified data types,

that is, liquid types, in a system that extends Hindley–Milner to infer (by abstract inter-

pretation) refinements based on built-in or programmer-provided refinement templates or

qualifiers. Kawaguchi et al. [2009] introduced recursive refinement via sound and terminat-

ing measures on algebraic data types; they also introduced polymorphic refinement. Vazou

et al. [2013] generalize recursive and polymorphic refinement into a single, more expres-

sive mechanism: abstract refinement. Our system sadly lacks polymorphism, which we

plan to study in future work; we anticipate similarities to past work in a similar vein [Dun-

field and Krishnaswami, 2013] but with design issues peculiar to polymorphism and other

liquid typing features like abstract refinements. Abstract refinements would of course go

well with polymorphism (which we lack currently) but also the multi-argument measures of

this thesis because abstract refinements may be thought of as predicates of higher-order sort

(higher-order as in, sorts involving arrow sorts) and we encode multi-argument measures

using higher-order sorts. In future work, it would be interesting to study other features of

liquid typing in our setting. Extending our system with liquid inference of refinements, for

example, would require adding a Hindley–Milner type inference of refinement templates,

as well as mechanisms to solve these templates, possibly in an initial phase using abstract

interpretation.

Unlike DML (and our system), liquid type systems do not distinguish index terms from
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programs, at least not explicitly. Whilst this provides simplicity and convenience to the user

(from their perspective, there is just one language), it makes it relatively difficult to provide

liquid type systems a denotational semantics and to prove soundness results denotationally

(rather than operationally), in contrast to our system (we should be able to recover some

of this convenience, by requiring users, for example, to make measure annotations like

Liquid Haskell). It creates other subtleties such as the fact that annotations for termination

metrics in Liquid Haskell must be internally translated to ghost parameters. By contrast, if

we extend our system with additional termination metrics, because these metrics are at the

index level, we should have no need for such ghost parameters in an implementation. As

we will see in an example soon, liquid types’ lack of index distinction also makes it trickier

to support computational effects and evaluation orders.

Initial work on liquid types [Rondon et al., 2008, Kawaguchi et al., 2009] used call-

by-value languages, but Haskell uses lazy evaluation so Liquid Haskell was discovered

to be unsound [Vazou et al., 2014]. Vazou et al. [2014] regained typing soundness by

imposing operational-semantic restrictions on subtyping and let-binding. In their algo-

rithmic subtyping, there is exactly one rule, ⪯-BASE-D, which pertains to refinements of

base types (integers, booleans and so on) and inductive data types; however, these types

have a well-formedness restriction, namely, that the refinement predicates have the type of

boolean expressions that reduce to finite values. But this restriction alone does not suffice

for soundness under laziness and divergence. As such, their algorithmic typing rule T-

CASE-D, which combines let-binding and pattern matching, uses an operational semantics

to approximate whether or not the bound expression terminates. If the bound expression

might diverge, then so might the entire case expression; otherwise, it checks each branch

in a context that assumes the expression reduces to a (potentially infinite Haskell) value.
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We also have a type well-formedness restriction, but it is purely syntactic, and only on

index quantification, requiring it to be associated with index folds that are necessarily de-

cidable by virtue of a systematic phase distinction between the index level and the program

level. Further, via type polarization, our let-binding rule requires the bound expression to

return a value, we only allow value types in our program contexts, and we cannot extract

index information (which happens in inversion stages) across polarity shifts (such as in a

suspended computation). Therefore, in our system, there is no need to stratify our types

according to an approximate criterion; rather, we exploit the systemic distinction between

positive (value) types and negative (computation) types, that Levy [2004] designed or dis-

covered to be semantically well-behaved. We suspect that liquid types’ divergence-based

stratification is indirectly grappling with logical polarity. Because divergence-based strati-

fication is peculiar to the specific effect of nontermination, it is unclear how their approach

may extend to other effects. By way of a standard embedding of CBN or CBV into (our

focalized variant of) CBPV we can obtain CBN or CBV subtyping and typing relations

automatically respecting any necessary value or covalue restrictions [Zeilberger, 2009].

Further, being a CBPV, our system is already in a good position to handle the addition of

effects other than nontermination.

Dynamic typing and contract calculi Software contracts express program properties in

the same language as the programs themselves; Findler and Felleisen [2002] introduced

contracts for run-time verification of higher-order functional programs. These latent con-

tracts are not types, but manifest contracts are [Greenberg et al., 2010]. Manifest contracts

are akin to refinement types. Indeed, Vazou et al. [2013] sketch a proof of typing soundness

for a liquid type system by translation from liquid types to the manifest contract calculus

FH of Belo et al. [2011]. However, there is no explicit translation back, from FH to liquid
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typing. They mention that the translated terms in FH do not have upcasts because the latter

in FH are logically related to identity functions if they correspond to static subtyping (as

they do in the liquid type system): an upcast lemma. Presumably, this facilitates a transla-

tion from FH back to liquid types. However, there are technical problems in FH that break

typing soundness and the logical consistency of the FH contract system; Sekiyama et al.

[2017] fix these issues, resulting in the system Fσ
H , but do not consider subtyping and sub-

sumption, and do not prove an upcast lemma. However, it looks like they do do these things

in the sequel [Sekiyama and Igarashi, 2018]. It would be interesting to consider gradual

typing in relation to all these topics, but dynamic/gradual typing is outside the scope of the

thesis.

Refinement typing, evaluation strategy, and computational effects The interaction be-

tween refinement typing (and other fancy typing), evaluation strategy, and computational

effects can be problematic. The combination of parametric polymorphism with effects in

ML was at first unsound [Harper and Lillibridge, 1991]; the value restriction in Standard

ML recovers soundness in the presence of mutable references by restricting polymorphic

generalization to syntactic values [Wright, 1995]. The issue was also not peculiar to poly-

morphism: Davies and Pfenning [2000] discovered that a similar value restriction recovers

typing soundness for intersection refinement types and effects in call-by-value languages.

For union types, Dunfield and Pfenning [2003] obtained soundness by an evaluation context

restriction on union elimination.

For similar reasons, Liquid Haskell was also found unsound in practice, and had to be

patched; we adapt an example taken from Vazou et al. [2014] demonstrating the discovered

unsoundness:

diverge :: Nat -> {v:Int | false}
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diverge x = diverge x

safediv :: n:Nat -> {d:Nat | 0 < d} -> {v:Nat | v <= n}

safediv n d = if 0 < d then n / d else error "unreachable"

unsafe :: Nat -> Int

unsafe x = let notused = diverge 1 in let y = 0 in safediv x y

In typechecking unsafe, we need to check that the type of y (a singleton type of one value:

0) is a subtype of safediv’s second argument type (under the context of the let-binding).

Due to the refinement of the let-bound notused, this subtyping generates a constraint or

verification condition of the form “if false is true, then. . . ”. This constraint holds vacuously,

implying that unsafe is safe. But unsafe really is unsafe because Haskell evaluates lazily:

since notused is not used, diverge is never called, and hence safediv divides by zero (and

crashes if uncaught). Vazou et al. [2014] recover typing soundness and decidable typing

by restricting let-binding and subtyping, using an operational semantics to approximate

whether or not expressions diverge, and whether or not terminating terms terminate to a

finite value.

The value and evaluation context restrictions seem like ad hoc ways to cope with the

failure of simple typing rules to deal with the interactions between effects and evaluation

strategy. However, Zeilberger [2009] explains these restrictions in terms of a logical view of

refinement typing. Not only does this perspective explain these restrictions, it provides the-

oretical tools for designing type systems for functional languages with effects. At the heart

of Zeilberger’s approach is the proof-theoretic technique of focusing, which we discuss fur-

ther near the end of this chapter. An important question we address is whether polarization
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and focusing can also help us understand Liquid Haskell’s restrictions on let-binding and

subtyping: basically, our let-binding rule requires the bound computation (negative type) to

terminate to a value (positive type). In other words, focalized systems satisfy any necessary

value (and covalue) restrictions by default.

Focalization can also yield systems with good semantic properties under computational

effects, in particular, variants of call-by-push-value.

Refining call-by-push-value The type of say abs (absolute value), namely

∀n : Z. Int n→∃m : Z. (Int m)∧ (m≥ 0)∧ (m = n∨m = 0−n)

can be viewed logically as a proposition that, for every integer n, there exists a nonnegative

integer m equal in magnitude to n. The program abs, which constructs such an m for any

n, can be seen as a proof of this proposition. The Curry–Howard (CH) correspondence,

as originally conceived [Howard, 1980], is an isomorphism between natural deduction (for

intuitionistic propositional logic) and the typed lambda calculus, linking logic and pro-

gramming. But there are other bridges between logic and programming than this specific

correspondence; this phenomenon is often called “the” CH(L) correspondence (L is for

Lambek who extended CH to categories). The rough idea is that propositions correspond

to types (and objects), and proofs correspond to programs (and morphisms).

The CHL correspondence is technically complicated by computational effects, such

as divergence and writing to a store. Effectful program behavior is sensitive to evalua-

tion strategy. The strategy call-by-value (CBV) evaluates expressions before binding them

to variables, whereas call-by-name (CBN) evaluates expressions after binding them. For
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example, in CBV function application, function arguments are first evaluated, and the re-

sulting value is substituted into the function body, whereas in CBN, the unevaluated expres-

sion is substituted into the function body and evaluated as it occurs in the result (possibly

in multiple places). The calculus call-by-push-value (CBPV) [Levy, 2004] unifies CBN

and CBV semantics at the level of types. It syntactically polarizes types into computation

types (for program terms “which do”) and value types (for program terms “which are”8),

and provides connectives for transitioning between them (by “thunking” a computation,

or “lifting” a value). This allows us to use types to reason about effects under different

evaluation strategies.

Technically, core CBPV (without recursion hence without divergence) does not include

effects. However, CBPV behaves well when we add effects. In CBPV, even with effects,

we need only prove one semantic metatheory to get both CBV and CBN metatheory for

free. CBPV subsumes CBV and CBN in the sense that one can translate a CBV program to

CBPV and a CBN program to CBPV, resulting in different programs that behave as CBV

or CBN in the CBPV semantics: evaluating a translated CBV (respectively, CBN) program

coincides with evaluating the original program with CBV (respectively, CBN).

Call-by-push-value subsumes both call-by-value and call-by-name by polarizing the

usual terms and types of the λ -calculus into a finer structure that can be used to en-

code both evaluation strategies in a way that can accommodate computational effects:

value (or positive) types (classifying terms which “are”, that is, values v), computation

(or negative) types (classifying terms which “do”, that is, expressions e), and polarity

shifts ↑− and ↓− between them. An upshift ↑P lifts a (positive) value type P up to a

(negative) computation type of expressions that compute values (of type P). A down-

shift ↓N pushes a (negative) computation type N down into a (positive) value type of
8The CBPV slogans “computations do” and “values are” are from Paul Blain Levy.
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thunked or suspended computations (of type N). We can embed the usual λ -calculus

function type A →λ B (written here with a subscript to distinguish it from the CBPV

function type), for example, into CBPV (whose function types have the form P → N

for positive P and negative N) so that it behaves like CBV, via the translation ιCBV with

ιCBV(A→λ B) = ↓(ιCBV(A)→↑ ιCBV(B)); or so that it behaves like CBN, via the transla-

tion ιCBN with ιCBN(A→λ B) = (↓ ιCBN(A))→ ιCBN(B).

Evaluation order is made explicit by CBPV type discipline. Therefore, adding a refine-

ment layer on top of CBPV requires directly and systematically dealing with the interaction

between refinement types and evaluation order. If we add this layer to CBPV correctly from

the very beginning, then we can be confident that our refinement type system will be se-

mantically well-behaved when extended with other computational effects. The semantics

of CBPV are well-studied and this helps us establish semantic metatheory. In later parts

of this overview, we show the practical effects of refining our focalized variant of CBPV,

especially when it comes to algorithmic matters.

Typing soundness, totality, and logical consistency The unrefined system (Ch. 5) un-

derlying our refined system (Ch. 6) has the computational effect of nontermination and

hence is not total. To model nontermination, we give the unrefined system a standard

CBPV domain-theoretic denotational semantics: value types denote predomains (which

do not necessarily have a bottom element representing divergence) and computation types

denote domains (which necessarily have a bottom element in the complete partial order,

expressing when the denotation is least defined due to computational divergence). Seman-

tic typing soundness says that a syntactic typing derivation can be faithfully interpreted
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as a semantic typing derivation, that is, a morphism in a category9, in this case a logical

refinement of domains. Semantic typing soundness basically corresponds to syntactic typ-

ing soundness with respect to a big-step operational semantics. Our operational semantics

is based on an extension of cut elimination in the unrefined system without recursion and

ADTs and it is equivalent to the denotational semantics. Part of that equivalence is called

computational adequacy: if a program denotes divergence then it really does diverge when

run on an (abstract) machine. (It seems the first adequacy result appears, though not by that

name, in the work of Plotkin [1977].) Because the unrefined system is (a focalized variant

of) CBPV, proving typing soundness is relatively straightforward.

In contrast to dependent types, the denotational semantics of our refined system is de-

fined in terms of that of its erasure (of indexes), that is, its underlying, unrefined system. A

refined type denotes a logical subset of what its erasure denotes. An unrefined return type

↑P denotes either what P denotes, or divergence/nontermination. A refined return type ↑P

denotes only what P denotes. Therefore, our refined typing soundness result together with

computational adequacy implies that our refined system (without a partial upshift type)

enforces termination, both denotationally and operationally. At the end of Ch. 7 we dis-

cuss how to extend the refined system (by a partial upshift type) to permit divergence while

keeping typing soundness (which implies partial correctness for partial upshifts). Typing

soundness also implies logical consistency, because a logically inconsistent refinement type

denotes the empty set.

9A category is a collection of objects and morphisms or arrows between them where every object has
an identity morphism and pairs of composable morphisms compose associatively into some morphism. A
category can be viewed as a mathematical universe of discourse. In this thesis we do not use category theory
very heavily; it is mainly an organizational tool.
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Data abstraction and category theory In categorical semantics, (extensional)10 induc-

tive types are initial algebras of endofunctors11. We only consider certain polynomial end-

ofunctors, which denote specifications of tree-shaped or algebraic data structures. A poly-

nomial endofunctor F has an initial algebra F(µF)→ µF whose carrier µF corresponds

to an algebraic data type. Lambek’s lemma tells us that µF is isomorphic to its unrolling

F(µF). The universal property called initiality is the recursion principle for µF : any alge-

bra F(X)→X uniquely defines, in our intuitive set-and-functions-based setting, a recursive

function µF → X : if X is an index sort and F is a polynomial endofunctor on the category

of sets and functions then we have defined a (semantic) measure on the ADT µF . We pro-

vide a semantically sound syntax for measures in this way. The power of abstraction lets

us fit this all in one paragraph; in Ch. 7, we discuss these semantic issues in greater detail.

Our rolled refinement types refine type constructors µF . Sekiyama et al. [2015], again

in work on manifest contracts, compare this to refining (types of) data constructors, and

provide a translation from type constructor to data constructor refinements. According to

Sekiyama et al. [2015] type constructor refinements (such as our {ν : µF |M } where M

is a list of measurements on ν) are easier for the programmer to specify12, but data con-

structor refinements (such as the output types of our unrolling judgment or the DML style

definitions by named data constructors) are easier to verify automatically. Sekiyama et al.

[2015] say that their translation from type to data constructor refinements is closely related

to the work of Atkey et al. [2012] on refining inductive data in (a fibrational interpretation

of) dependently typed languages. Atkey et al. [2012] provide “explicit formulas” comput-

ing inductive characterizations of type constructor refinements. These semantic formulas

10This is not relevant for this thesis because we do not consider identity types.
11A functor F from category C to category D sends objects to objects and morphisms to morphisms such

that identity morphisms and composition of morphisms are preserved. If C = D then F is an endofunctor.
12They are modular.
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resemble our syntactic unrolling judgment, which may be viewed as a translation from

measure refinements to data constructor refinements.

Ornaments [McBride, 2011] describe how inductive types with different logical or or-

namental properties can be systematically related using their algebraic and structural com-

monalities. Practical work in ornaments seems mostly geared toward code reuse [Dagand

and McBride, 2012], code refactoring [Williams and Rémy, 2017] and such. In contrast,

this thesis focuses on incorporating similar ideas in a foundational index refinement typing

algorithm.

Melliès and Zeilberger [2015] provide a categorical theory of type refinement13 in gen-

eral, where functors are considered to be type refinement systems. This framework is based

on Reynolds’s distinction between intrinsic (or Church) and extrinsic (or Curry) views of

typing [Reynolds, 1998]. We think that our system fits into this framework. This is most

readily seen in the fact that the semantics of our refined system is simply the semantics

(intrinsic to unrefined typing derivations) of its erasure of indexes, which express extrinsic

properties of (erased) programs.

Inference, subtyping, and let-normality For a typed functional language to be practical,

it must support some degree of inference, especially for function application (to eliminate

universal types) and constructing values (to introduce existential types). To pass a value

to a function, its type must be compatible with the function’s argument type, but it would

13I have been writing “refinement type” and only now wrote “type refinement”. I more or less use these
terms interchangeably in this thesis. Similarly for “refinement type system” and “refinement typing”. (In
other settings, it may be apt to distinguish a refinement type as referring to syntax from type refinement
as a research program started in the early 1990s.) Similarly, it would appear that only (the nomina sacra
corresponding to) “Jesus Christ” was used in the canonical gospels, but (the nomina sacra corresponding to)
“Christ Jesus” was used in the epistles as well [Linssen, 2023].
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be burdensome to make programmers always have to prove this compatibility. In our set-

ting, for example, if x : Nat(3) and f : ↓(∀a : N.Nat(a)→↑P), then we would prefer to

write f x rather than f [3] x, which would quickly make our programs incredibly—and

unnecessarily—verbose.

Omitting index and type annotations, however, has significant implications. In par-

ticular, we need a mechanism to instantiate indexes somewhere in our typing rules: for

example, if g : ↓(↓(Nat(4+b)→↑P)→ N) and h : ↓((∃a : N.Nat(a))→↑P), then to ap-

ply g to h, we need to know Nat(4+b) is compatible with ∃a : N. Nat(a), which requires

instantiating the bound a to a term logically equal to 4+ b. Our system does this kind of

instantiation via subtyping. Indeed, type refinement naturally yields a subtyping relation

between refinements of a common simple type: for example, any singleton type of natural

number is a subtype of the natural numbers. Index instantiations are propagated locally

across adjacent nodes in the syntax tree, similarly to Pierce and Turner [2000]. Liquid

typing allows for more inference, including inference of refinements based on templates,

which provides additional convenience for programmers, but we do not consider this kind

of inference in this thesis.

We polarize subtyping into two, mutually recursive, positive and negative relations

Θ ⊢ P≤+ Q and Θ ⊢ N ≤− M (where Θ is a logical context including index propositions).

The algorithmic versions of these only introduce existential variables in positive super-

types and negative subtypes, guaranteeing they can always be solved by indexes without

any existential variables. We delay checking constraints until the end of certain, logically

designed stages (the focusing ones, as we will see), when all of their existential variables

are guaranteed to be solvable based on all the static information obtained.

Our system requires intermediate computations like h(s) to be explicitly named and
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sequenced by let-binding (a kind of A-normal [Flanagan et al., 1993] or let-normal form).

Combined with focusing, this allows us to use (within the value typechecking stage) sub-

typing only in the typing rule for (value) variables. This makes our subsumption rule

syntax-directed, simplifying and increasing the efficiency of our algorithm. We nonethe-

less prove a general subsumption lemma, which is needed to prove that substitution respects

typing, a crucial syntactic property.

Due to issues with existential index instantiation, the approach of Xi [1998] (incom-

pletely) translated programs into a let-normal form [Sabry and Felleisen, 1993] before

typing them, and Dunfield [2007b] provided a complete let-normal translation for simi-

lar issues. The system in this thesis is already let-normal.

Barendregt et al. [1983] discovered that a program that typechecks (in a system with

intersection types) using subtyping, can also be checked without using subtyping, if the

program is sufficiently η-expanded (eta-expanded). In a refinement typing interpretation,

identity coercions can always be used to witness a subtyping relation, which requires η-

expansion [Zeilberger, 2009]: this is the case for the refined system of this thesis.

3.3 Judgments, Their Presuppositions, and Value-Determined Indices

We more or less follow Martin-Löf [1996] in leaving judgmental presuppositions implicit.

For example, in the unrefined system, a derivation of Γ ⊢ e⇐ N presupposes a derivation

of context well-formedness Γ ctx which limits program variables to being declared in it

at most once (such a property cannot be enforced by a context-free grammar so we use

inference rules). As another example, a derivation of Θ ⊢ ϕ true presupposes a derivation

of the fact that ϕ has boolean sort B under Θ where − merely removes all the propositions

occurring in Θ , that is, Θ ⊢ ϕ : B.
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We only consider inference rules in which there are zero or more main premise judg-

ments, zero or more side conditions (or secondary premises), and exactly one conclusion

judgment. Metavariables in a judgment are presupposed to be generated by a grammar

(which could be presented via inference rules, but that would be more verbose), or presup-

posed to be well-formed according to inference rules.

Presuppositions help us organize and understand our system(s) and reduce clutter. They

also work well with the concept of value-determined indices which restrict the formation

of types which is presupposed by typechecking for example.

Value-determined indexes and type well-formedness Like DML, we have an index-

program distinction, but unlike DML and like Liquid Haskell, we want to guarantee SMT

solvable constraints. We accomplish this with our technique of value-determined indexes.

To guarantee that our algorithm can always instantiate quantifiers, we restrict quantification

to indexes appearing in certain positions within types: namely, those that are uniquely

determined (semantically speaking) by values of the type, according to measurements and

assertions (of equality) made before crossing a polarity shift (which in this case marks the

end of a focusing stage) and using information of value-determined indices in a previous

polarity shift (those which have already been marked as being value-determined in the

logical context).

For example, in {ν : List A | lenν = b}, the index b is uniquely determined by values of

that type: the list [x,y] uniquely determines b to be 2 (by the length measure). This value-

determinedness restriction on quantification has served to explain why a similar restriction

in the typing algorithm of Flux (Liquid Rust) seemed to work well in practice [Lehmann

et al., 2023].

We make this restriction in the type well-formedness judgment, which outputs a set
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ξ tracking value-determined index dependencies (which arise due to the use of equality

assertions and higher-order sorts); well-formed types can only quantify over indexes that

are value-determined according to ξ . For example, ∃b : N. {ν : List A | lenν = b} is well-

formed. The dependencies in ξ also register type structure: for example, a value of a

product type is a pair of values, where the first value has dependencies ξ1 (for the first type

component) and the second value has dependencies ξ2 (second type component), so the ξ

of the product type is their union ξ1∪ξ2. We also take the union for function types R→ L,

because index information flows through argument types toward the return type, marked

by a polarity shift.

By emptying ξ at shift types, we prevent lone existential variables from being intro-

duced at a distance, across polarity shifts. In practice, this restriction on quantification is

not onerous, because most functional types that programmers use are, in essence, of the

form

∀Ξ .−→ϕ ⊃−→R→↑∃Ξ ′. R′∧−→ψ

where the “∀” quantifies over indexes Ξ of argument types Rk ∈
−→
R and guards −→ϕ that

are uniquely determined by argument values, and the “∃” quantifies over indexes Ξ ′ of the

return type with assertions−→ψ that are determined by fully applying the function and thereby

constructing a value to return. The idea of this restriction was inspired by researchers

of liquid types as they seem to follow it implicitly: variables appearing in liquid type

refinements must ultimately come from arguments x to dependent functions x : A→ B and

their return values (however, these are not explicitly index variables).

Types that quantify only across polarity shifts tend to be empty, useless, or redun-

dant. The ill-formed type ∀n : N. 1→ ↑Nat(n) is empty because no function returns a

value representing any natural number when applied to unit. A term of ill-formed type
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∃m : N. ↓(Nat(m)→↑Bool) can only be applied to an unknown number, which is use-

less because the number is unknown. The ill-formed type ∃n : N. ↑↓Nat(n) is redundant

because it is semantically equivalent to ↓↑∃n : N.Nat(n) (which does not quantify across

a polarity shift), and similarly ∀n : N. ↑↓(Nat(n)→↑Nat(n)) is semantically equivalent

to ↑↓(∀n : N.Nat(n)→↑Nat(n)). Some refinements are not value-determined but useful

nonetheless, such as dimension types [Kennedy, 1994, Dunfield, 2007b] which statically

check that dimensions are used consistently (minutes can be added to minutes, but not to

kilograms) but do not store the dimensions at run time. In this thesis, we do not consider

these non-value-determined refinements, and Liquid Haskell does not support them either.

Our value-determinedness restriction on type well-formedness, together with focus-

ing, is very helpful metatheoretically, because it means that our typing algorithm only

introduces—and is guaranteed to solve—existential variables for indexes within certain

logical stages. Consider checking say a list against the type ∃b : N. {ν : List A | lenν = b}.

An existential variable b̂ for b is generated, and we check the unrolled list against the un-

rolling of
{

ν : List A
∣∣ lenν = b̂

}
. A solution to b̂ will be found within value typechecking

(the right-focusing stage), using the invariant that no measure (such as len) contains any

existential variables. Similarly, applying a function with universal quantifiers will solve

all existential variables arising from these quantifiers by the end of a left-focusing stage,

which typechecks an argument list of values.

Our examples in this discussion of value-determinedness so far have involved only

(what we happen to call) first-order sorts. We use higher-order sorts (in which arrow sorts

may occur) to allow the programmer to express recursive refinements relating different

parts of an inductive datatype, such as elements in a list. An example is to refine lists of

integers by whether they are ordered (or “sorted”; we want to avoid confusion with index
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“sorts/sorting”).

We use hereditary substitution [Watkins et al., 2004] (at the index level), which in addi-

tion to substituting reduces the result to a normal form, to maintain invariants in our system

so that the constraints it generates are decidable by an SMT solver. Most importantly,

in refined inductive types, equalities induced by measurements (foldF α)ν u = t must be

SMT-decidable. But the equality of lambda terms (which are of higher-order sort) is not

SMT-decidable, so we must fully reduce the application of recursive refinements to index

spines u down to an index t of first-order sort. (A spine [Cervesato and Pfenning, 2003]

is basically a leftward growing list but index spines include projections as well as index

terms; a program spine s is a left growing list of values v so it may also be written←−v , and

a rightward growing list of values may be written −→v . Similarly, we could write an index

spine u as ←−u but don’t usually.)14 This will be seen for example in the unrolling rule at

unit functors, which uses what we call hereditary application, written ⟨− |−⟩, ultimately to

output a normalized type asserting an equality of first-order indexes. If a value is checked

against this type, an SMT solver should be able to decide the first-order equality.

Consider the refinement type IncrNatList of lists of natural numbers in (monotonically)

increasing order, which is defined as follows:

IncrNatList= {ν : µ IncrNatListF | (fold incr)ν 0 = tt}

IncrNatListF= I⊕ (∃b : N.Nat(b)⊗ Id)

incr = ()⇒λc. tt|||||(b,a)⇒λc.(b≥ c)∧a(b)

Note especially the use of the packed index variable b in the body of the algebra (we use

syntactic sugar in this example: b is pack(b,⊤) where ⊤ is the wild pattern for constant

14We also use the←−− and −→− notation for metavariables other than program values.
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functors, in this case Nat(b)). Unrolling the type IncrNatList yields a type with right sum-

mand (corresponding to a list entry and tail list)

∃b : N.Nat(b)×∃a : B. {ν : µ IncrNatListF | (fold incr)ν b = a}∧ tt= ((b≥ 0)∧a)

The subterm Nat(b) has value-determined index b, and Nat(b) is part of a product, so

the outer existential is well-formed. But why is the inner existential well-formed, that is,

why is a value-determined? Consider the value ⟨3, [5]⟩. The value 3 determines b is 3.

The existential index a represents whether or not [5] is in increasing order starting from b.

Therefore, a is determined to be true, because b has been determined to be 3 and 5 ≥ 3.

How does this work? As typechecking proceeds and another unrolling happens, we must

check the value ⟨5, []⟩ against

∃b′ : N.Nat(b′)×∃a′ : B.
{

ν : µ IncrNatListF
∣∣ (fold incr)ν b′ = a′

}
∧a = ((b′ ≥ b)∧a′)

The value 5 determines b′ is 5 and the value [] determines a′ is tt. Plugging in what we

know yields

Nat(5)×{ν : µ IncrNatListF | (fold incr)ν 5 = tt}∧a = ((5≥ 3)∧ tt)

in which it is evident that a is true.

For sake of contrast, consider the following syntax with free index variable c of sort N:

∃b : B. {ν : µ IncrNatListF | (fold incr)ν c = b}



3.3. JUDGMENTS, THEIR PRESUPPOSITIONS, AND VALUE-DETERMINED
INDICES 60

This type is not well-formed. In particular, the binding for b is invalid: b is not value-

determined because it depends on c, which can be anything (for example, the value [3]

determines b is true if c ≤ 3 and false otherwise). However, if a value were to determine

c, then the same value would determine b in turn, similarly to the example above. This

semantic consideration implies we should restrict indices (like c) in these positions to value-

determined ones. This for example is fine:

∃b : B. {ν : µ IncrNatListF | (fold incr)ν c = b}∧ c = 7

The value-determinedness restriction for spines of measurements is supported directly

by attempting to prove type soundness. In order to give a simple definition of the se-

mantics of (value-determined) existential types and things using it, such as the pack pat-

tern for algebras, in the definition we avoid explicitly constructing semantic values for the

packed indices. However, this presents a problem in proving unrolling soundness, sub-

typing soundness, and (something we call) upward closure (all of which are needed to

prove type soundness due to our definition of packed algebras): we must know that a value

uniquely determines value-determined indices. We factor this into a few lemmas discussed

in Chapter 7.

We split the a : τ in Θ into two: a÷ τ means that a is not value-determined, and a d÷ τ

means that a is value-determined. Alternatively, we could not split the colon and add adet

to the context, but this is more verbose and it would complicate Θ ⊆Θ ′ which needs to

respect value-determinedness: if a is (not) value-determined in Θ then it is (not) value-

determined in Θ ′ too. Anyway, we introduce an operation d÷Θ that filters out everything

in Θ not marked as value-determined (including propositions; the operation d÷− is used

only in proposition-independent judgments). For a well-formed {ν : µF |M }, for each
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(foldF α)ν t = t ∈M we require t to be value-determined: all its free variables must be

value-determined, that is, FV(t)⊆ d÷Θ for some well-formed Θ . If t is a variable, then we

output the value-determinedness information FV(t)�t saying t is value-determined if the

free variables of t are. However, if t is not a variable, we can probably relax the requirement

that t be value-determined (we don’t try that in this thesis).

This opens the question of where the system should mark indices as value-determined.

Following a delay principle, we should do so when we have the most information possible

for determining value-determinedness (the judgment ξ ⊢ a det, where ξ collects value-

determinedness dependencies b�c that is “if all of b is value-determined, then so is c”, as-

serts a is value-determined under ξ ). We have the most information possible at the binding

sites of value-determined existential and universal types if we syntactically require these

value-determined binders (for now, the only universal and existential type binders we con-

sider are value-determined; refinement abstraction and programmer-provided refinements

are not value-determined binders) to appear strictly on the outside of a type, using the

dependency information generated by the inner part of the type without extractable value-

determined binders (according to our previous work, if we are to minimize coupling to the

SMT logic for the sake of a simple starter system, in positive types, we shouldn’t extract

under sum or shift types; in negative types, we shouldn’t extract under shift types). By

requiring value-determined binders to be outermost, we obviate the need to extract these

binders with a judgment that extracts inside products and arrows. We also obviate ex-

tracting propositions by requiring asserted and guarding propositions to be between these

binders and the remaining types from which nothing should be extracted.

Therefore, we stratify our type grammar. For positive types, we write P for existential

types or asserting types, Q for asserting types or the remaining positive types, the simple
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ones (those from which we can’t soundly extract index information in inversion stages),

and R for the simple positive types, the latter having R1×R2 (so nothing can be extracted)

and P1 +P2 (nothing can be extracted under +, as unrolling must be allowed to output

sums of existentials and asserting types). Going in the reverse direction alphabetically,

for negative types, we write N for universal types or quarded types, M for guarded types

and the remaining negative types, the simple ones, and L for the simple negative types

(function and upshift types). Similarly to R1×R2, function types are L→ R so nothing

can be extracted from them. In the terminology of Economou et al. [2023], R and L are

also said to be simple, that is, invariant under index extraction. This puts all of the types in

our refined system into a canonical form: any positive type may be written ∃dΞ . R∧−→ϕ for

some dΞ , −→ϕ , and R; any negative type may be written ∀dΞ .−→ϕ ⊃ L for some dΞ , −→ϕ , and L.

A dΞ is a sequence of value-determined index sortings a d÷ τ . A −→ϕ is a (possibly empty)

list of index propositions, which may also sometimes be written Φ or Ψ .

With premise ξQ− d÷Ξ ⊢ dΞ det for example we require binders to be value-determined:

d
Ξ ̸= · Ξ ,dΞ ⊢ Q type[ξQ] ξQ− d÷Ξ ⊢ d

Ξ det

Ξ ⊢ ∃dΞ . Q type[ξQ− d
Ξ ]

The operation ξ −a is defined by

·−a = ·

(ξ ,b�c)−a =


ξ −a if c = a

(ξ −a)∪ ((b−a)�c) else

and we define ξ ⊢ dΞ det by “ξ ⊢ a det for all a ∈ dom(dΞ)”, and similarly ξ −Ξ by
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subtraction of each variable in dom(Ξ) from ξ . As seen with ξQ− d÷Ξ , subtracting d÷Ξ

from ξQ is our way of assuming the value-determinedness information already in context.

We also use it to pop off binders from the output: ξQ− dΞ .

Defining ξ −a in this way means the order of forming value-determined binders makes

no difference. For example, the ξ of Nat(a)× Incr(a,b) is ·�a,{a}�b, so both a and b are

value-determined. If we first quantify over a as in ∃a : N.Nat(a)× Incr(a,b), then the ξ of

this type is (·�a,{a}�b)−a = ·�b, so we can quantify over b. If ξ −a instead removed

any b�c with a ∈ b, then quantifying over a first in this example would yield empty ξ and

we wouldn’t be able to quantify b.

In order for type well-formedness to be stable under substitution, well-formed substi-

tutions must take value-determined index variables to value-determined index terms (that

is, index terms whose index variables are all value-determined). Consider ∃b : B.Nat(a)×

Incr(a,b). The variable a is value-determined. A well-formed substitution t/a requires t to

be value-determined. Thus [t/a](∃b : B.Nat(a)× Incr(a,b)) is still well-formed (the free

variables of t, which are all value-determined, are subtracted from FV(t)�b yielding /0�b).

Substitution transforms the ξ output of type well-formedness. For first-order sorts, ξ

can only have unit entries ·�a, and we define [σ ]ξ by

[σ ]·= ·

[σ ](ξ ,c) =


[σ ]ξ ∪σ(c) if σ(c) is a variable

[σ ]ξ else
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We extend this to higher-order sorts in a natural way:

[σ ]·= ·

[σ ](ξ ,b�c) =


[σ ]ξ ∪ (⟨σ⟩b�σ(c)) if σ(c) is a variable

[σ ]ξ else

where ⟨σ⟩D is the free-variable image of σ on index variable set D, defined as follows if

D⊆ dom(σ) (where dom(σ) = ∪_/O∈σ{O})15

⟨σ⟩D= ∪a∈DFV(σ(a))

By our restrictions in type well-formedness, b is always value-determined, so if σ is well-

sorted, then ⟨σ⟩b is also value-determined.

More on hereditary substitution of indices Prawitz [1965] proved normalization of

propositional intuitionistic logic in natural deduction (which implies its consistency) morally

by lexicographic induction, first, on the structure of formulas and, second, on the structure

of proofs. Gentzen [1935] morally used a similar metric to prove cut elimination in intu-

itionistic sequent calculus (which also implies consistency). By the Curry-Howard corre-

spondence, something like this metric can be used to prove consistency of the simply-typed

lambda calculus (see Girard et al. [1989]). Watkins et al. [2004] analyzed these proofs and

captured their constructive content in a hereditary substitution operation that is like ordi-

nary syntactic substitution but continues to perform substitution until a normal form (in the

15The symbol _ means “don’t care about this (unused) metavariable” and O is a generic metavariable which
can be specified by context.
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sense of no β -redexes, that is, beta-redexes) is obtained (or it gets stuck). For example, or-

dinary substitution [(λx.x)/ f ]( f (2)) equals (λx.x)(2), but hereditary substitution reduces

this to a normal form:

[(λx.x)/ f ]( f (2)) = ⟨λx.x | 2⟩= ⟨[2/x]x | ·⟩= ⟨2 | ·⟩= 2

We also use the notation ⟨− | −⟩ for proof terms for primary cuts in sequent calculus

but when used there it is not “active” like hereditary application as used in the definition

of hereditary substitution. However, the cut elimination relation ⇝ performs a similar

reduction.

Hereditary substitution seems not to scale extremely well to the richest of type systems

(system F, dependent types), in which case logical relations [Tait, 1967, Plotkin, 1976]

are usually used to prove consistency, which is a technique relating syntax and semantics

(whereas hereditary substitution as understood conventionally is purely syntactic). Tait

used logical relations16 to prove strong normalization of system T. Girard extended Tait’s

method to prove system F is strongly normalizing. But hereditary substitution is still useful

for rich type systems, while being more down to earth. Stucki and Giarrusso [2021] for

example use hereditary substitution to prove weak normalization of types in an extension

of system Fω with higher-order subtyping. We use a simple formulation of hereditary

substitution to ensure that our refinement types are in a canonical, SMT decidable form.

It is common to define the hereditary substitution operation by indexing it with the

type of the term being substituted. The key induction measure includes the size of this

16Plotkin [1973, 1976] seems first to describe in print a relation as “logical” in this way, but Neel Krish-
naswami says (in the history tab of his site https://www.cl.cam.ac.uk/~nk480/) that Rick Statman tells
him that Mike Gordon was first to do so (for some reason), and that “he and Gordon Plotkin picked it up from
him”. What is logical about it? My best guess is that the (Fregean) distinction between sense and reference,
which are related in a logical relation, can be said to be a logical one.

https://www.cl.cam.ac.uk/~nk480/
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type. Alternatively, we can omit types or sorts from the definition of substitution and

prove substitution terminates on well-typed (or well-sorted) terms. This alternative is the

approach we take.

It is most convenient to work with index spines, that is, left-growing lists of normal

indexes. Index spines t ultimately synthesize the return sort after processing the entire

input sort. The remaining (that is, non-spinal) index terms t are normal in that they cannot

be β -reduced. The only index-level application form is a(t) and must have a variable a as

a head; when a term, even a lambda, is substituted for a, it is reduced to a normal form. We

distinguish the passive and active parts of hereditary substitution: the active part, which

we write as ⟨u | t⟩, can be thought of as a meta-level application of u (which need not be

a variable) to t, and fully reduces to a normal index t; and the passive part is ordinary

substitution [u/a]t. The active and passive aspects of hereditary substitution are mutually

recursive.17 Instead of “parallel” the word “simultaneous” is also used [Stoughton, 1988].

It is tricky to prove that hereditary application is admissible, but similar to proving cut

elimination:
Ξ ⊢ u : τ Ξ ; [τ] ⊢ t : κ

Ξ ⊢ ⟨u | t⟩ : κ

This is a mutually recursive part of the syntactic substitution lemma at the index level:

Lemma C.17. We write τ or ω for so-called higher-order sorts, specifically sorts in which

at least one arrow sort⇒ occurs; arrow sorts classify index-level lambdas λa.u binding a

(of first-order sort κ) in u. Really, these are second-order sorts in that they can’t take an

arrow sort as input. We would want to consider sorts of order higher than second when

we allow in future work index spines in measurements to mention lambdas for abstract

17I got the terminology “active” and “passive” from some notes by Abel [2019] on parallel hereditary
substitution, which is also our flavor of index substitution.
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refinements. We reserve κ for first-order sorts, which we define to be sorts without any

occurrence of an arrow sort.

It is also tricky to situate hereditary substitution properly with respect to the overall

system. In particular, in other parts of the metatheory, we need to prove Barendregt’s18

distribution property of substitution that looks something like

[t/a]([u/b]t ′) = [[t/a]u/b]([t/a]t ′)

provided b /∈ FV(t). I am in the habit (picked up from Matt Hammer) of referring to this

broadly as “Barendregt’s substitution lemma” because a similar result by the name “substi-

tution lemma” is proved in his standardizing textbook on the untyped lambda calculus. To

do this, we already need a somewhat complicated lexicographic induction measure, first,

on the structure of the sort of b, second, on the part number of the lemma (which includes

the part shown above for a normal index term t ′, a similar part for index spines, and a part

saying that the active and passive aspects of hereditary substitution commute), and third,

on the structure of the index term. However, in view of the rest of the system, it is conve-

nient to generalize the distribution property from the single substitution t/a to an arbitrary

substitution σ . In this case, the induction metric gets a bit more complicated: in the first

part of the lexicographic induction, to the size of the sort of b, we must add the sizes of the

sorts of non-identity substitutions in σ .

These induction metrics for index substitution metatheory are similar to those used to

prove cut elimination but a bit more complicated.

18A similar lemma is in the standard textbook on untyped lambda calculus by Barendregt [1981]
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3.4 Focusing & Its Applications to Programming Languages

Focusing is a technique for reducing nondeterminism in proof search procedures. From a

Curry–Howard perspective, formulas correspond to types, and proofs correspond to pro-

grams, so proof search corresponds to program synthesis: given a context and a type, au-

tomatically synthesize a program of the given type under the given context. However,

program synthesis, while (perhaps) theoretically interesting and practically convenient, is

outside the scope of this thesis, which focuses on type inference and type checking (check-

ing a program against a type or inferring a type for a program).

Andreoli [1992] first studied focusing in the setting of linear logic; its corresponding

notion of polarity, discussed shortly, also appeared in Girard’s work on unifying classical,

intuitionistic, and linear logics [Girard, 1993]. A rule is invertible if its conclusion implies

its premises. In proof search, where and when invertible rules are applied doesn’t affect

whether a proof can be found, so a search procedure can nondeterministically choose to

apply invertible rules. However, one can eagerly apply invertible rules without worrying

about possibly needing to backtrack, so the search procedure can avoid this nondetermin-

ism. Here enters a notion of polarity in sequent calculus proof search: negative formulas

(or types) are those with invertible right rules, and positive formulas (or types) are those

with invertible left rules. Further, Andreoli observed that one can select a formula on which

to focus—that is, to decompose fully, up to an atom or a polarity shift, using non-invertible

rules—without losing soundness or completeness. Focusing is characterized primarily by

this latter, subtler observation: a proof search procedure which exploits such, and only such

focusing is weakly focused; if, in addition to this, the procedure eagerly applies invertible

rules, then it is said to be strongly focused [Simmons, 2014]. The terminology of weak and

strong focalization seems to appear first in an unpublished note by Laurent [2004] though
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in a slightly different way.

Focusing and polarization are computationally interesting. They have been used to

explain many common phenomena in programming languages. It has been used to illu-

minate aspects of pattern matching [Zeilberger, 2008a, Krishnaswami, 2009], higher-order

abstract syntax [Zeilberger, 2008b], functional program compilation [Downen, 2017], and

the value and evaluation context restrictions that arise in type systems with intersection and

union types [Zeilberger, 2009]. For example, Krishnaswami [2009] explains that pattern

matching arises as the left-inversion stage of focused systems (by the way, the system in

that paper is bidirectional). More broadly, Downen [2017] discusses many logical dualities

common in programming languages.

Focusing is closely related to CBPV. From a CH perspective, the polarization of focused

proof search syntactically reflects the semantic duality between CBN and CBV [Zeilberger,

2008a]. Brock-Nannestad et al. [2015] study the relation between polarized intuitionistic

logic and CBPV. They obtain a bidirectionally typed system of natural deduction related

to a variant of the focused sequent calculus LJF [Liang and Miller, 2009] by η-expansion

(for inversion stages). Espírito Santo [2017] does a similar study, but starts with a focused

sequent calculus for intuitionistic logic much like the system of Simmons [2014] (but with-

out positive products), proves it equivalent to a natural deduction system (we think the lack

of positive products helps establish this equivalence), and defines, also via η-expansion,

a variant of CBPV in terms of the natural deduction system. Our system is not natural

deduction, but rather sequent calculus. Our system relates to usual presentations of CBPV

in a similar way—via η-expansion (see definition of force in Ch. 5).

As such, we may regard CBPV’s computation types as negative and value types as

positive, and lift and thunk types as polarity shifts.
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Focusing, CBPV, and bidirectional typing An inference rule is invertible if its conclu-

sion implies its premises. For example, in intuitionistic sequent calculus, the right rule for

implication is invertible because its premise Γ ,A ⊢ B can be derived from its conclusion

Γ ⊢ A→ B:

Γ ⊢ A→ B
(Assume→R conclusion)

Γ ,A ⊢ A→ B
(Weaken)

Γ ,A ⊢ A Γ ,A,B ⊢ B

Γ ,A,A→ B ⊢ B
→L

Γ ,A ⊢ B
(Cut)

However, both right rules for disjunction, for example, are not invertible, which we can

prove with a counterexample: A1 +A2 ⊢ A1 +A2 but A1 +A2 ⊬ A1 and A1 +A2 ⊬ A2. In

a sequent calculus, positive formulas have invertible left rules and negative formulas have

invertible right rules. A weakly focused sequent calculus eagerly applies non-invertible

rules as far as possible (in either left- or right-focusing stages); a strongly focused sequent

calculus does too, but also eagerly applies invertible rules as far as possible (in either left- or

right-inversion stages). There are also stable stages (or moments) in which a decision has

to be made between focusing on the left, or on the right [Espírito Santo, 2017]: this is the

main source of backtracking in an implementation of focused proof search. The decision

can be made explicitly via proof terms (specifically, cuts): in our system, a principal task

of let-binding, a kind of cut, is to focus on the left (to process the list of arguments in a

bound function application); and a principal task of pattern matching, another kind of cut,

is to focus on the right (to decompose the value being matched against a pattern).

From a Curry–Howard view, let-binding and pattern matching are different kinds of
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cuts. The cut formula A—basically, the type being matched or let-bound—must be synthe-

sized (inferred) as an output (judgmentally, · · · ⇒ A) from heads h (variables and annotated

values) or bound expressions g (function application and annotated returner expressions);

and ultimately, the outcomes of these cuts in our system are synthesized. But all other

program terms are checked against input types A: judgmentally, · · · ⇐ A · · · or · · · [A] ⊢ · · ·

(in future work, it may be interesting to add more type inference). In this sense, both our

declarative and algorithmic type systems are bidirectional [Dunfield and Krishnaswami,

2021].

Borrowing terminology from Kant, Martin-Löf [1994] considers an analytic judgment

to be one that is derivable using information found only in its inputs (in the sense of the

bidirectional modes, input and output). A synthetic judgment, in contrast, requires us to

look beyond the inputs of the judgment in order to find a derivation. The metatheoretic

results for our algorithmic system demonstrate that our judgments are analytic, except the

judgment Θ ⊢ϕ true, which is verified by an external SMT solver. As such, our system may

be said to be analytic modulo an external SMT solver. Focusing, in proper combination

with bidirectional typing (which clarifies where to put type annotations), let-normality19

and value-determinedness, guarantees that all information needed to generate verification

conditions suitable for an SMT solver may be found in the inputs to judgments. In our

system, cut formulas can always be inferred from a type annotation or by looking up a

variable in the program context, making all our cuts (in the bidirectional system) analytic

in a sense analogous to Smullyan [1968].

We design refinement type syntax so that in inversion stages, that is, expression type-

checking (where a negative type is on the right of a turnstile) and pattern matching (where a

19Let-normality refers to that property that computations must be named and sequenced.



3.4. FOCUSING & ITS APPLICATIONS TO PROGRAMMING LANGUAGES 72

positive type is on the left of a turnstile), refinements are eagerly extracted from types in or-

der to be used. For example, suppose we want to check the expression λx.returnx against

the type ff ⊃ 1→ ↑(1∧ff), which is semantically equivalent to (1∧ ff)→ ↑(1∧ff) but

the latter is ungrammatical because function input type 1∧ff is not simple (ff can soundly

be extracted from it). We need to assume ff (that is, put it in the input logical context) so

that we can later use it (in typechecking the value x) to verify ff (of function output type

↑(1∧ff)). We require types of program variables to be simple. If we instead allowed say

x : 1∧ff in the program context, then ff would not be usable (unless we could extract it from

the program context elsewhere, but it’s simpler to extract from types as soon as possible)

and typechecking would fail (it should succeed). Similarly, since subtyping may be viewed

as implication, index information from positive subtypes or negative supertypes are eagerly

extracted for use.

Our declarative typing system (Ch. 6) includes two focusing stages, one (value type-

checking) for positive types on the right of the turnstile (⊢), and the other (spine typing) for

negative types on the left. Our algorithmic system (Ch. 8) closely mirrors the declarative

one, but does not conjure index instantiations or witnesses (like σ in DeclSpine∀ below),

and instead systematically introduces and solves existential variables (like solving the exis-

tential variables d̂Ξ ,∆ as (the algorithmic part of) Ω in AlgSpine∀ below), which we keep
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in algorithmic contexts Θ̂ (and ∆ but these have no solutions by a convention we stipulate).

d÷Θ ⊢ σ : dΞ Θ ;Γ ; [[σ ]N] ⊢ s⇒↑P

Θ ;Γ ; [∀dΞ . N] ⊢ s⇒↑P
DeclSpine∀

d
Ξ may be · Θ , d̂Ξ ;Γ ; [[d̂Ξ/dΞ ]M] ⊢ s⇒↑P / χ ⊣ ∆

Θ , d̂Ξ ,∆ ⊢ χ Wf[ξ ] Θ , [ξ ](d̂Ξ ,∆);Γ ⊢ χ fixInstChk ⊣Ω

Θ ;Γ ; [∀dΞ . M]▷ s⇒↑ [Ω ]([Ω ]P)
AlgSpine[∀]

For example, applying a function of type ∀b : N. List(Nat)(b) → ·· · to the list [4,1,2]

should solve b to an index semantically equal to 3; the declarative system conjures an index

term (like 3+0+0+1+0−1), but the algorithmic system mechanically solves a possibly

different but necessarily SMT-equivalent index (based on the mechanics of unrolling and

subtyping).

The judgment Θ ;Γ ; [∀dΞ . M]▷ s⇒ ↑ [Ω ]([Ω ]P) is top level algorithmic left-focusing.

It focuses on decomposing ∀dΞ . M (the type of the function being applied), introducing its

existential variables for the arguments in the value list s (or spine), and outputting a type

with solutions to these existentials under which all constraints hold. By “top level” we

mean that it is the judgment used by the other (non-focusing) judgments: they don’t nec-

essarily check against a universal type, which the side condition “dΞ may be ·” is intended

to clarify. Its first main premise Θ , d̂Ξ ;Γ ; [[d̂Ξ/dΞ ]M] ⊢ s⇒ ↑P / χ ⊣ ∆ is algorithmic

left-focusing and in the end it outputs constraints χ which may have (in addition to d̂Ξ )

evars newly generated by typechecking values of algebraic datatypes. We use the value-

determined dependency information ξ of the entire focusing stage in the algorithm to delay

solving evars which we know can be solved later using invariants of polarized subtyping,
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possibly with backtracking. Ultimately, this ξ retains the value-determined dependencies

of the input type (but with new evars ∆ mediating it in a solvable way) and we use this

information to that all evars are guaranteed to be solved at the end of focusing: the context

Ω in Θ , [ξ ](d̂Ξ ,∆);Γ ⊢ χ fixInstChk ⊣ Ω is complete (every evar in its domain is solved).

The algorithmic left focusing stage thus ultimately outputs ↑ [Ω ]([Ω ]P) which is ground,

that is, has no existential variables, and hence SMT solvable (Ω is applied twice because

evars that had been delayed to solve later were allowed in solutions to the evars which were

not delayed). In this way no existential variables leak to non-focusing stages.

The existential variables introduced at the beginning of left-focusing stages flow to

the right-focusing stage (value typechecking) and are solved there, possibly via subtyping.

Constraints χ are only checked right at the end of focusing stages, when all their existential

variables are solved. Dually, our top level algorithmic right-focusing judgment has the

form Θ̂ ;Γ ▷ v⇐ P and main premise Θ̂ ;Γ ⊢ v⇐ P / χ ⊣ ∆ ′, where χ is an output list of

typing constraints and ∆ ′ is an output context that includes index solutions to existentials.

For example, consider our rule for (fully) applying a function h to a list of arguments s:

Θ ;Γ ▷h⇒↓N Θ ;Γ ; [N]▷ s⇒↑P

Θ ;Γ ▷h(s)⇒↑P

After synthesizing a thunk type ↓N for the function h we are applying, we process the

entire list of arguments s using the top level judgment Θ ;Γ ; [N]▷ s⇒ ↑P where all evars

have been solved and all constraints generated within the focusing stage have been verified

under them and ultimately a type ↑P without evars is inferred.

The polarization of CBPV helps guarantee all solutions have no existential variables.

Focusing stages introduce existential variables to input types, which may appear initially
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as a positive supertype in the subtyping premise for typechecking (value) variables. These

existential variables are solved using the positive subtype, which never has existential vari-

ables. Dually, negative subtypes may have existential variables, but negative supertypes

never do.

Focusing also gives us pattern matching for free [Krishnaswami, 2009]: from a Curry–

Howard view, the left-inversion stage is pattern matching. The (algorithmic20) left-inversion

stage in our system is written Θ ;Γ ; [P]▷ {ri⇒ ei}i∈I ⇐ N: it decomposes the positive P

(representing the pattern being matched) on the left of the turnstile (written▷ to distinguish

the algorithmic judgment from the corresponding declarative judgment, which instead uses

⊢). Our system is weakly focused: it does not eagerly apply invertible rules. Pattern match-

ing in our system thereby resembles the original presentation of pattern matching in CBPV.

From a Curry–Howard view, increasing the strength of focusing would permit nested pat-

terns.

A pattern type can have index equality constraints, such as for refined ADT constructors

(for example, that the length of an empty list is zero) as output by unrolling. By using

these equality constraints, we get a coverage-checking algorithm. For example, consider

checking get (introduced in Chapter 1) against the type

∀l,k : N. {ν : List A | len ν = l}→ ({ν : Nat | index ν = k}∧ (k < l))→↑A

At the clause

get [] y = unreachable

we extract a logically inconsistent context (l : N,k : N, l = 0,k < l), which entails that

20We give the algorithmic judgment to highlight that existential variables do not flow through it, or any of
the non-focusing stages: there is no hat on an input context.
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unreachable checks against any type. Proof-theoretically, this use of equality resem-

bles the elimination rule for Girard–Schroeder-Heister equality [Girard, 1992, Schroeder-

Heister, 1994].

3.5 A Reading Guide

Judgments and relations are moded: metavariables in a judgment are assigned exclusively

either an input or an output mode. Metavariables appearing on the left of a turnstile are

always in input mode. Output-moded metavariables always appear toward the right of a

judgment. Judgments do not mix input and output modes in such a way that (for example)

there is an input, then an output, then an input; a judgment always has some number of

input metavariables on the left, followed by zero or more output metavariables on the right.

We follow the variable conventions (adapted to our setting) of Barendregt [1981], which

he justifies using de Bruijn indices to represent binders canonically.

(1) We identify alpha equivalent terms, that is terms which are identical up to consistent

renaming of bound variables.

(2) If O occurs in a certain mathematical context (like a definition or proof) then every

bound variable occurring in O is chosen to be different from the free variables. That

is, we freshen bound variables when adding them to an input context so they are

always new to that context.

We define many metaoperations. For example, we define dom(Θ) to be the set of index
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variables sorted in Θ :

dom(·) = ·

dom(Θ ,a : τ) = dom(Θ)∪{a}

dom(Θ ,ϕ) = dom(Θ)

We define dom(Θ̂) similarly: dom(Θ̂ , â : κ=t) = dom(Θ̂)∪{â} and so on (including uvars

a). We also define dom(Γ ) similarly (the set of program variables). We define Θ̂(â) to be

the sort assigned to â in Θ̂ .

We might define things multiple times, like where they are introduced in the main text,

and also in the appendix. We organize references to miscellaneous definitions in Fig. A.86

so if a reader does not know how something is defined it could maybe be found there. This

figure is found at the end of Chapter A which organizes all the definitions pertaining to the

refined system(s).

When metatheoretic statements are made in the main text, they will usually link to the

same statements in the appendix where more details and proofs can be found.

Notation: We define the disjoint union X ⊎Y of sets X and Y by X ⊎Y = ({1}×X)∪

({2}×Y ) and define the injections injk : Xk→ X1⊎X2 by injk(d) = (k,d). We write the pro-

jections of a (binary) product as πk : X1×X2→Xk (where k∈{1,2}): that is, πk(x1,x2)= xk.

In the set-theoretic denotational semantics we sometimes use pattern-matching notation

like (V1,V2) 7→ f (V1,V2) to stand for the function V 7→ f (π1(V ),π2(V )). Semantic values

are usually named d, f , g, or V .
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Chapter 4

Focusing on an Unrefined System

We begin with intuitionistic logic because it is the logical foundation of standard functional

programming. In particular, we basically begin with a simple fragment of Gentzen’s LJ, an

intuitionistic sequent calculus. We focalize this logic with a view toward refinement typing

of a (semi)standard functional programming language. We then bidirectionalize it (and in

the next chapter add recursion and algebraic datatypes) to obtain our core unrefined system.

4.1 A Sequent Calculus for Intuitionistic Propositional Logic

Of course, we absolutely need arrow types (for functions (functional programming)). Look-

ing forward to algebraic datatypes: we will construct ADTs with the basic building blocks

of sums and products, including their units, zero and one. Figure 4.1 defines a grammar

of logical formulas consisting of falsity (void type) 0, disjunction (sum type) +, truth (unit

type) 1, conjunction (product type) ×, and implication (function type)→. Figure 4.1 de-

fines a standard intuitionistic sequent calculus for these formulas. In a setting without proof

terms, we define a context Γ to be a multiset1 having formulas A as elements.

1A multiset or bag is a set in which an element can appear more than once.
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Gentzen [1935]’s left conjunction rules are not invertible, but Ketonen’s left conjunction

rule is (and, as we’ll see, therefore corresponds to pattern matching, which is what we

want2), so we use Ketonen [1944]’s.

Formulas A,B,C,P,Q,R,N,M,L ::= 0 | A+B | 1 | A×B | A→ B
Contexts Γ ::= · | Γ ,A

Γ ⊢ A Under hypotheses Γ it is the case that A is true

(Γ ∋ A) ⊢ A
Hyp

Γ ⊢ A Γ ,B ⊢C
Γ ∋ A→ B ⊢C

→L
Γ ,A ⊢ B

Γ ⊢ A→ B
→R

(no “1L”) Γ ⊢ 1
1R

Γ ,A,B ⊢C
Γ ∋ A×B ⊢C

×L
Γ ⊢ A Γ ⊢ B

Γ ⊢ A×B
×R

Γ ∋ 0 ⊢ A
0L

(no “0R”)

Γ ,A ⊢C Γ ,B ⊢C
Γ ∋ A+B ⊢C

+L
k ∈ {1,2} Γ ⊢ Ak

Γ ⊢ A1 +A2
+R

Figure 4.1: Sequent calculus for intuitionistic (propositional) logic

Definition 4.1 (Main and Secondary Premises). Given a system of rules deriving mutu-

ally recursive judgments J1, . . . ,Jn (where n > 0), we call the premises of form J1 or

. . . or Jn main or primary premises and the other premises secondary premises or side

conditions.
2We omit negative product types in this thesis which focuses on modularly refining algebraic datatypes,

which are positive. Negative products could be relevant for codata which would be negative; this is potential
future work.
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For example, in Fig. 4.1, the premise k ∈ {1,2} is a side condition of rule +R, Γ ⊢ Ak

is a main premise of +R, and Γ ∋ A is a side condition of rule Hyp. (The rule Hyp may

also be written
A ∈ Γ

Γ ⊢ A

and similarly for rules→L and ×L and 0L and +L.)

Definition 4.2 (Admissible). Given a logical system, a proposed inference rule is admissi-

ble with respect to the system if its premises imply its conclusion within the system.

Because we assume Γ is a (multi)set, the structural rule of exchange is admissible:

Lemma 4.1 (Exchange Admissible). The rule

Γ1,B,A,Γ2 ⊢C

Γ1,A,B,Γ2 ⊢C
(Exchange)

is admissible in Fig. 4.1. That is, if Γ1,B,A,Γ2 ⊢C then Γ1,A,B,Γ2 ⊢C.

Moreover, the proof of Γ1,A,B,Γ2 ⊢C has the same structure as Γ1,B,A,Γ2 ⊢C.

Proof. By structural induction on the derivation of Γ1,B,A,Γ2 ⊢C.

Hyp is the only structural rule given in Fig. 4.1, in that it is independent of any particular

logical connective; the remaining rules there are logical rules in that they pertain to logical

connectives. Because we defined the initial rules3 (that is, Hyp, 0L, and 1R) to allow

unused antecedents in Γ , the structural rule of weakening is admissible in Fig. 4.1.

3In this thesis, an initial rule is one with no main premises. Often the word initial is reserved only to
describe the Hyp rule.
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Lemma 4.2 (Weaken Admissible). The rule

Γ ⊢ A

Γ ,B ⊢ A
(Weaken)

is admissible in Fig. 4.1.

Moreover, the proof of Γ ,B ⊢ A has the same structure as that of Γ ⊢ A.

Proof. By structural induction on the derivation of Γ ⊢ A.

In Fig. 4.1, we have defined the left rules to be persistent, that is, hypotheses persist

in a proof even after they are used, reflecting the way they are used in intuitionistic nat-

ural deduction: when a hypothesis is used it is not consumed and is still available to use

(until discharged). However, in sequent calculus, all non-structural (that is, logical) rules

(when read from premises to conclusion) introduce a principal formula. In particular, non-

structural left rules introduce a principal formula on the left.

Therefore, in order to emphasize this aspect of sequent calculus while also maintaining

persistence, we write, for example, Γ ∋ A→ B in the conclusion of→L (which introduces

the principal formula A→ B to the left of the turnstile ⊢). In the conclusion of a rule,

Γ ∋ B ⊢ A is syntactic sugar for a rule concluding Γ ⊢ A using the side condition Γ ∋ B.4

Using Γ in the premises of →L therefore means we still have A → B at our disposal:

A→ B ∈ Γ . Alternatively, we could get a persistent rule by writing, say,

Γ ,A→ B ⊢ A Γ ,A→ B,B ⊢C

Γ ,A→ B ⊢C

4I got this idea from Scherer [2016].
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(and similarly for +L and×L) but this is much more verbose and is cluttered with formulas

whose only purpose is to make contraction admissible and which don’t necessarily have

anything to do with introducing the principal logical connective→ (or + or ×).

Lemma 4.3 (Contract Admissible). The rule

Γ ,C,C ⊢ A

Γ ,C ⊢ A
(Contract)

is admissible in Fig. 4.1.

Moreover, the proof of Γ ,C ⊢ A has the same structure as that of Γ ,C,C ⊢ A.

Proof. By structural induction on the derivation of Γ ,C,C ⊢ A.

Without persistent rules, we would need to add a contraction rule to Fig. 4.1 in order

to prove that our final structural rule, cut, is admissible. Cut allows us to use succedents

(formulas on the right of a turnstile ⊢) as hypotheses. After proving admissibility of cut,

consistency of the system with cut is a straightforward corollary, because the system with-

out cut clearly cannot derive 0 under no assumptions.

Admissibility of cut is crucial from a programming perspective because it means any

proof in the system with cut can be normalized into a proof without cut. We will eventually

make cut(s) explicit because they are useful to programmers. For example, let-binding

the result of a computation in another computation is a cut, and so is pattern-matching:

being able to eliminate these cuts basically means let-binding and pattern-matching behave

computationally as expected (but recursion can yield divergence, that is, eliminating a cut

can produce further cuts which will only reduce to more cuts and so on).
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We prove the admissibility of cut in the structural style of Pfenning [2000], Simmons

[2014], and (most closely) Espírito Santo [2017].

Lemma 4.4 (Cut Admissible). The rule

Γ ⊢C Γ ,C ⊢ A

Γ ⊢ A
(Cut)

is admissible in Fig. 4.1.

Proof. It is easier to prove cut elimination in an equivalent system with proof terms. We

introduce proof terms for Fig. 4.1 in Fig. 4.2 and leave proving its equivalence to the reader.

The I used in match terms is an index set of size zero, one, or two and {ri⇒ ei}i∈I is a list

of #I clauses ri⇒ ei. With proof terms added, we require a well-formed Γ to be a set of

variable bindings x : A. That is, each variable (written x or y or z or x′ or . . . ) can occur at

most once in Γ .

In a style like Espírito Santo [2017] and Scherer [2016] we define proof terms for cuts,

and cut elimination, in Fig. 4.3.

Here we organize cut elimination similarly to Section 4.2 of the PhD thesis of Scherer

[2016]: there, ⇝1 is called a principal cut, ⇝2 an initial cut, and⇝3 a commutative cut.

The main differences are the notation, the polarity of product types, and there the right-hand

side of “⇝1” post-applies (rather than pre-applies as we do) the original cut, but otherwise

it’s about a similar (likely equivalent) sequent calculus. We find pre-applying leads to a

simpler proof, where the induction metric is the same as that of Pfenning [2000]. Note

that this notion of normalization is much clunkier than the one of natural deduction, the

presence of commutative cuts makes it non-confluent in an inconsistent context (consider
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Contexts Γ ::= · | Γ ,x : A
Terms e ::= x | λx.e | let y=x(e); e′ | ⟨⟩ | ⟨e1,e2⟩ | injk e | match x {ri⇒ ei}i∈I
Patterns r ::= ⟨x1,x2⟩ | injk x

Γ ⊢ e : A Under hypotheses Γ we know e is a proof of A

(Γ ∋ (x : A)) ⊢ x : A

Γ ⊢ e : A Γ ,y : B ⊢ e′ : C
Γ ∋ (x : A→ B) ⊢ let y=x(e); e′ : C

Γ ,x : A ⊢ e : B
Γ ⊢ λx.e : A→ B

Γ ⊢ ⟨⟩ : 1

Γ ,y : A,z : B ⊢ e : C
Γ ∋ (x : A×B) ⊢match x {⟨y,z⟩⇒ e} : C

Γ ⊢ e1 : A Γ ⊢ e2 : B
Γ ⊢ ⟨e1,e2⟩ : A×B

Γ ∋ (x : 0) ⊢match x {} : A

Γ ,x1 : A1 ⊢ e1 : C Γ ,x2 : A2 ⊢ e2 : C
Γ ∋ (x : A1 +A2) ⊢match x {inj1 x1⇒ e1 | inj2 x2⇒ e2} : C

k ∈ {1,2} Γ ⊢ e : Ak

Γ ⊢ injk e : A1 +A2

Figure 4.2: Proof terms for IPL

for example let x=match y {}; ⟨⟩where y : 0), and it’s very likely we can prove it is weakly

normalizing [Scherer, 2016] but we are going to move on to designing and proving other

results about a refinement type system.

By lexicographic induction, first, on cut formula C structure, second, on e structure, and

third, on e′ structure. Use (the proof term version of) Lemma 4.1 in some cases.

We just proved we can eliminate cut in a standard intuitionistic propositional logic.

Let’s focalize that logic. Focalizing a logical system is based on the study of the invertibility
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Γ ⊢ e : C Γ ,x : C ⊢ e′ : A
Γ ⊢ let x=e; e′ : A

let x=λ z.e; let y=x(e0); e′⇝1

let y=(let z=(let x=λ z.e; e0); e); let x=λ z.e; e′

let x=⟨e1,e2⟩; match x
{
⟨x1,x2⟩⇒ e′

}
⇝1 let x1=e1; let x2=e2; let x=⟨e1,e2⟩; e′

let x= injk ek; match x
{
inj1 x1⇒ e′1 | inj2 x2⇒ e′2

}
⇝1 let xk =ek; let x= injk ek; e′k

let x=e; x⇝2 e
let x=e; y⇝2 y if y ̸= x
let x=y; e⇝2 [y/x]e
let x=e; ⟨⟩⇝3 ⟨⟩

let x=e; ⟨e′1,e′2⟩⇝3 ⟨let x=e; e′1, let x=e; e′2⟩
let x=e; injk e′⇝3 injk (let x=e; e′)
let x=e; λy.e′⇝3 λy. let x=e; e′

let x=(let y=z(e0); e); e′⇝3 let y=z(e0); let x=e; e′

let x=(match x′ {⟨y,z⟩⇒ e}); e′⇝3 match x′
{
⟨y,z⟩⇒ let x=e; e′

}
let x=(match y {}); e′⇝3 match y {}

let x=(match z {inj1 z1⇒ e1 | inj2 z2⇒ e2}); e′⇝3

match z
{
inj1 z1⇒ let x=e1; e′ | inj2 z2⇒ let x=e2; e′

}
let x=e; let y=z(e0); e′⇝3 let y=z(let x=e; e0); let x=e; e′

let x=e; match x′
{
⟨y,z⟩⇒ e′

}
⇝3 match x′

{
⟨y,z⟩⇒ let x=e; e′

}
let x=e; match y {}⇝3 match y {}

let x=e; match z {inj1 z1⇒ e1 | inj2 z2⇒ e2}⇝3

match z {inj1 z1⇒ let x=e; e1 | inj2 z2⇒ let x=e; e2}

where [y/x]e renames x to y in e and has the obvious definition by recursion on e.

Figure 4.3: Cut and cut elimination in IPL with proof terms
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properties of the system’s rules, and it helps to have cut for that. Conceptually, a rule is

invertible if no information is lost in passing from conclusion to premises, so in bottom-up

proof search for example invertible rules may be eagerly applied without losing provability.

Definition 4.3 (Invertible Rule). Given a logical system and an inference rule

J1 · · · Jn

J

RuleName

in it (where n ≥ 0 and J1, . . . ,Jn are all premises, main or secondary), RuleName is

invertible if its conclusion J implies (within the given system) each premise Jk.

For example, the rule →R (Fig. 4.1) is invertible, which we prove by assuming its

conclusion Γ ⊢ A→ B and using the system (and its admissible rules) to derive its premise

Γ ,A ⊢ B:

Γ ⊢ A→ B

Γ ,A ⊢ A→ B
(Weaken)

Γ ,A,A→ B ⊢ A
Hyp

Γ ,A,A→ B,B ⊢ B
Hyp

Γ ,A,A→ B ⊢ B
→L

Γ ,A ⊢ B
(Cut)

However, +R is not invertible, which we can prove with a counterexample:

A1 +A2 ⊢ A1 +A2

Hyp

but A1 +A2 ⊬ A1 and A1 +A2 ⊬ A2.
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Lemma 4.5 (Invertibility in Fig. 4.1).

(1) The following rules are invertible in Fig. 4.1: →R, 0L, +L, 1R, ×L, ×R.

(2) The following rules are not invertible in Fig. 4.1: →L, +R.

Proof. (1) Rule→R was shown above to be invertible. Rules 0L and 1R are vacuously

invertible. Rule +L is shown to be invertible using Hyp, (Exchange), (Cut), +R.

Rule ×L is shown to be invertible using Hyp, (Cut), and ×R. Rule ×R is shown to

be invertible using Hyp, (Cut), and ×L.

(2) Above, we have given a counterexample to the invertibility of +R. A counterexample

to the invertibility of→L is 0→ 1 ⊢ 0→ 1.

4.2 A Strongly Focused Sequent Calculus for Intuitionistic Proof Search

Andreoli [1992] discovered we can eagerly apply not only invertible rules, but also non-

invertible rules, without losing provability. Based on this insight, and following the proof-

search strategy of Espírito Santo [2017], in Fig. 4.4, we give a strongly focalized variant of

Fig. 4.1. We call the stages in which invertible rules are eagerly applied, inversion stages,

and the stages in which non-invertible rules are eagerly applied, focusing stages. We call

the formulas with left-invertible rules, positive, and the formulas with right-invertible rules,

negative. For the purpose of shifting between these stages, we add two new logical con-

nectives, the upshift ↑P of a positive formula and the downshift ↓N of a negative formula.

Focused proof-search only reduces the search space for proofs, it does not eliminate the

need to make choices and possibly backtrack. The main stage where these choices are

made is called the stage of stability. We organize these five stages in judgments of Fig. 4.4.
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The main differences between Fig. 4.4 and the strongly focalized intuitionistic logic λ
±
G of

Espírito Santo [2017] are listed next.

(1) We omit atomic formulas.

(2) We omit negative conjunction.

(3) We add positive conjunction.

(4) We permit only positive formulas in contexts.

There are secondary differences involving notation. While Espírito Santo [2017] puts for-

mulas under square brackets only when they are under focus (are the principal formula of

a focusing stage), we put principal formulas that are to the left of the turnstile under square

brackets. Since positive formulas, for example, are defined as those with left-invertible

rules, Γ ; [P] ⊢ A is the left-inversion stage, not the left-focusing stage, which is written

Γ ; [N] ⊢ A. One can remember what stage we are in by looking at what side of the turnstile

the principal formula is on, what the polarity of the formula is (based on its syntax), and re-

calling what the definition of polarity is (if positive then left-invertible else right-invertible).

At a high level, (bottom-up) proof search in Fig. 4.4 works as follows. Given a context

Γ and a formula A as inputs, we always begin our search for a proof of A under Γ in the

stable stage: Γ ⊩ A. We can either focus on the right (if A = P), or on the left (if there is a

↓N in Γ ). In either case, we may succeed or pass to an inversion stage, and then possibly

back to stability. Besides focusing on the left or the right, there is exactly one other option

in the stable stage, which is to jump to the right-inversion stage. Some backtracking may be

needed, but only within certain stages, either right-focusing (due to disjunction) or stability

(due to choices of what to focus on). Following (our understanding of) Espírito Santo

[2017] we prioritize the focusing stage, and so we do not restrict the right-hand side of
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Formulas A,B,C ::= P | N
Positive formulas P,Q,R ::= 0 | P+P | 1 | P×P | ↓N
Negative formulas N,M,L ::= P→ N | ↑P
Contexts Γ ::= · | Γ ,0 | Γ ,↓N

Γ ⊩ A Stability

Γ ⊢ N
Γ ⊩ N

Γ ⊢ P
Γ ⊩ P

Γ ; [M] ⊢ A
Γ ∋ ↓M ⊩ A

Γ ⊢ P Right focusing

Γ ∋ P
Γ ⊢ P Γ ⊢ 1

Γ ⊢ P1 Γ ⊢ P2

Γ ⊢ P1×P2

k ∈ {1,2} Γ ⊢ Pk

Γ ⊢ P1 +P2

Γ ⊢ N
Γ ⊢ ↓N

Γ ; [N] ⊢ A Left focusing

Γ ⊢ P Γ ; [N] ⊢ A
Γ ; [P→ N] ⊢ A

Γ ; [P] ⊢ A
Γ ; [↑P] ⊢ A

Γ ⊢ N Right inversion (strong)

Γ ; [P] ⊢ N
Γ ⊢ P→ N

Γ ⊩ P
Γ ⊢ ↑P

Γ ; [
←−
P ] ⊢ A Left inversion (strong)

Γ ⊩ A
Γ ; [·] ⊢ A

Γ ,↓N; [
←−
P ] ⊢ A

Γ ; [↓N,
←−
P ] ⊢ A

Γ ; [0,
←−
P ] ⊢ A

Γ ; [P1,
←−
P ] ⊢ A Γ ; [P2,

←−
P ] ⊢ A

Γ ; [P1 +P2,
←−
P ] ⊢ A

Γ ; [
←−
P ] ⊢ A

Γ ; [1,
←−
P ] ⊢ A

Γ ; [P1,P2,
←−
P ] ⊢ A

Γ ; [P1×P2,
←−
P ] ⊢ A

Figure 4.4: Strongly focalized intuitionistic logic
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Contexts Γ ::= · | Γ ,x : ↓N | Γ ,x : 0
Stable expressions t ::= dlve | retv | x $ s
Values v ::= x | ⟨⟩ | ⟨v,v⟩ | inj1 v | inj2 v | {e}
Spines s ::= match r | v s
Expressions e ::= λ r | ⌈t⌉
Arms r ::= ⇒ t | y r | abort | [r1|||||r2] | ⟨⟩ r | × r

Γ ⊩ t : A Stability

Γ ⊢ e : N
Γ ⊩ dlve : N

Γ ⊢ v : P
Γ ⊩ retv : P

Γ ; [M] ⊢ s : A
Γ ∋ (x : ↓M) ⊩ x $ s : A

Γ ⊢ v : P Right focusing

Γ ∋ (x : P)
Γ ⊢ x : P Γ ⊢ ⟨⟩ : 1

Γ ⊢ v1 : P1 Γ ⊢ v2 : P2

Γ ⊢ ⟨v1,v2⟩ : P1×P2

k ∈ {1,2} Γ ⊢ v : Pk

Γ ⊢ injk v : P1 +P2

Γ ⊢ e : N
Γ ⊢ {e} : ↓N

Γ ; [N] ⊢ s : A Left focusing

Γ ⊢ v : P Γ ; [N] ⊢ s : A
Γ ; [P→ N] ⊢ v s : A

Γ ; [P] ⊢ r : A
Γ ; [↑P] ⊢match r : A

Γ ⊢ e : N Right inversion (strong)

Γ ; [P] ⊢ r : N
Γ ⊢ λ r : P→ N

Γ ⊩ t : P
Γ ⊢ ⌈t⌉ : ↑P

Γ ; [
←−
P ] ⊢ r : A Left inversion (strong)

Γ ⊩ t : A
Γ ; [·] ⊢⇒ t : A

Γ ,y : ↓N; [
←−
P ] ⊢ r : A

Γ ; [↓N,
←−
P ] ⊢ y r : A

Γ ; [0,
←−
P ] ⊢ abort : A

Γ ; [P1,
←−
P ] ⊢ r1 : A Γ ; [P2,

←−
P ] ⊢ r2 : A

Γ ; [P1 +P2,
←−
P ] ⊢ [r1|||||r2] : A

Γ ; [
←−
P ] ⊢ r : A

Γ ; [1,
←−
P ] ⊢ ⟨⟩ r : A

Γ ; [P1,P2,
←−
P ] ⊢ r : A

Γ ; [P1×P2,
←−
P ] ⊢ × r : A

Figure 4.5: Strongly focalized intuitionistic logic with proof terms
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Stable expressions t ::= · · · | ⟨e | s⟩ | ⟨v | r⟩

Γ ⊢ e : N Γ ; [N] ⊢ s : A
Γ ⊩ ⟨e | s⟩ : A

Γ ⊢ v : P Γ ; [P,
←−
P ] ⊢ r : A

Γ ; [
←−
P ] ⊢ ⟨v | r⟩ : A

Γ ; [
←−
P ] ⊢ r : N Γ ; [N] ⊢ s : A

Γ ; [
←−
P ] ⊢ r @ s : A

Γ ⊩ t : N Γ ; [N] ⊢ s : A
Γ ⊩ t @ s : A

Γ ; [N′] ⊢ s′ : N Γ ; [N] ⊢ s : A
Γ ; [N′] ⊢ s′@ s : A

Γ ⊢ v : ↓N Γ ,x : ↓N ⊩ t : A
Γ ⊩ [v/x]t : A

Γ ⊩ t : P Γ ; [P] ⊢ r : A
Γ ⊩ t[⋆\r] : A

...
...

⟨λ r | v s⟩⇝ ⟨v | r @ s⟩
⟨⌈t⌉ |match r⟩⇝ t[⋆\r]

⟨⟨⟩ | ⟨⟩ r⟩⇝ r
⟨⟨v1,v2⟩ | × r⟩⇝ ⟨v2 | ⟨v1 | r⟩⟩
⟨injk v | [r1|||||r2]⟩⇝ ⟨v | rk⟩

⟨v | y r⟩⇝ [v/y]r

(⇒ t)@ s =⇒(t @ s)
abort@ s = abort
[r1|||||r2]@ s = [r1 @ s|||||r2 @ s]
(⟨⟩ r)@ s = ⟨⟩ (r @ s)
(× r)@ s =× (r @ s)
(y r)@ s = y (r @ s)

(dlve)@ s = ⟨e | s⟩
(x $ s′)@ s = x $ (s′@ s)
⟨e | s′⟩@ s = ⟨e | s′@ s⟩
⟨v | r⟩@ s = ⟨v | r @ s⟩

(v s′)@ s = v (s′@ s)
(match r)@ s = match (r @ s)

[v/x](⇒ t) = (⇒ [v/x]t)
[v/x]abort = abort
[v/x][r1|||||r2] = [[v/x]r1||||| [v/x]r2]

[v/x](⟨⟩ r) = ⟨⟩ [v/x]r
[v/x](× r) =× ([v/x]r)
[v/x](y r) = y ([v/x]r)

[v/x](dlve) = dlv [v/x]e
[v/x](retv′) = ret [v/x]v′

[v/x](x $ s) =

{
⟨e | [{e}/x]s⟩ if v = {e}
y $ [y/x]s if v = y

[v/x](y $ s) = y $ [v/x]s (if x ̸= y)
[v/x]⟨e | s⟩= ⟨[v/x]e | [v/x]s⟩
[v/x]⟨v | r⟩= ⟨[v/x]v | [v/x]r⟩

...
(dlve)[⋆\r] = dlve[⋆\r]
(retv)[⋆\r] = ⟨v | r⟩
(x $ s)[⋆\r] = x $ s[⋆\r]
⟨e | s⟩[⋆\r] = ⟨e[⋆\r] | s[⋆\r]⟩
⟨v | r′⟩[⋆\r] = ⟨v[⋆\r] | r′[⋆\r]⟩

...

Figure 4.6: Cut elimination in strong FIPL
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Γ ⊩ A or Γ ; [N] ⊢ A or Γ ; [P] ⊢ A to positive formulas: right-introduction for implication

can result in a negative on the right of the stable stage, so if we were to make this restriction

then we would have to jump to right inversion even if there were a negative on which we

would prefer to focus. We prioritize focusing but nondeterministically jumping to (right)

inversion does not affect provability.

It is straightforward to prove Fig. 4.4 is sound relative to Fig. 4.1 in that erasing all po-

larity shifts from formulas in a (true) focalized judgment yields a (true) defocalized judg-

ment. The proof uses the fact that weakening is admissible in Fig. 4.4.

Lemma 4.6 (Strong FIPL Weaken). Suppose B is ↓M or 0.

(1) If Γ ⊩ A then Γ ,B ⊩ A.

(2) If Γ ⊢ A then Γ ,B ⊢ A.

(3) If Γ ; [N] ⊢ A then Γ ,B; [N] ⊢ A.

(4) If Γ ; [
←−
P ] ⊢ A then Γ ,B; [

←−
P ] ⊢ A.

Moreover, none of the derivations change in structure or height.

Proof. By mutual induction on the structure of the given derivation.

Definition 4.4 (Defocalize). Given A in Fig. 4.4, define |A| to erase all shifts in A and obtain

a formula in Fig. 4.1. Given Γ in Fig. 4.4, define |Γ | to erase all shifts from all formulas P

in Γ and obtain a context in Fig. 4.1.

Theorem 4.1 (Strong FIPL Sound).

(1) If Γ ⊩ A in Fig. 4.4 then |Γ | ⊢ |A| in Fig. 4.1.

(2) If Γ ⊢ A in Fig. 4.4 then |Γ | ⊢ |A| in Fig. 4.1.
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(3) If Γ ; [N] ⊢C in Fig. 4.4 and |N| ∈ |Γ | then |Γ | ⊢ |C| in Fig. 4.1.

(4) If Γ ; [
←−
P ] ⊢C in Fig. 4.4 and |←−P | ⊆ |Γ | then |Γ | ⊢ |C| in Fig. 4.1.

Proof. By mutual induction on the structure of the given proof, using Lemma 4.6 (Strong

FIPL Weaken), Lemma 4.1 (Exchange Admissible), and Lemma 4.3 (Contract Admissible)

as needed.

We want to ensure Fig. 4.4 is logically well-behaved in that cut is admissible in it. We

provide proof terms in Fig. 4.5, as well as proof terms for cuts and rules and metaoperations

for eliminating them in Fig. 4.6. In the cut elimination figure(s), we separate via a horizon-

tal line admissible rules pertaining to proof terms for the main cuts on the one hand, and on

the other, spine appending −@− and substitution [−]− and −[−] metaoperations where

the latter namely O[⋆\r] substitutes r for what Espírito Santo [2017] calls the implicit pos-

itive covariables ⋆ in O (here, intuitively, the occurrences of retv in O become ⟨v | ⋆⟩ and

then ⋆ gets replaced by r). Our [v/x]− (dual to −[⋆\r]) is similar to the negative substitu-

tion of Espírito Santo [2017] but it has to unthunk v= {e} (remove the positive curly braces

around the negative expression e) and intuitively produces cuts ⟨e | [v/x]s⟩ at occurrences

of coreturns x $ s in −. In addition to appending spines the operation −@ s can perhaps

also be viewed as substituting s for occurrences of an implicit negative variable (?)5, or

occurrences of dlve in − producing cuts ⟨e | s⟩. We avoid explaining all the (other) proof

terms, saving that activity for explaining our programming language later. However, note

that Γ is now a set of variable typings, not a multiset, because variables may only appear at

most once in a context (in this thesis, this is the case for all contexts with variables).

Lemma 4.7 (Strong FIPL Cut Admissible).

The cut rules in Fig. 4.6 are admissible in Fig. 4.5.
5Espírito Santo [2017] does not say this but it seems in line with his terminology (at least to me).
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Proof. Fig. 4.6 provides cut elimination relations similar to (perhaps simpler than) those of

Espírito Santo [2017]. Whenever inductively going from the left-hand side of the⇝ (or =)

to the right-hand side of the⇝ (or =), either the cut formula decreases in structural size;

or else the cut formula stays the same but the part size decreases (a part here is one of the

four kinds of cuts displayed in Fig. 4.6), where

[{e}/x]−1 < ⟨_ | _⟩ < −1 @ s = −1[⋆\r]

or else the cut formula stays the same, the part size stays the same, and the proof term in

the −1 position gets smaller.

We prove that the strongly focused logic is complete by a particular polarization strat-

egy, defined in Fig. 4.7.

Theorem 4.2 (Strong FIPL Complete).

If Γ ⊢ A in Fig. 4.1 then pol+(Γ ) ⊩ pol+(A) in Fig. 4.4.

Proof. It suffices to prove (by structural induction on e) that

if Γ ⊢ e : A in Fig. 4.2 then pol+(Γ ) ⊩ pol+(e) : pol+(A) in Fig. 4.5

where pol+(−) is defined in Fig. 4.7.

Use Lemma 4.6 (Strong FIPL Weaken) in the→ right case.

4.3 A Weakly Focused Intuition. Sequent Calculus, The Core of Our PL

That concludes our brief review of focusing for proof search by way of an example which

we will now transform into our refinement type system. We consider a series of small

systemic transformations toward our unrefined type system for a standard functional pro-

gramming language, on top of which we will build a modular index refinement layer.
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Define the positive and negative polarization and pol+(A) and pol−(A) mutually by
recursion on A:

pol−(0) = ↑0

pol−(A+B) = ↑(pol+(A)+pol+(B))

pol−(1) = ↑1

pol−(A×B) = ↑(pol+(A)×pol+(B))

pol−(A→ B) = ↓↑pol+(A)→↑pol+(B)

pol+(A) = ↓pol−(A)

pol+(x) = ret{⌈x⌉}
pol+(⟨⟩) = ret{⌈ret⟨⟩⌉}

pol+(⟨e1,e2⟩) = ret
{⌈

ret⟨
{⌈

pol+(e1)
⌉}

,
{⌈

pol+(e2)
⌉}
⟩
⌉}

pol+(injk e) = ret
{⌈

ret(injk
{⌈

pol+(e)
⌉}

)
⌉}

pol+(λx.e) = ret
{

λ x′⇒ x′ $match x⇒ dlv
⌈
pol+(e)

⌉}
where x′ /∈ FV(e)∪BV(e)∪{x} (x′ is fresh)

pol+(let y=x(e); e′) = x $
{⌈

pol+(e)
⌉}

match y⇒ pol+(e′)

pol+(match x {⟨y,z⟩⇒ e}) = x $match× y z⇒ pol+(e)

pol+(match x {}) = x $match abort

pol+(match x {inj1 x1⇒ e1 | inj2 x2⇒ e2}) = x $match [x1⇒ pol+(e1)|||||x2⇒ pol+(e2)]

Figure 4.7: A polarization of IPL into strong FIPL

As such, our aim now is to put the programmer, not the proof search engine, in a

position of stability. (We give a series of transformations but only really care about the end

result, so don’t worry about understanding each step in detail.) The programmer chooses

what to focus on and what to invert, that is, when to use pattern-matching, when to sequence

a computation, and so on. The main thing programmers build are program expressions

(expressions of computations), which have negative type. We therefore restrict stability to

negative formulas in our first step, Fig. 4.8.
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Formulas A,B,C ::= P | N
Positive formulas P,Q,R ::= 0 | P+P | 1 | P×P | ↓N
Negative formulas N,M,L ::= P→ N | ↑P
Contexts Γ ::= · | Γ ,0 | Γ ,↓N

Γ ⊩ N Negative stability

Γ ⊢ N
Γ ⊩ N

Γ ; [M] ⊢ N
Γ ∋ ↓M ⊩ N

Γ ⊢ P Right focusing

Γ ∋ P
Γ ⊢ P Γ ⊢ 1

Γ ⊢ P1 Γ ⊢ P2

Γ ⊢ P1×P2

k ∈ {1,2} Γ ⊢ Pk

Γ ⊢ P1 +P2

Γ ⊢ N
Γ ⊢ ↓N

Γ ; [N] ⊢M Left focusing

Γ ⊢ P Γ ; [N] ⊢M
Γ ; [P→ N] ⊢M

Γ ; [P] ⊢M
Γ ; [↑P] ⊢M

Γ ⊢ N Right inversion (strong)

Γ ; [P] ⊢ N
Γ ⊢ P→ N

Γ ⊢ P
Γ ⊢ ↑P

Γ ; [
←−
P ] ⊢M Left inversion (strong)

Γ ⊩M
Γ ; [·] ⊢M

Γ ,↓N; [
←−
P ] ⊢M

Γ ; [↓N,
←−
P ] ⊢M

Γ ; [0,
←−
P ] ⊢M

Γ ; [P1,
←−
P ] ⊢M Γ ; [P2,

←−
P ] ⊢M

Γ ; [P1 +P2,
←−
P ] ⊢M

Γ ; [
←−
P ] ⊢M

Γ ; [1,
←−
P ] ⊢M

Γ ; [P1,P2,
←−
P ] ⊢M

Γ ; [P1×P2,
←−
P ] ⊢M

Figure 4.8: Strongly focalized intuitionistic logic with negative stability
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Contexts Γ ::= · | Γ ,x : ↓N | Γ ,x : 0
Stable expressions t ::= dlve | x $ s
Values v ::= x | ⟨⟩ | ⟨v,v⟩ | inj1 v | inj2 v | {e}
Spines s ::= match r | v s
Expressions e ::= λ r | returnv
Arms r ::= ⇒ t | x r | abort | [r1|||||r2] | ⟨⟩ r | × r

Γ ⊩ t : N Negative stability

Γ ⊢ e : N
Γ ⊩ dlve : N

Γ ; [M] ⊢ s : N
Γ ∋ s : ↓M ⊩ x $ s : N

Γ ⊢ v : P Right focusing

Γ ∋ x : P
Γ ⊢ x : P Γ ⊢ ⟨⟩ : 1

Γ ⊢ v1 : P1 Γ ⊢ v2 : P2

Γ ⊢ ⟨v1,v2⟩ : P1×P2

k ∈ {1,2} Γ ⊢ v : Pk

Γ ⊢ injk v : P1 +P2

Γ ⊢ e : N
Γ ⊢ {e} : ↓N

Γ ; [N] ⊢ s : M Left focusing

Γ ⊢ v : P Γ ; [N] ⊢ s : M
Γ ; [P→ N] ⊢ v s : M

Γ ; [P] ⊢ r : M
Γ ; [↑P] ⊢match r : M

Γ ⊢ e : N Right inversion (strong)

Γ ; [P] ⊢ r : N
Γ ⊢ λ r : P→ N

Γ ⊢ v : P
Γ ⊢ returnv : ↑P

Γ ; [
←−
P ] ⊢ r : M Left inversion (strong)

Γ ⊩ t : M
Γ ; [·] ⊢⇒ t : M

Γ ,↓N; [
←−
P ] ⊢ r : M

Γ ; [↓N,
←−
P ] ⊢ x r : M

Γ ; [0,
←−
P ] ⊢ abort : M

Γ ; [P1,
←−
P ] ⊢ r1 : M Γ ; [P2,

←−
P ] ⊢ r2 : M

Γ ; [P1 +P2,
←−
P ] ⊢ [r1|||||r2] : M

Γ ; [
←−
P ] ⊢ r : M

Γ ; [1,
←−
P ] ⊢ ⟨⟩ r : M

Γ ; [P1,P2,
←−
P ] ⊢ r : M

Γ ; [P1×P2,
←−
P ] ⊢ × r : M

Figure 4.9: Strongly focalized intuitionistic logic with negative stability (proof terms)
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Stable expressions t ::= · · · | ⟨e | s⟩ | ⟨v | r⟩

Γ ⊢ e : N Γ ; [N] ⊢ s : A
Γ ⊩ ⟨e | s⟩ : A

Γ ⊢ v : P Γ ; [P,
←−
P ] ⊢ r : A

Γ ; [
←−
P ] ⊢ ⟨v | r⟩ : A

Γ ; [P] ⊢ r : N Γ ; [N] ⊢ s : A
Γ ; [P] ⊢ r @ s : A

Γ ⊩ t : N Γ ; [N] ⊢ s : A
Γ ⊩ t @ s : A

Γ ; [N′] ⊢ s′ : N Γ ; [N] ⊢ s : A
Γ ; [N′] ⊢ s′@ s : A

Γ ⊢ v : ↓N Γ ,x : ↓N ⊩ t : A
Γ ⊩ [v/x]t : A

· · ·

⟨λ r | v s⟩⇝ ⟨v | r @ s⟩
⟨returnv |match r⟩⇝ ⟨v | r⟩

⟨⟨⟩ | ⟨⟩ r⟩⇝ r
⟨⟨v1,v2⟩ | × r⟩⇝ ⟨v2 | ⟨v1 | r⟩⟩
⟨injk v | [r1|||||r2]⟩⇝ ⟨v | rk⟩

⟨v | x r⟩⇝ [v/x]r

(⇒ t)@ s =⇒(t @ s)
[r1|||||r2]@ s = [r1 @ s|||||r2 @ s]
(⟨⟩ r)@ s = ⟨⟩ (r @ s)
(× r)@ s =× (r @ s)
(x r)@ s = x (r @ s)

(dlve)@ s = ⟨e | s⟩
⟨e | s′⟩@ s = ⟨e | s′@ s⟩
⟨v | r⟩@ s = ⟨v | r @ s⟩
(x $ s′)@ s = x $ (s′@ s)

(v s′)@ s = v (s′@ s)
(match r)@ s = match (r @ s)

[v/x](⇒ t) = (⇒ [v/x]t)
[v/x]abort = abort
[v/x][r1|||||r2] = [[v/x]r1||||| [v/x]r2]

[v/x](⟨⟩ r) = ⟨⟩ [v/x]r
[v/x](× r) =× ([v/x]r)
[v/x](y r) = y ([v/x]r)

[v/x](dlve′) = dlv [v/x]e′

[v/x](x $ s) =

{
⟨e | [v/x]s⟩ if v = {e}
y $ [y/x]s if v = y

[v/x](y $ s) = y $ [v/x]s (if x ̸= y)
[v/x]⟨e′ | s⟩= ⟨[v/x]e′ | [v/x]s⟩
[v/x]⟨v | r⟩= ⟨[v/x]v | [v/x]r⟩

[v/x](λ r) = λ [v/x]r
[v/x](returnv′) = return [v/x]v′

[v/x](match r) = match [v/x]r
[v/x](v′ s) = [v/x]v′ [v/x]s

[v/x]x = v
[v/x]y = y if x ̸= y
[v/x]⟨⟩= ⟨⟩

[v/x]⟨v′1,v′2⟩= ⟨[v/x]v′1, [v/x]v′2⟩
[v/x](injk v′) = injk ([v/x]v′)

[v/x]{e}= {[v/x]e}

Figure 4.10: Cut elimination in strong FIPL with negative stability
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Next, in Fig. 4.11, given near the end of this chapter, we weaken the inversion stages, as

programmers tend to choose when to pattern-match. Since we are weakening left-inversion,

and because stability is merely negative, for simplicity we might as well combine the nega-

tive stability and right-inversion stages (thereby weakening right-inversion). As mentioned

in the background section, this makes the resulting system weakly focused.

Formulas A,B,C ::= P | N
Positive formulas P,Q,R ::= 0 | P+P | 1 | P×P | ↓N
Negative formulas N,M,L ::= P→ N | ↑P
Contexts Γ ::= · | Γ ,P

Γ ⊢ P Right focusing

Γ ∋ P
Γ ⊢ P Γ ⊢ 1

Γ ⊢ P1 Γ ⊢ P2

Γ ⊢ P1×P2

k ∈ {1,2} Γ ⊢ Pk

Γ ⊢ P1 +P2

Γ ⊢ N
Γ ⊢ ↓N

Γ ; [N] ⊢M Left focusing

Γ ⊢ P Γ ; [N] ⊢M
Γ ; [P→ N] ⊢M

Γ ,P ⊢M
Γ ; [↑P] ⊢M

Γ ⊢ N Right inversion (weak) with stable moments

Γ ,P ⊢ N
Γ ⊢ P→ N

Γ ⊢ P
Γ ⊢ ↑P

Γ ; [N] ⊢M
Γ ∋ ↓N ⊢M

Γ ; [P] ⊢M
Γ ∋ P ⊢M

Γ ; [P] ⊢M Left inversion (weak)

Γ ; [0] ⊢M
Γ ,P1 ⊢M Γ ,P2 ⊢M

Γ ; [P1 +P2] ⊢M
Γ ,P1,P2 ⊢M

Γ ; [P1×P2] ⊢M

Figure 4.11: Weakly focalized intuitionistic logic with implicit negative stability

Continuing, we add proof terms in Fig. 4.12 and Fig. 4.13. Already these proof terms

should look more familiar to functional programmers. But we can still do better. So, next,
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Variables x,y,z
Contexts Γ ::= · | Γ ,x : P
Values v ::= x | ⟨⟩ | ⟨v,v⟩ | inj1 v | inj2 v | {e}
Spines s ::= z.e | v,s
Expressions e ::= λx.e | returnv | x $ s | match x {ri⇒ ei}i∈I
Patterns r ::= inj1 x | inj2 x | ⟨⟩ | ⟨x1,x2⟩

Γ ⊢ v : P Right focusing

Γ ∋ (x : P)
Γ ⊢ x : P Γ ⊢ ⟨⟩ : 1

Γ ⊢ v1 : P1 Γ ⊢ v2 : P2

Γ ⊢ ⟨v1,v2⟩ : P1×P2

k ∈ {1,2} Γ ⊢ v : Pk

Γ ⊢ injk v : P1 +P2

Γ ⊢ e : N
Γ ⊢ {e} : ↓N

Γ ; [N] ⊢ s : M Left focusing

Γ ⊢ v : P Γ ; [N] ⊢ s : M
Γ ; [P→ N] ⊢ v,s : M

Γ ,z : P ⊢ e : M
Γ ; [↑P] ⊢ z.e : M

Γ ⊢ e : N Right inversion/stability (weak)

Γ ,x : P ⊢ e : N
Γ ⊢ λx.e : P→ N

Γ ⊢ v : P
Γ ⊢ returnv : ↑P

Γ ; [N] ⊢ s : M
Γ ∋ (x : ↓N) ⊢ x $ s : M

Γ ; [P] ⊢ {ri⇒ ei}i∈I : M
Γ ∋ (x : P) ⊢match x {ri⇒ ei}i∈I : M

Γ ; [P] ⊢ {ri⇒ ei}i∈I : M Left inversion (weak)

Γ ; [0] ⊢ {} : M
Γ ,x1 : P1 ⊢ e1 : M Γ ,x2 : P2 ⊢ e2 : M

Γ ; [P1 +P2] ⊢ {inj1 x1⇒ e1 | inj2 x2⇒ e2} : M

Γ ⊢ e : M
Γ ; [1] ⊢ {⟨⟩⇒ e} : M

Γ ,x1 : P1,x2 : P2 ⊢ e : M
Γ ; [P1×P2] ⊢ {⟨x1,x2⟩⇒ e} : M

Figure 4.12: Weakly focalized intuitionistic logic with implicit negative stability and proof
terms
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Expressions e ::= · · · | ⟨e | s⟩ | match v {ri⇒ ei}i∈I

Γ ⊢ e : N Γ ; [N] ⊢ s : M
Γ ⊢ ⟨e | s⟩ : M

Γ ⊢ v : P Γ ; [P] ⊢ {ri⇒ ei}i∈I : M
Γ ⊢match v {ri⇒ ei}i∈I : M

Γ ; [N] ⊢ s : N′ Γ ; [N′] ⊢ s′ : M
Γ ⊢ s @ s′ : M

Γ ⊢ v : P Γ ,x : P ⊢ e : N
Γ ⊢ [v/x]e : N

...
...

⟨λx.e | v s⟩⇝ ⟨[v/x]e | s⟩
⟨returnv | z.e⟩⇝ [v/z]e

⟨x $ s | s′⟩⇝ x $ (s @ s′)
⟨match x {ri⇒ ei}i∈I | s⟩⇝match x {ri⇒⟨ei | s⟩}i∈I

match ⟨⟩ {⟨⟩⇒ e}⇝ e
match ⟨v1,v2⟩ {⟨x1,x2⟩⇒ e}⇝ [v2/x2]([v1/x1]e)

match (injk v) {inj1 x1⇒ e1 | inj2 x2⇒ e2}⇝ [v/xk]ek

match x {ri⇒ ei}i∈I ⇝match x {ri⇒ ei}i∈I

(z.e)@ s = z.⟨e | s⟩
(v s′)@ s = v (s′@ s)

[v/x](λy.e) = λy. [v/x]e
[v/x](returnv′) = return [v/x]v′

[v/x](x $ s) =

{
⟨e | [{e}/x]s⟩ if v = {e}
y $ [y/x]s if v = y

[v/x](y $ s) = y $ [v/x]s (if x ̸= y)
[v/x](match x {ri⇒ ei}i∈I) = match v {ri⇒ [v/x]ei}i∈I (if v ̸= {e})

[v/x]x = v
[v/x]y = y (if x ̸= y)
[v/x]⟨⟩= ⟨⟩

[v/x]⟨v1,v2⟩= ⟨[v/x]v1, [v/x]v2⟩
...

Figure 4.13: Cut elimination in weak FIPL with combined right inversion and negative
stability
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in Fig. 4.14, we turn spines into mere lists of values, and transfer the old continuations

of spines to let-binding (like pattern-matching, let-binding is usually handled by program-

mers) in the combined right-inversion/stability stage. We present cut elimination in Fig.

4.15. The former uses the operation s@s′ for composing spines, but in the latter this is

replaced by let y={e}(s); e′ reductions. In both, substituting a thunk {e} for the head x

of a coreturn x(s) looks kind of like a hereditary substitution in that the result of substitu-

tion is defined to “reduce”, well, not really to reduce, but to be a cut term: ⟨e | [{e}/x]s⟩.

To actually reduce the cut, the relation⇝ must be “applied” (defining [{e}/x](x $ s) = e′

if ⟨e | [{e}/x]s⟩⇝∗ e′ would literally be a hereditary substitution as usually understood

[Watkins et al., 2004, Pfenning, 2008]). (The operation −∗ takes the reflexive transitive

closure of a relation; in this case the set of the relation is the language generated by the

grammar for proof terms.)

We gave a series of transformations, but don’t intend to prove anything about most of

them. They were my way of understanding how our system related to the strongly focused

proof search. We have proven that IPL and strong FIPL are equivalent, and we have proven

cut elimination in both. We now prove that our unrefined type assignment system (without

recursion and ADTs) is equivalent to IPL. As a corollary, we can eliminate cuts in our un-

refined assignment system (without recursion). We will extend this system with recursion

and ADTs. The corresponding extension of IPL to recursion and ADTs is equivalent to this

system, the unrefined type assignment (non-bidirectional) system underlying our refined

system (the main object of study in this thesis). We will see in the next chapter that this

type assignment system with recursion is inconsistent and we cannot prove cut in it, and so

therefore IPL with recursion and ADTs is also inconsistent. By adding a refinement layer,

we will be able to recover consistency.
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Theorem 4.3. The system defined in Fig. 4.14 + Fig. 4.15 is equivalent to the system defined

in Fig. 4.2 + Fig. 4.3.

Proof. We define functions ϕ (completeness) and ψ (soundness).

ϕ : Fig. 4.2+Fig. 4.3↔ Fig. 4.14+Fig. 4.15 : ψ

Soundness is stated:

(1) If Γ ⊢ e : N then |Γ | ⊢ ψ(e) : |N|.

(2) If Γ ⊢ v : P then |Γ | ⊢ ψ(v) : |P|.
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The function ψ is defined as follows.

ψ(x) = x

ψ(⟨⟩) = ⟨⟩

ψ(⟨v1,v2⟩) = ⟨ψ(v1),ψ(v2)⟩

ψ(injk v) = injk ψ(v)

ψ({e}) = ψ(e)

ψ(λx.e) = λx.ψ(e)

ψ(returnv) = ψ(v)

ψ(match x {ri⇒ ei}i∈I) =


ψ(e) if {ri⇒ ei}i∈I = {⟨⟩⇒ e}

match x {ri⇒ψ(ei)}i∈I else

ψ(let z=x(·); e) = let z=x; ψ(e)

ψ(let z=x(v,s); e) = let y=x(ψ(v)); ψ(let z=y(s); e) where y is fresh

ψ(let y={e}(s); e′) = let x=ψ(e); ψ(let y=x(s); e′) where x is fresh

ψ(match v {}) = let x=ψ(v); match x {} where x is fresh

ψ(match v {inj1 x1⇒ e1 | inj2 x2⇒ e2}) =

let x=ψ(v); match x {inj1 x1⇒ψ(e1) | inj2 x2⇒ψ(e2)} where x fresh

ψ(match v {⟨⟩⇒ e}) = ψ(e)

ψ(match v {⟨x1,x2⟩⇒ e}) = let x=ψ(v); match x {⟨x1,x2⟩⇒ψ(e)} where x fresh

There is no clause for ψ([v/x]e) because [v/x]e is a metaoperation not a proof term. One

can define a structural size function on proof terms and show it always decreases at the



4.3. A WEAKLY FOCUSED INTUITION. SEQUENT CALCULUS, THE CORE
OF OUR PL 105

inductive calls of ψ . Extending ψ to the systems extended with recursion and algebraic

datatypes is straightforward (the linear reader can skip to completeness and come back

near the end of the next chapter):

ψ(rec x. e) = rec x. ψ(e)

ψ(match x {into(y)⇒ e}) = match x {into(y)⇒ψ(e)}

ψ(into(v)) = into(ψ(v))

However, we need to prove (straightforward) that

(polarized) ⊢ G[µF ] ⊜ P implies (unpolarized) ⊢ |G|[µ|F |] ⊜ |P| (where this |−| merely

erases polarity shifts and this unrolling judgment ⊜ is identical to unrefined unrolling ex-

cept it uses unpolarized types).

Completeness is stated:

If Γ ⊢ e : A then pol+(Γ ) ⊢ ϕ(e) : ↑pol+(A)

where ϕ and pol+(A) and pol−(A) are defined as follows.

pol−(0) = ↑0

pol−(A+B) = ↑(pol+(A)+pol+(B))

pol−(1) = ↑1

pol−(A×B) = ↑(pol+(A)×pol+(B))

pol−(A→ B) = pol+(A)→↑pol+(B)

pol+(A) = ↓pol−(A)
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ϕ(x) = return{returnx}

ϕ(let y=x(e); e′) = let z={ϕ(e)}(·); let y=x(z); ϕ(e′) where z is fresh

ϕ(λx.e) = return{λx.ϕ(e)}

ϕ(⟨⟩) = return{return⟨⟩}

ϕ(⟨e1,e2⟩) =

let x1={ϕ(e1)}(·); let x2={ϕ(e2)}(·); return{return⟨x1,x2⟩}

where x1,x2 fresh

ϕ(injk e) = let x={ϕ(e)}; return{return(injk x)} where x fresh

ϕ(match x {}) = let x′=x(·); match x′ {} where x′ is fresh

ϕ(match x {inj1 x1⇒ e1 | inj2 x2⇒ e2}) =

let x′=x(·); match x′ {inj1 x1⇒ϕ(e1) | inj2 x2⇒ϕ(e2)} where x′ is fresh

ϕ(match x {⟨x1,x2⟩⇒ e}) = let x′=x(·); match x′ {⟨x1,x2⟩⇒ϕ(e)} where x′ fresh

ϕ(let x=e; e′) = let x={ϕ(e)}(·); ϕ(e′)

Use (unstated) weakening in the→ right case. We extend ϕ to the system with recursion

and ADTs (the reader can skip for now and come back near the end of the next chapter).
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We also extend the polarization strategy to ADTs:

pol−(µF) = ↑µ(pol+(F))

pol+(F1⊕F2) = pol+(F1)⊕pol+(F2)

pol+(B̂⊗ P̂) = pol+(B̂)⊗pol+(P̂)

pol+(Î) = Î

pol+(A) = pol+(A)

pol+(Id) = Id

ϕ(rec x. e) = rec x′. let x=x′(·); ϕ(e) where x′ is fresh

ϕ(match x {into(y)⇒ e}) = let x′=x(·); match x′ {into(y)⇒ϕ(e)} where x′ fresh

ϕ(into(v)) = returninto(ϕ(v))

However, again, we need to prove (straightforward) a lemma:

If (unpolarized) ⊢ G[µF ]⊜ A then ⊢ pol+(G)[µ(pol+(F))]⊜ pol+(A).

4.4 A Bidirectionally Typed Weakly Focused Intuitionistic Sequent Calculus

Now we combine and bidirectionalize6 Fig. 4.14 and Fig. 4.15 to obtain our core, unre-

fined type system, but without inductive types and recursion: Fig. 4.16 and Fig. 4.17. We

combine the expressions match x {ri⇒ ei}i∈I and let x=y(s); e of Fig. 4.14 with the main

cuts match v {ri⇒ ei}i∈I and let x={e′}(s); e of Fig. 4.15 to obtain let-binding let x=g; e

6The result is mode-correct.
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and pattern-matching match h {ri⇒ ei}i∈I . Next, we explain h and g; the explanation has

something to do with our initial bidirectionalizing strategy, which is quite simple.

In our bidirectionalization, the idea is, first, to assign all the metavariables appearing in

the conclusions of rules in Fig. 4.14 and Fig. 4.15 the mode of input. Second, we assign

all the metavariables appearing “from nowhere” in going from conclusion to premise the

mode of output, and introduce two new syntactic categories that (to abuse language slightly)

output or synthesize these metavariables (types): heads h and bound expressions g. In

order for the type system to be able to output these cut types/formulas always, based on

non-variable inputs h and g, the cut type must appear somewhere in these inputs, so we

introduce type annotations (v : P) and (e : ↑P) in the grammar for h and g. A head h is

either a variable x, whose type can be synthesized from the context, or an annotated value

(v : P). A (let-)bound expression g is either a head applied to a spine h(s), whose type

can be synthesized ultimately from the head h, or an annotated value-returning expression

(e : ↑P).

An operational semantics of our (bidirectional) unrefined system (pre-recursion and

pre-ADT), given in Fig. 4.15, is defined in terms of its type annotation erasure, given in

Fig. 4.18, into the system of Fig. 4.14 together with the two main cuts at the top of Fig.

4.15. Compare the notion of normalization in Fig. 4.15 with the one we started with in

the proof of Lemma 4.4 (Cut Admissible): Fig. 4.15 looks more like a CBPV operational

semantics—which is to be expected because Lemma 4.4 (Cut Admissible) is unfocalized—

and perhaps looks more familiar to programmers or computer scientists.

Theorem 4.4 (Bidirectionalization Sound).

(1) If Γ ⊢ e⇐ N then Γ ⊢ |e| : N.

(2) If Γ ⊢ v⇐ P then Γ ⊢ |v| : P.
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(3) If Γ ; [P] ⊢ {ri⇒ ei}i∈I ⇐ N then Γ ; [P] ⊢ |{ri⇒ ei}i∈I| : N.

(4) If Γ ; [N] ⊢ s⇐M then Γ ; [N] ⊢ |s| : M.

Proof. By structural induction on the program term. All parts are mutually recursive.

Straightforward. The hardest case is the one where e = let x=g; e0 which requires case-

analyzing subderivations Γ ⊢ g⇒↑P.

Theorem 4.5 (Bidirectionalization Complete).

(1) If Γ ⊢ e : N then there exists e′ such that |e′|= e and Γ ⊢ e′⇐ N.

(2) If Γ ⊢ v : P then there exists v′ such that |v′|= v and Γ ⊢ v′⇐ P.

(3) If Γ ; [P] ⊢ {ri⇒ ei}i∈I : M

then there exists {r′i⇒ e′i}i∈I such that |{r′i⇒ e′i}i∈I|= {ri⇒ ei}i∈I

and Γ ; [P] ⊢ {r′i⇒ e′i}i∈I ⇐M.

(4) If Γ ; [N] ⊢ s : M then there exists s′ such that |s′|= s and Γ ; [N] ⊢ s′⇒M.

Proof. By structural induction on the given typing derivation. All parts are mutually recur-

sive. Straightforward.

Equivalence of the bidirectional typing system and the type assignment system (that is,

the previous two lemmas) is straightforward to extend to recursive expressions and alge-

braic datatypes, introduced in the next chapter.
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Variables x,y,z
Contexts Γ ::= · | Γ ,x : P
Values v ::= x | ⟨⟩ | ⟨v,v⟩ | inj1 v | inj2 v | {e}
Spines s ::= · | v,s
Expressions e ::= λx.e | returnv | let z=x(s); e | match x {ri⇒ ei}i∈I
Patterns r ::= inj1 x | inj2 x | ⟨⟩ | ⟨x1,x2⟩

Γ ⊢ v : P Right focusing

Γ ∋ (x : P)
Γ ⊢ x : P Γ ⊢ ⟨⟩ : 1

Γ ⊢ v1 : P1 Γ ⊢ v2 : P2

Γ ⊢ ⟨v1,v2⟩ : P1×P2

k ∈ {1,2} Γ ⊢ v : Pk

Γ ⊢ injk v : P1 +P2

Γ ⊢ e : N
Γ ⊢ {e} : ↓N

Γ ; [N] ⊢ s : ↑P Left focusing

Γ ⊢ v : Q Γ ; [N] ⊢ s : ↑P
Γ ; [Q→ N] ⊢ v,s : ↑P Γ ; [↑P] ⊢ · : ↑P

Γ ⊢ e : N Right inversion (weak)

Γ ,x : P ⊢ e : N
Γ ⊢ λx.e : P→ N

Γ ⊢ v : P
Γ ⊢ returnv : ↑P

Γ ; [M] ⊢ s : ↑Q Γ ,z : Q ⊢ e : N
Γ ∋ (x : ↓M) ⊢ let z=x(s); e : N

Γ ; [P] ⊢ {ri⇒ ei}i∈I : N
Γ ∋ (x : P) ⊢match x {ri⇒ ei}i∈I : N

Γ ; [P] ⊢ {ri⇒ ei}i∈I : N Left inversion (weak)

Γ ; [0] ⊢ {} : N
Γ ,x1 : P1 ⊢ e1 : N Γ ,x2 : P2 ⊢ e2 : N

Γ ; [P1 +P2] ⊢ {inj1 x1⇒ e1 | inj2 x2⇒ e2} : N

Γ ⊢ e : N
Γ ; [1] ⊢ {⟨⟩⇒ e} : N

Γ ,x1 : P1,x2 : P2 ⊢ e : N
Γ ; [P1×P2] ⊢ {⟨x1,x2⟩⇒ e} : N

Figure 4.14: Weakly focalized intuitionistic logic with spines (lists of values not including
a continuation) and implicit negative stability and proof terms
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Expressions e ::= · · · | let y={e}(s); e′ | match v {ri⇒ ei}i∈I

Γ ⊢ e : N Γ ; [N] ⊢ s : ↑Q Γ ,y : Q ⊢ e′ : M
Γ ⊢ let y={e}(s); e′ : M

Γ ⊢ v : P Γ ; [P] ⊢ {ri⇒ ei}i∈I : M
Γ ⊢match v {ri⇒ ei}i∈I : M

Γ ⊢ v : P Γ ,x : P ⊢ e : N
Γ ⊢ [v/x]e : N

...
let y={e0}(s); e′⇝ let y={e}(s); e′ if e0⇝ e

let y={λx.e}(v,s); e′⇝ let y={[v/x]e}(s); e′

let y={returnv}(·); e′⇝ [v/y]e′

let y=
{
let y′=x(s′); e

}
(s); e′⇝ let y′=x(s′); (let y={e}(s); e′)

let y={match x {ri⇒ ei}i∈I}(s); e′⇝match x
{

ri⇒ let y={ei}(s); e′
}

i∈I

match ⟨⟩ {⟨⟩⇒ e}⇝ e
match ⟨v1,v2⟩ {⟨x1,x2⟩⇒ e}⇝ [v2/x2]([v1/x1]e)

match (injk v) {inj1 x1⇒ e1 | inj2 x2⇒ e2}⇝ [v/xk]ek

match x {ri⇒ ei}i∈I ⇝match x {ri⇒ ei}i∈I

[v/x](λy.e) = λy. [v/x]e
[v/x](returnv′) = return [v/x]v′

[v/x](let y=x(s); e′) =

{
let y={e}([{e}/x]s); [{e}/x]e′ if v = {e}
let y=z([z/x]s); [z/x]e′ if v = z

[v/x](let y=z(s); e′) = let y=z([v/x]s); [v/x]e′ if x ̸= z
[v/x](match x {ri⇒ ei}i∈I) = match v {ri⇒ [v/x]ei}i∈I if v ̸= {e}

[v/x]x = v
[v/x]y = y (if x ̸= y)
[v/x]⟨⟩= ⟨⟩

[v/x]⟨v1,v2⟩= ⟨[v/x]v1, [v/x]v2⟩
...

Figure 4.15: Cut elimination in let-normal weak FIPL with combined right inversion and
negative stability
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Variables x,y,z
Contexts Γ ::= · | Γ ,x : P
Heads h ::= x | (v : P)
Bound expressions g ::= h(s) | (e : ↑P)
Values v ::= x | ⟨⟩ | ⟨v,v⟩ | inj1 v | inj2 v | {e}
Spines s ::= · | v,s
Expressions e ::= λx.e | returnv | let x=g; e | match h {ri⇒ ei}i∈I
Patterns r ::= inj1 x | inj2 x | ⟨⟩ | ⟨x1,x2⟩

Figure 4.16: Unrefined programming grammar without inductive types and recursion
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Γ ⊢ h⇒ P Under input Γ , head h synthesizes output type P

(x : P) ∈ Γ

Γ ⊢ x⇒ P
Γ ⊢ v⇐ P

Γ ⊢ (v : P)⇒ P

Γ ⊢ g⇒↑P Under input Γ , input bound expression g synthesizes output type ↑P

Γ ⊢ h⇒↓N Γ ; [N] ⊢ s⇒↑P
Γ ⊢ h(s)⇒↑P

Γ ⊢ e⇐↑P
Γ ⊢ (e : ↑P)⇒↑P

Γ ⊢ v⇐ P Under input Γ , input value v checks against input type P

(x : P) ∈ Γ

Γ ⊢ x⇐ P Γ ⊢ ⟨⟩ ⇐ 1
Γ ⊢ v1⇐ P1 Γ ⊢ v2⇐ P2

Γ ⊢ ⟨v1,v2⟩ ⇐ P1×P2

Γ ⊢ v⇐ Pk

Γ ⊢ injk v⇐ P1 +P2

Γ ⊢ e⇐ N
Γ ⊢ {e}⇐ ↓N

Γ ; [N] ⊢ s⇒↑P
Under input Γ , if a head of type ↓N is applied to input spine s,
then it will produce a result of type ↑P (output)

Γ ⊢ v⇐ Q Γ ; [N] ⊢ s⇒↑P
Γ ; [Q→ N] ⊢ v,s⇒↑P Γ ; [↑P] ⊢ · ⇒ ↑P

Γ ⊢ e⇐ N Under input Γ , input expression e checks against input type N

Γ ,x : P ⊢ e⇐ N
Γ ⊢ λx.e⇐ P→ N

Γ ⊢ v⇐ P
Γ ⊢ returnv⇐↑P

Γ ⊢ g⇒↑P Γ ,x : P ⊢ e⇐ N
Γ ⊢ let x=g; e⇐ N

Γ ⊢ h⇒ P Γ ; [P] ⊢ {ri⇒ ei}i∈I ⇐ N
Γ ⊢match h {ri⇒ ei}i∈I ⇐ N

Γ ; [P] ⊢ {ri⇒ ei}i∈I ⇐ N
Under input Γ , input patterns ri match against (input) type P
and input branch expressions ei check against input type N

Γ ; [0] ⊢ {}⇐ N
Γ ,x1 : P1 ⊢ e1⇐ N Γ ,x2 : P2 ⊢ e2⇐ N

Γ ; [P1 +P2] ⊢ {inj1 x1⇒ e1 | inj2 x2⇒ e2}⇐ N

Γ ⊢ e⇐ N
Γ ; [1] ⊢ {⟨⟩⇒ e}⇐ N

Γ ,x1 : P1,x2 : P2 ⊢ e⇐ N
Γ ; [P1×P2] ⊢ {⟨x1,x2⟩⇒ e}⇐ N

Figure 4.17: Unrefined system before adding inductive types and recursion
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|λx.e|= λx. |e|
|returnv|= return |v|

|let x=y(s); e|= let x=y(|s|); |e|
|let x=(

{
e′
}

: ↓N)(s); e|= let x=
{
|e′|

}
(|s|); |e|

|let x=(e′ : ↑P); e|= let x=
{
|e′|

}
(·); |e|

|match x {ri⇒ ei}i∈I|= match x {ri⇒|ei|}i∈I

|match (v : P) {ri⇒ ei}i∈I|= match |v| |{ri⇒ ei}i∈I|

|x|= x
|⟨⟩|= ⟨⟩

|⟨v1,v2⟩|= ⟨|v1|, |v2|⟩
|injk v|= injk |v|
|{e}|= {|e|}

|·|= ·
|v,s|= |v|, |s|

|{ri⇒ ei}i∈I|= {ri⇒|ei|}i∈I

Figure 4.18: Erasure of type annotations, a transformation from Fig. 4.17 to Figs. 4.14 and
4.15
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Chapter 5

Declarative Unrefined System

Let us finish creating our (unrefined) statically typed functional programming language by

adding algebraic data types (the point of this thesis is to modularly refine algebraic data

types) and recursion (without which, ADTs would be pointless). As we are designing a

programming language, we have proof terms (program terms), so we can treat ADTs syn-

tactically as isorecursive types1 where the isomorphism between an ADT and its unrolling

is witnessed explicitly by proof terms. We specify an algebraic datatype µF as the initial

fixed point µF of a polynomial functor (intuitively, a tree-like type transformer) whose

constants are value types. A syntactic value into(v) has type µF if v has the type corre-

sponding to the unrolling F(µF) of µF . Dually, a pattern into(x) of type µF deconstructs

into an assumption that x has type corresponding to F(µF).

5.1 Recursive Expressions and Algebraic Datatypes Added

The grammar is Fig. 5.1. Relative to Fig. 4.16, the extension goes like so: v ::= · · · | into(v)

and r ::= · · · | into(x) and e ::= · · · | rec x. e and P ::= · · · | µF and the grammar(s) related

1Later, we treat ADTs semantically as equirecursive: the denotation (“meaning”) of an ADT equals the
denotation of its unrolling.
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to functors F .

Program variables x,y,z
Expressions e ::= returnv | let x=g; e | match h {ri⇒ ei}i∈I | λx.e

| rec x. e
Values v ::= x | ⟨⟩ | ⟨v,v⟩ | inj1 v | inj2 v | into(v) | {e}
Heads h ::= x | (v : P)
Bound expressions g ::= h(s) | (e : ↑P)
Spines s ::= · | v,s
Patterns r ::= into(x) | ⟨⟩ | ⟨x,y⟩ | inj1 x | inj2 x

Unrefined positive types P,Q,R ::= 1 | P×Q | 0 | P+Q | ↓N | µF
Unrefined negative types N,M,L ::= P→ N | ↑P
Types A,B,C ::= P | N

Unrefined functors F ,G,H ::= P̂ | F⊕F
Constant (product) functors P̂ ::= Î | P⊗ P̂
Identity (product) functors Î ::= I | Id⊗ Î
Base functors B̂ ::= P | Id

F ::= F | B̂

Figure 5.1: Unrefined syntax

We specify algebraic data types (and measures on them) based on their standard cat-

egorical semantics [Goguen et al., 1977]. In the introduction (Chapter 1), to refine the

type of A-lists by their length, we defined a recursive function len over the inductive struc-

ture of lists. Semantically, we characterize this structural recursion by algebraic folds over

polynomial endofunctors; we design our system in line with this semantics. While this

presentation may appear overly abstract for the user, it should be possible to allow the user

to use the same or similar syntax as programs to express measures if they annotate them as

measures in the style of Liquid Haskell.

We express inductive type structure without reference to constructor names by syntac-

tic functors resembling the polynomial functors. For example (modulo the difference for
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simplifying unrolling), we can specify the signature of the inductive type of lists of terms

of type A syntactically as a functor 1⊕ (A⊗ Id), where C denotes the constant (set) functor

(sending any set to the set denoted by type C), Id denotes the identity functor (sending any

set to itself), the denotation of F1⊗F2 sends a set X to the product (JF1K X)× (JF2K X),

and the denotation of F1⊕F2 sends a set X to the disjoint union (JF1K X)⊎ (JF2K X). The

idea is that each component of the sum functor ⊕ represents a data constructor, so that (for

example) 1 represents the nullary constructor [], and A represents the head element of a

cons cell which is attached (via ⊗) to the recursive tail list represented by Id.

A functor F is a sum (⊕) of products (P̂), which multiply (⊗) base functors (B̂), which

consist of constant functors (P) at some positive type P and identity functors that represent

recursive positions (Id). The rightmost factor in a product P̂ is the (product) unit functor I,

the leftmost factors are constant functors, and the factors in between are identity functors.

By convention, ⊗ has higher precedence than ⊕. For convenience in specifying functor

well-formedness and denotation F is a functor F or a base functor B̂.

A direct grammar F for sums of products (of constant and identity functors) consists of

F ::= P̂ | F⊕F and P̂ ::= B̂ | B̂⊗ P̂ and B̂ ::= P | Id. The grammar F ::= F⊕F | F⊗F | B̂

is semantically equivalent to sums of products, but syntactically inconvenient, because it

allows writing products of sums. We do not use either of these grammars, but rather Fig.

5.1, because it simplifies refined inductive type unrolling (Sec. 6.4). (In any case, a surface

language where data types have named constructors would have to be elaborated to use

one of these grammars.) These grammars have naturally isomorphic interpretations. For

example, in our functor grammar (Fig. 5.1), we instead write NatF = I⊕ (Id⊗ I) (note

I is semantically equivalent to 1): notice that for any set X , we have JI⊕ (Id⊗ I)K X =

1⊎ (X×1)∼= 1⊎X = J1⊕ IdK X .
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⊢ G[µF ]⊜ P
Functor G applied to type µF corresponds to the (output) type P
(inputs: G and F)

⊢ G[µF ]⊜ P ⊢ H[µF ]⊜ Q
⊢ (G⊕H)[µF ]⊜ P+Q

UnrefUnroll⊕

⊢ P̂[µF ]⊜ P

⊢ (Q⊗ P̂)[µF ]⊜ Q×P
UnrefUnrollConst

⊢ Î[µF ]⊜ P

⊢ (Id⊗ Î)[µF ]⊜ µF×P
UnrefUnrollId

⊢ I[µF ]⊜ 1
UnrefUnrollI

Figure 5.2: Unrefined unrolling
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The unrefined unrolling judgment ⊢ G[µF ] ⊜ P is defined in Fig. 5.2. The functor G

is called the principal functor of the unrolling judgment and we speak of “G-unrolling”

(. . . output P, say). Rule UnrefUnroll⊕ says G⊕H applied to µF outputs the sum type

whose left summand is the output of G applied to µF and whose right summand is the

output of H applied to µF . Rule UnrefUnrollConst says P⊗ P̂ applied to µF outputs the

product type whose left factor is P and whose right factor is the result of applying functor P̂

to type µF . Rule UnrefUnrollId says the functor Id⊗ Î applied to µF outputs the product

type whose left factor is µF and whose right factor is the result of applying functor Î to

type µF . Rule UnrefUnrollI says the unit functor I applied to µF outputs the unit type 1.

The typing judgments of the unrefined system are given in Fig. 5.3 and Fig. 5.4. Un-

refined typing judgments presuppose the well-formedness Γ ctx of contexts Γ in that each

variable x can occur at most once in Γ (and the types occurring in it are generated by the

grammar for unrefined types, Fig. 5.1). Specifically, the unrefined context well-formedness

judgment Γ ctx has two rules:2

· ctx

Γ ctx x /∈ dom(Γ )

(Γ ,x : P) ctx

2We define the domain dom(O) of any context O of variable bindings to be the set of variables bound to
a sort or type or such. In this case, dom(·) = /0 and dom(Γ ,x : P) = {x}∪dom(Γ ).
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Γ ⊢ h⇒ P Under input Γ , head h synthesizes (output) type P

(x : P) ∈ Γ

Γ ⊢ x⇒ P
Unref⇒Var

Γ ⊢ v⇐ P
Γ ⊢ (v : P)⇒ P

Unref⇒ValAnnot

Γ ⊢ g⇒↑P Under input Γ , input bound expression g synthesizes type ↑P (output)

Γ ⊢ h⇒↓N Γ ; [N] ⊢ s⇒↑P
Γ ⊢ h(s)⇒↑P

Unref⇒App
Γ ⊢ e⇐↑P

Γ ⊢ (e : ↑P)⇒↑P
Unref⇒ExpAnnot

Γ ⊢ v⇐ P Under input Γ , input value v checks against input type P

(x : P) ∈ Γ

Γ ⊢ x⇐ P
Unref⇐Var

Γ ⊢ ⟨⟩ ⇐ 1
Unref⇐1

Γ ⊢ v1⇐ P1 Γ ⊢ v2⇐ P2

Γ ⊢ ⟨v1,v2⟩ ⇐ P1×P2
Unref⇐×

Γ ⊢ v⇐ Pk

Γ ⊢ injk v⇐ P1 +P2
Unref⇐+k

⊢ F [µF ]⊜ P Γ ⊢ v⇐ P
Γ ⊢ into(v)⇐ µF

Unref⇐µ
Γ ⊢ e⇐ N

Γ ⊢ {e}⇐ ↓N
Unref⇐↓

Γ ⊢ e⇐ N Under input Γ , input expression e checks against input type N

Γ ⊢ v⇐ P
Γ ⊢ returnv⇐↑P

Unref⇐↑
Γ ⊢ g⇒↑P Γ ,x : P ⊢ e⇐ N

Γ ⊢ let x=g; e⇐ N
Unref⇐let

Γ ⊢ h⇒ P Γ ; [P] ⊢ {ri⇒ ei}i∈I ⇐ N
Γ ⊢match h {ri⇒ ei}i∈I ⇐ N

Unref⇐match

Γ ,x : P ⊢ e⇐ N
Γ ⊢ λx.e⇐ P→ N

Unref⇐λ
Γ ,x : ↓N ⊢ e⇐ N
Γ ⊢ rec x. e⇐ N

Unref⇐rec

Figure 5.3: Unrefined declarative typing
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Γ ; [P] ⊢ {ri⇒ ei}i∈I ⇐ N
Under Γ , patterns ri match against type P
and branch expressions ei check against type N (all inputs)

Γ ⊢ e⇐ N
Γ ; [1] ⊢ {⟨⟩⇒ e}⇐ N

UnrefMatch1
Γ ,x1 : P1,x2 : P2 ⊢ e⇐ N

Γ ; [P1×P2] ⊢ {⟨x1,x2⟩⇒ e}⇐ N
UnrefMatch×

Γ ,x1 : P1 ⊢ e1⇐ N Γ ,x2 : P2 ⊢ e2⇐ N
Γ ; [P1 +P2] ⊢ {inj1 x1⇒ e1 | inj2 x2⇒ e2}⇐ N

UnrefMatch+

Γ ; [0] ⊢ {}⇐ N
UnrefMatch0

⊢ F [µF ]⊜ P Γ ,x : P ⊢ e⇐ N
Γ ; [µF ] ⊢ {into(x)⇒ e}⇐ N

UnrefMatchµ

Γ ; [N] ⊢ s⇒↑P
Under input Γ , if input spine s is applied to a head of type ↓N (input: N),
then it will produce a result of type ↑P (output)

Γ ⊢ v⇐ Q Γ ; [N] ⊢ s⇒↑P
Γ ; [Q→ N] ⊢ v,s⇒↑P

UnrefSpineApp
Γ ; [↑P] ⊢ · ⇒ ↑P

UnrefSpineNil

Figure 5.4: Unrefined matching and spines
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Relative to Fig. 4.17, the new rules in Fig. A.35 and Fig. A.36 are Unref⇐µ , UnrefMatchµ ,

and Unref⇐rec.

5.2 Operational and Denotational Semantics and Adequacy

We extend the operational semantics by extending Fig. 4.14 and Fig. 4.15. Relative to Fig.

4.14: v ::= · · · | into(v) and e ::= · · · | rec x. e and r ::= · · · | into(x) and rules similar to

Unref⇐rec, Unref⇐µ , and UnrefMatchµ . Relative to Fig. 4.15 we extend ⇝ by adding

the following two cases.

rec x. e⇝ [{rec x. e}/x]e

match into(v) {into(x)⇒ e}⇝ [v/x]e

Strictly speaking, algebraic datatypes are not needed to express a diverging term.

Definition 5.1 (diverge and divfun).

We define divfun to be the expression rec f . λx. let y= f (x); returny.

Given any unrefined type N, we define divergeN to be the expression

let f =(return{divfun} : ↑↓(1→↑↓N)); let z= f ⟨⟩; returnz

We define diverge to be diverge↑0.

We may read the definition of divfun from left to right as follows: divfun is the recur-

sive expression named f that takes an argument x and applies f to x binding the result to y

and returning y. The expression diverge applies divfun to the unit value ⟨⟩. The expression
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divfun checks against many types in the unrefined system, like 1→ ↑↓N where N is an

arbitrary (unrefined) negative type. In the following derivation, which we name D , let Γ

be f : ↓(1→↑↓N),x : 1.

Γ ⊢ f ⇒↓(1→↑↓N)

Γ ⊢ x⇐ 1 Γ ; [↑↓N] ⊢ · ⇒ ↑↓N

Γ ; [1→↑↓N] ⊢ x⇒↑↓N

Γ ⊢ f (x)⇒↑↓N

Γ ,y : ↓N ⊢ y⇐↓N

Γ ,y : ↓N ⊢ returny⇐↑↓N

f : ↓(1→↑↓N),x : 1 ⊢ let y= f (x); returny⇐↑↓N

f : ↓(1→↑↓N) ⊢ λx. let y= f (x); returny⇐ 1→↑↓N

⊢ rec f . λx. let y= f (x); returny︸ ︷︷ ︸
divfun

⇐ 1→↑↓N

Let D ′ be the derivation

D

⊢ divfun⇐ 1→↑↓N

⊢ {divfun}⇐ ↓(1→↑↓N)

⊢ return{divfun}⇐ ↑↓(1→↑↓N)

⊢ (return{divfun} : ↑↓(1→↑↓N))⇒↑↓(1→↑↓N)



5.2. OPERATIONAL AND DENOTATIONAL SEMANTICS AND ADEQUACY124

Let Γ ′ be f : ↓(1→↑↓N). Let E be the derivation

Γ
′ ⊢ f ⇒↓(1→↑↓N)

Γ
′ ⊢ ⟨⟩ ⇐ 1 Γ

′; [↑↓N] ⊢ · ⇒ ↑↓N

Γ
′; [1→↑↓N] ⊢ ⟨⟩ ⇒ ↑↓N

Γ
′ ⊢ f ⟨⟩ ⇒ ↑↓N

Γ
′,z : ↓N ⊢ z⇐↓N

Γ
′,z : ↓N ⊢ returnz⇐↑↓N

Γ
′ ⊢ let z= f ⟨⟩; returnz⇐↑↓N

We apply one more rule to obtain ↑↓N.

D ′

⊢ (return{divfun} : ↑↓(1→↑↓N))⇒↑↓(1→↑↓N)

E

Γ
′ ⊢ let z= f ⟨⟩; returnz⇐↑↓N

⊢ let f =(return{divfun} : ↑↓(1→↑↓N)); let z= f ⟨⟩; returnz︸ ︷︷ ︸
divergeN

⇐↑↓N

In particular, ⊢ diverge↑0⇐↑↓↑0. That is, the corresponding logic of the system with

recursion added is inconsistent. Further, as the name suggests, divergeN diverges.
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|divergeN |= |let f =(return{divfun} : ↑↓(1→↑↓N)); let z= f ⟨⟩; returnz|

= let f ={return{divfun}}(·); let z= f ⟨⟩; returnz

⇝ [{divfun}/ f ](let z= f ⟨⟩; returnz)

= let z={divfun}⟨⟩; returnz︸ ︷︷ ︸
e

= let z={rec f . λx. let y= f (x); returny}⟨⟩; returnz

⇝ let z={λx. let y={divfun}x; returny}⟨⟩; returnz

⇝ let z=

let y={divfun}⟨⟩; returny︸ ︷︷ ︸
=α e

; returnz

⇝ · · ·

That is, cut elimination no longer holds, which is what we should expect because oth-

erwise the system would be consistent. This is a good thing, though, for our purposes,

which is to design a refinement type system for a programming language and then prove it

is logically consistent (and other, semantic and algorithmic properties) in a largely straight-

forward manner. Turing completeness means the language can express any (conventional)

computation, which is a powerful place to start. One power of our refinement type system

will be to verify that programs terminate.

The unrefined type assignment system is given in Fig. 5.5. To simplify syntax, we could

drop the underline of let −=−; − since let z=x(s); e′ ̸= let z={e}(s); e′. This simplified



5.2. OPERATIONAL AND DENOTATIONAL SEMANTICS AND ADEQUACY126

Γ ⊢ v : P Under Γ value v has type P

Γ ∋ (x : P)
Γ ⊢ x : P Γ ⊢ ⟨⟩ : 1

Γ ⊢ v1 : P1 Γ ⊢ v2 : P2

Γ ⊢ ⟨v1,v2⟩ : P1×P2

k ∈ {1,2} Γ ⊢ v : Pk

Γ ⊢ injk v : P1 +P2

⊢ F [µF ]⊜ P Γ ⊢ v : P
Γ ⊢ into(v) : µF

Γ ⊢ e : N
Γ ⊢ {e} : ↓N

Γ ; [N] ⊢ s : ↑P Under Γ spine s has type N returning ↑P

Γ ⊢ v : Q Γ ; [N] ⊢ s : ↑P
Γ ; [Q→ N] ⊢ v,s : ↑P Γ ; [↑P] ⊢ · : ↑P

Γ ⊢ e : N
Under Γ expression e has type N
(the types highlighted with a green box are the main cut types)

Γ ,x : ↓N ⊢ e : N
Γ ⊢ rec x. e : N

Γ ,x : P ⊢ e : N
Γ ⊢ λx.e : P→ N

Γ ⊢ v : P
Γ ⊢ returnv : ↑P

Γ ; [M] ⊢ s : ↑Q Γ ,z : Q ⊢ e : N
Γ ∋ (x : ↓M) ⊢ let z=x(s); e : N

Γ ; [P] ⊢ {ri⇒ ei}i∈I : N
Γ ∋ (x : P) ⊢match x {ri⇒ ei}i∈I : N

Γ ⊢ e : M Γ ; [M] ⊢ s : ↑Q Γ ,y : Q ⊢ e′ : N
Γ ⊢ let y={e}(s); e′ : N

Γ ⊢ v : P Γ ; [P] ⊢ {ri⇒ ei}i∈I : N
Γ ⊢match v {ri⇒ ei}i∈I : N

Γ ; [P] ⊢ {ri⇒ ei}i∈I : N
Under Γ the pattern rk and expression ek of each clause rk⇒ ek
has type P and N respectively

Γ ; [0] ⊢ {} : N
Γ ,x1 : P1 ⊢ e1 : N Γ ,x2 : P2 ⊢ e2 : N

Γ ; [P1 +P2] ⊢ {inj1 x1⇒ e1 | inj2 x2⇒ e2} : N

Γ ⊢ e : N
Γ ; [1] ⊢ {⟨⟩⇒ e} : N

Γ ,x1 : P1,x2 : P2 ⊢ e : N
Γ ; [P1×P2] ⊢ {⟨x1,x2⟩⇒ e} : N

⊢ F [µF ]⊜ P Γ ,x : P ⊢ e : N
Γ ; [µF ] ⊢ {into(x)⇒ e} : N

Figure 5.5: Unrefined type assignment system
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syntax simplifies the definition of forcing a thunk, which is often primitive in a CBPV.

Γ ⊢ v : ↓N

Γ ⊢ forcev : N

Given Γ ⊢ v : ↓N we can define forcev such that Γ ⊢ forcev : N as follows.

forcev = λ
←−x . let y=v(←−x ); returny

where y and←−x = x1, . . . ,xn are fresh (that is, not in dom(Γ )) and n is the arity of N (that is,

the natural number of arguments of N = P1→ ···→ Pn→↑R). In the bidirectional system,

we need to annotate the application of v in forcev if v is not a variable.

forcev =


λ
←−x . let y=v(←−x ); returny if v is a variable

λ
←−x . let y=(v : ↓N)(←−x ); returny else

The denotational semantics of the system defined by Fig. 4.14 + Fig. 4.15 + recursion

(rec x. e) + ADTs (into(v))—that is, the unrefined (non-bidirectional) type assignment

system, given in Fig. 5.5—is similar to the denotational semantics of the unrefined system,

discussed next chapter. The semantics of types is the same as that of the unrefined (bidi-

rectional) system where positive types denote complete partial orders (cpos) and negative

types denote pointed cpos (cppos) and functors denote endofunctors on the category of cpos

and continuous functions: Fig. 5.9 and Fig. 5.10. The denotational semantics of type as-

signment derivations in the unrefined type assignment system is given in Fig. 5.6 (πk are set

projections X1×X2→ Xk defined by πk(x1,x2) = xk and injk are set injections Xk→ X1⊎X2

defined by injk(x) = (k,x)). The statement and proof of denotational soundness of the
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unrefined type assignment system is similar to that of the unrefined (bidirectional) typing

system: Lemma 5.3 (Unrefined Typing Soundness).

The results in the remainder of this section are basically standard and unsurprising but

presented in a slightly different way than usual because we are using a certain focused

sequent calculus. We do not present most of the semantic definitions and metatheory of the

type assignment system which compares to those of its bidirectionalization, presented in

the next section.

It is straightforward to calculate JdivergeNK· = ⊥J↑↓NK by unfolding definitions. But

does every (closed3) diverging expression denote the bottom (that is, least informative be-

cause never terminating to a result) element of its domain: is our denotational semantics

operationally or computationally adequate? Let’s discuss some basic operational semantics

results before addressing this question.

We collect the operational semantics in Fig. 5.7 for convenience. We can generalize

substitution to parallel substitution [σ ]− where σ is a list of substitutions v/x. The key

clauses are

[σ ](let y=x(s); e′) =


let y={e}([σ ]s); [σ ]e′ if σ(x) = {e}

let y=z([σ ]s); [σ ]e′ if σ(x) = z

[σ ](match x {ri⇒ ei}i∈I) = match σ(x) {ri⇒ [σ ]ei}i∈I if σ(x) ̸= {e}

where σ(x) simply looks up the value v substituted for x that is σ(x) = v if v/x ∈ σ . (In

the product matching reduction, for example, the sequential substitution [v1/x1][v2/x2]e is

equivalent to the parallel substitution [v1/x1,v2/x2]e.) A σ is well-typed Γ0 ⊢ σ : Γ in the

unrefined assignment system if Γ0 ⊢ σ(x) : Γ (x) for all x ∈ dom(Γ ) (where Γ (x) looks up

3A term is closed if it has no free variables.
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JΓ ⊢ x : PK
δ
= δ (x)

JΓ ⊢ ⟨⟩ : 1K
δ
= •

JΓ ⊢ ⟨v1,v2⟩ : P1×P2Kδ
= (JΓ ⊢ v1 : P1Kδ

,JΓ ⊢ v2 : P2Kδ
)

Jinjk vK
δ
= injk JvK

δ

J{e}K
δ
= JeK

δ

Jλx.eK
δ
= d 7→ JeK

δ ,d/x

JreturnvK
δ
= inj1 JvK

δ

JΓ ⊢ let z=x(s); e : NK
δ
=

{
JeK

δ ,d/z if JsK
δ

δ (x) = inj1 d
⊥JNK else

Jmatch x {ri⇒ ei}i∈IKδ
= J{ri⇒ ei}i∈IKδ

δ (x)

JΓ ⊢ rec x. e : NK
δ
=

⊔
k∈N

JΓ ,x : ↓N ⊢ e : NKk
δ ,−/x⊥JNK

J{}K
δ
= empty function

J{⟨⟩⇒ e}K
δ
= d 7→ JeK

δ

J{⟨x1,x2⟩⇒ e}K
δ
= d 7→ JeK

δ ,π1(d)/x1,π2(d)/x2

J{inj1 x1⇒ e1 | inj2 x2⇒ e2}Kδ
= d 7→

{
Je1Kδ ,d1/x1

if d = inj1 d1

Je2Kδ ,d2/x2
if d = inj2 d2

q
Γ ⊢ let y={e}(s); e′ : N

y
δ
=

{
Je′K

δ ,d/y if JsK
δ
JeK

δ
= inj1 d

⊥JNK else

Jmatch v {ri⇒ ei}i∈IKδ
= J{ri⇒ ei}i∈IKδ

JvK
δ

Figure 5.6: Denotational semantics of unrefined type assignment derivations where δ ∈
JΓ K is a list of semantic substitutions d/x where x : P and d ∈ JPK

the type bound to x in Γ ).

The standard origin story surrounding progress and preservation is that structural opera-

tional semantic type soundness begins with Wright and Felleisen [1994] and was simplified

into “progress and preservation” by Harper [2016].

Theorem 5.1 (Progress and Preservation).
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let y={e0}(s); e′⇝ let y={e}(s); e′ if e0⇝ e
let y={λx.e}(v,s); e′⇝ let y={[v/x]e}(s); e′

let y={returnv}(·); e′⇝ [v/y]e′

let y=
{
let y′=x(s′); e

}
(s); e′⇝ let y′=x(s′); (let y={e}(s); e′)

let y={match x {ri⇒ ei}i∈I}(s); e′⇝match x
{

ri⇒ let y={ei}(s); e′
}

i∈I

rec x. e⇝ [{rec x. e}/x]e

match into(v) {into(x)⇒ e}⇝ [v/x]e
match ⟨⟩ {⟨⟩⇒ e}⇝ e

match ⟨v1,v2⟩ {⟨x1,x2⟩⇒ e}⇝ [v2/x2]([v1/x1]e)
match (injk v) {inj1 x1⇒ e1 | inj2 x2⇒ e2}⇝ [v/xk]ek

match x {ri⇒ ei}i∈I ⇝match x {ri⇒ ei}i∈I

[v/x](λy.e) = λy. [v/x]e
[v/x](returnv′) = return [v/x]v′

[v/x](let y=x(s); e′) =

{
let y={e}([{e}/x]s); [{e}/x]e′ if v = {e}
let y=z([z/x]s); [z/x]e′ if v = z

[v/x](let y=z(s); e′) = let y=z([v/x]s); [v/x]e′ if x ̸= z
[v/x](match x {ri⇒ ei}i∈I) = match v {ri⇒ [v/x]ei}i∈I if v ̸= {e}

[v/x]x = v
[v/x]y = y (if x ̸= y)
[v/x]⟨⟩= ⟨⟩

[v/x]⟨v1,v2⟩= ⟨[v/x]v1, [v/x]v2⟩
...

Figure 5.7: Operational semantics of unrefined type assignment system
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(1) (Progress 1) If · ⊢ e : ↑P then e⇝ e′ for some e′ or e = returnv for some v.

(2) (Progress 2) If · ⊢ e : P→ N then e⇝ e′ for some e′ or e = λx.e′ for some e′.

(3) (Preservation) If · ⊢ e : N and e⇝ e′ then · ⊢ e′ : N.

Proof. Progress is proved by structural induction on the given type assignment derivation.

Preservation is proved by structural induction on e, using the substitution lemma (the bot-

tom admissible rule in Fig. 4.15 + (Fig. 4.14 + recursion + ADTs) = Fig. 5.5).

To prove the soundness of the operational semantics it helps to define value substitution

typings Γ ⊢ σ : Γ ′ in the unrefined type assignment system and parallel value substitution

[σ ]− in it. It is straightforward to prove that the single sequential value substitutions in the

operational semantics (in product matching) are the same as parallel substitution of both

values at once: [v1/x1][v2/x2]−= [v1/x1,v2/x2]−.

Lemma 5.1 (Syntactic and Semantic Substitution Commute).

(1) If δ ∈ JΓ ′K and Γ ′ ⊢ σ : Γ and Γ ⊢ e : N then J[σ ]eK
δ
= JeKJσK

δ
.

(2) If δ ∈ JΓ ′K and Γ ′ ⊢ σ : Γ and Γ ⊢ v′ : P′ then J[σ ]v′K
δ
= Jv′KJσK

δ
.

(3) If δ ∈ JΓ ′K and Γ ′ ⊢ σ : Γ and Γ ; [M] ⊢ s : ↑Q then J[σ ]sK
δ
= JsKJσK

δ
.

(4) If δ ∈ JΓ ′K and Γ ′ ⊢ σ : Γ and Γ ; [Q] ⊢ {ri⇒ ei}i∈I : N

then J[σ ]{ri⇒ ei}i∈IKδ
= J{ri⇒ ei}i∈IKJσK

δ
.

Proof. By mutual induction on the structure of the program term.

The preceding lemma helps us prove our operational semantics is semantically sound.
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Theorem 5.2 (Soundness of Operational Semantics).

If e⇝ e′ and · ⊢ e : ↑P then JeK· = Je′K·.

Proof. By structural induction on e. Use Lemma 5.1 (Syntactic and Semantic Substitution

Commute).

A closed expression e is said to diverge (operationally/computationally speaking)

if there is no sequence e⇝ e′⇝∗ returnv or λx.e′′. A denotational semantics is computa-

tionally or operationally adequate if the denotation of a diverging expression is the bottom

element of the denotation of its type.

Theorem 5.3 (Completeness of Operational Semantics: Computational Adequacy).

Suppose · ⊢ e : ↑P in the unrefined type assignment system.

If JeK· ̸=⊥J↑PK then e⇝∗ returnv for some v.

Proof. This is a corollary of the following technical lemma, similar to Lemma 6.11 of

Gunter [1993], inspired by the work of Tait [1967] and Plotkin [1976], the proof of which

is similar but simpler perhaps in some ways due to the use of a focused sequent calculus,

but a bit more complicated in other ways.

We define d≲A O (similar to the relation d≲t M in Gunter’s textbook where M is a term

and t is an unpolarized type) which is a Tait/Plotkin-esque logical relation for relating the

operational and denotational semantics in a way suitable to the main technical lemma. The

judgment d≲A O presupposes d ∈ JAK and · ⊢ O : A and d = JOK· and (further) relates d,
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O , and A via the following definition by eight rules.

⊥≲A _

e⇝∗ returnv

d≲P v

inj1 d≲↑P e

e⇝∗ λx.e′

f (d)≲N [v/x]e′ for all v and d such that d≲P v

f ≲P→N e

•≲1 ⟨⟩

d1≲P1 v1 d2≲P2 v2

(d1,d2)≲P1×P2 ⟨v1,v2⟩

d≲Pk v

injk d≲P1+P2 injk v

d≲N e

d≲↓N {e}

⊢ F [µF ]⊜ P d≲P v

d≲µF into(v)

Judgment δ ≲Γ σ presupposes ⊢ δ : Γ and · ⊢ σ : Γ and δ = JσK· and has two rules:

·≲· ·

δ ≲Γ σ d≲P v

δ ,d/x≲Γ ,x:P σ ,v/x

The main technical lemma is stated: If Γ ⊢ O : A and δ ≲Γ σ then JOK
δ
≲A [σ ]O .

The induction metric is lexicographic, first, on the sum of the structural sizes4 of the type

A and the main cut types of Γ ⊢ e : A, and second, on the structure of O .

• Case
Γ ,x : P ⊢ e0 : N0

Γ ⊢ λx.e0 : P→ N0

4That is, sz(0) = 0 and sz(P1 +P2) = sz(P1)+ sz(P2)+1 and so on.
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d ≲P v Assume

δ ≲Γ σ Given

⊢ δ : Γ Presupposition

⊢ δ ,d/x : Γ ,x : P By rule with presupposition

· ⊢σ : Γ Presupposition

· ⊢σ ,v/x : Γ ,x : P By rule with presupposition

δ = JσK· Presupposition

δ ,d/x = Jσ ,v/xK· By def. and by presupposition

δ ,d/x ≲Γ ,x:P σ ,v/x By rule

Je0Kδ ,d/x ≲N0 [σ ,v/x]e0 By induction hypothesis (i.h.)

Jλx.e0Kδ
d ≲N0 [σ ,v/x]e0 By def.

Jλx.e0Kδ
d ≲N0 [v/x][σ ]e0 By substitution property

x : P ⊢ [σ ]e0 : N0 By admissible rule (substitution lemma)

⊢ λx. [σ ]e0 : P→ N0 By rule

λx. [σ ]e0⇝∗ λx. [σ ]e0 By reflexivity

Jλx.e0Kδ
≲P→N0 λx. [σ ]e0 By rule with typing soundness

and substitution soundness (Lemma 5.1)

Jλx.e0Kδ
≲P→N0 [σ ](λx.e0) By def.

• Case
Γ ⊢ v : P

Γ ⊢ returnv : ↑P
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JvK
δ
≲P [σ ]v By i.h.

return [σ ]v⇝∗ return [σ ]v By reflexivity

inj1 JvK
δ
≲↑P return [σ ]v By rule

inj1 JvK
δ
≲↑P [σ ](returnv) By def.

JreturnvK
δ
≲↑P [σ ](returnv) By def.

• Case
Γ ; [M] ⊢ s : ↑Q Γ ,z : Q ⊢ e0 : N

Γ ∋ (x : ↓M) ⊢ let z=x(s); e0 : N

If JsK
δ

δ (x) =⊥ then apply the first rule to get the goal. Assume JsK
δ

δ (x) ̸=⊥.

Because · ⊢ σ(x) : ↓M by inversion5 σ(x) must be a thunk {e′} and · ⊢ e′ : M.

δ ≲Γ σ Given

δ (x) ≲Γ (x) σ(x) By inversion

δ (x) ≲↓M {e′} By equalities

δ (x) ̸= ⊥ Otherwise JsK
δ

δ (x) =⊥

δ (x) ≲M e′ By inversion

M =
←−
P →↑Q By inversion

s =←−v ′′

(
←−
P → N is defined by · → N = N and (Pk,

←−
P )→ N = Pk→ (

←−
P → N))

By inversion and repeated i.h. (e′#←−v −1 is not a subterm of let z=x(s); e0 but the first

part of the lexicographic induction is strictly smaller), e′⇝∗ e′0

where either e′0 = returnv′ and δ (x) = inj1 d and d≲Q v′

5Justification “by inversion” means “from what went in to the given”.
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or e′0 = λx#←−v −1.e′#←−v −1

and [[σ ]vk/xk]e′k⇝
∗ λxk−1.e′k−1 for all k ∈ {1,2, . . . ,#←−v −1}

and [[σ ]v0/x0]e′0⇝
∗ returnv′

and δ (x)(
q
[σ ]v#←−v −1

y
·) · · ·(J[σ ]v0K·) = inj1 d and d≲Q v′.

δ ,d/z ≲Γ ,z:Q σ ,v′/z By rule

Γ ,z : Q ⊢ e0 : N Subderivation

Je0Kδ ,d/z ≲N [σ ,v′/z]e0 By i.h.

Je0Kδ ,JsK
δ

δ (x)/z ≲N [σ ,v′/z]e0 By def., equality

[σ ](let z=x(s); e0) = let z={e′}([σ ]s); [σ ]e0 By def.

= let z={e′}([σ ]←−v ); [σ ]e0 By equality

⇝∗ [v′/z][σ ]e0 By def.

= [σ ,v′/z]e0 Property of substitution

Jlet z=x(s); e0Kδ
≲N [σ ,v′/z]e0 By def.

Jlet z=x(s); e0Kδ
≲N [σ ](let z=x(s); e0) If d≲N e′ and e⇝∗ e′

then d≲N e

(uses Thm. 5.2)

• Case
Γ ; [P] ⊢ {ri⇒ ei}i∈I : N

Γ ∋ (x : P) ⊢match x {ri⇒ ei}i∈I : N

· ⊢σ(x) : P By inversion

δ (x) = Jσ(x)K· By inversion
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– Case

Γ ; [0] ⊢ {} : N

Impossible because otherwise δ (x) ∈ /0.

– Case
⊢ F [µF ]⊜ Q Γ ,y : Q ⊢ e1 : N

Γ ; [µF ] ⊢ {into(y)⇒ e1} : N

σ(x) = into(v′) By inversion

· ⊢ v′ : Q ′′

[σ ](match x {into(y)⇒ e1}) = match into(v′) {into(y)⇒ [σ ]e1} By def.

⇝ [v′/y][σ ]e1 By def.

= [σ ,v′/y]e1 Subst. prop.

δ ≲Γ σ Given

δ (x) ≲Γ (x) σ(x) By inversion

Jv′K· ≲µF into(v′) By equalities, def.

Jv′K· ≲Q v′ By inversion

δ ,Jv′K· /y ≲Γ ,y:Q σ ,v′/y By rule

Je1Kδ ,Jv′K·/y ≲N [σ ,v′/y]e1 By i.h.

Jmatch v {into(y)⇒ e1}Kδ
≲N [σ ,v′/y]e1 By def., equality
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Jmatch v {into(y)⇒ e1}Kδ
≲N [σ ](match v {into(y)⇒ e1}) If d≲N e′ and e⇝∗ e′

then d≲N e

(uses Thm. 5.2)

– Case
Γ ,x1 : P1 ⊢ e1 : N Γ ,x2 : P2 ⊢ e2 : N

Γ ; [P1 +P2] ⊢ {inj1 x1⇒ e1 | inj2 x2⇒ e2} : N

Similar to previous subcase.

– Case
Γ ⊢ e1 : N

Γ ; [1] ⊢ {⟨⟩⇒ e1} : N

Similar to previous subcase.

– Case
Γ ,x1 : P1,x2 : P2 ⊢ e1 : N

Γ ; [P1×P2] ⊢ {⟨x1,x2⟩⇒ e1} : N

Similar to previous subcase.

• Case
Γ ,x : ↓N ⊢ e0 : N

Γ ⊢ rec x. e0 : N
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⊥ ≲N rec x. [σ ]e0 By rule

⊥ ≲N [σ ](rec x. e0) By def.

⊥ ≲↓N {rec x. [σ ]e0} By rule

Je0Kk
δ ,−/x⊥ ≲↓N {rec x. [σ ]e0} Assume

δ ≲Γ σ Given

δ ,Je0Kk
δ ,−/x⊥/x ≲Γ ,x:↓N σ ,{rec x. [σ ]e0}/x By rule

Γ ,x : ↓N ⊢ e0 : N Subderivation

Je0Kδ ,Je0Kk
δ ,−/x⊥/x ≲N [σ ,{rec x. [σ ]e0}/x]e0 By i.h.

Je0Kk+1
δ ,−/x⊥ ≲N [σ ,{rec x. [σ ]e0}/x]e0 By def.

Je0Kk+1
δ ,−/x⊥ ≲N [{rec x. [σ ]e0}/x][σ ]e0 By property of substitution

Je0Kk+1
δ ,−/x⊥ ≲N rec x. [σ ]e0 If d≲N e′ and e⇝∗ e′

then d≲N e

(uses Thm. 5.2)

Je0Kk+1
δ ,−/x⊥ ≲N [σ ](rec x. e0) By def.

The goal follows from the following sublemma,

provable by induction on A structure, using Lemma D.20 (App. lub Distributes):

If d0 ⊑ d1 ⊑ ·· · is a chain in JAK· and dk≲A O for all k ∈ N then ⊔k∈Ndk≲A O .

• Case
Γ ⊢ e′ : M Γ ; [M] ⊢ s : ↑Q Γ ,y : Q ⊢ e0 : N

Γ ⊢ let y=
{

e′
}
(s); e0 : N

Similar to case where e = let z=x(s); e0 but using the i.h. on the first premise rather

than using the given δ ≲Γ σ .
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• Case
Γ ⊢ v : P Γ ; [P] ⊢ {ri⇒ ei}i∈I : N

Γ ⊢match v {ri⇒ ei}i∈I : N

Similar to case where e = match x {ri⇒ ei}i∈I but use denotational soundness of

type assignment in the case where P = 0 and in some cases the i.h. rather than the

given δ ≲Γ σ .

• The remaining cases are straightforward.

In this thesis we care about proving the metatheory of the refinement type system. We

prove syntactic substitution, typing soundness, and substitution soundness; these together

with the relatively standard foundation allow us to be fairly confident our system is well-

behaved operationally speaking, but this thesis does not emphasize operational semantics.

Instead, it emphasizes denotational semantics. Operational semantics will have a brief

mention again in Chapter 7. We then provide a typing algorithm and prove it is decidable,

sound, and complete.

5.3 Denotational Semantics of and Substitution in the Unrefined System

From now on, we mostly forget about previous notions of substitution for proof terms, or

rather, we move on from all the systems other than the unrefined system and the refined

system, and don’t discuss operational semantics much further. We consider a notion of

substitution appropriate to the study of the refined system and its underlying unrefined

system. To this end, in Fig. 5.8 we define the parallel substitution of values for variables,

add annotations to substitutions to make substitution analytic in the sense of producing cut

terms with type annotations, and introduce a judgment for typing such substitutions. Where
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previously substitution could change a term to a primary cut term, substitution [σ ]− now

simply produces an annotation.

Unrefined syntactic substitutions σ ::= · | σ ,v : P/x

Γ0 ⊢ σ : Γ Under Γ0, we know σ is a well-typed syntactic substitution for variables in Γ

Γ0 ⊢ · : ·
Γ0 ⊢ σ : Γ Γ0 ⊢ v⇐ P x /∈ dom(Γ )

Γ0 ⊢ σ ,v : P/x : Γ ,x : P

[σ ]hx =

{
x if x /∈ dom(σ) or σ(x) = (x : P)
σ(x) else

[σ ]h(v : P) = ([σ ]v : P)

[σ ](h(s)) = ([σ ]hh)([σ ]s)
[σ ](e : ↑P) = ([σ ]e : ↑P)

[σ ]x =

{
x if x /∈ dom(σ)

v if σ(x) = (v : P)

[σ ]⟨v1,v2⟩= ⟨[σ ]v1, [σ ]v2⟩
...

[σ ](match h {ri⇒ ei}i∈I) = match
(
[σ ]hh

)
([σ ]{ri⇒ ei}i∈I)

...
[σ ](λx.e) = λx. [σ ]e

...

Figure 5.8: Syntactic substitution in unrefined system

We prove syntactic properties of the unrefined system which are needed to prove the

desired properties of the refined system.
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Lemma 5.2 (Unrefined Syntactic Substitution). (Lemma D.1)

Assume Γ0 ⊢ σ : Γ . Then:

(1) If Γ ⊢ h⇒ P, then Γ0 ⊢ [σ ]h⇒ P.

(2) If Γ ⊢ g⇒↑P, then Γ0 ⊢ [σ ]g⇒↑P.

(3) If Γ ⊢ v⇐ P, then Γ0 ⊢ [σ ]v⇐ P.

(4) If Γ ⊢ e⇐ N, then Γ0 ⊢ [σ ]e⇐ N.

(5) If Γ ; [P] ⊢ {ri⇒ ei}i∈I ⇐ N, then Γ0; [P] ⊢ [σ ]{ri⇒ ei}i∈I ⇐ N.

(6) If Γ ; [N] ⊢ s⇒↑P, then Γ0; [N] ⊢ [σ ]s⇒↑P.

Similarly, we prove semantic properties of the unrefined system which are needed to

prove the desired properties of the refined system. First, we define the semantics of the

unrefined system in Figs. 5.9, 5.10, 5.11, and 5.12.

It is a standard CBPV semantics where the only effect is nontermination, modelled by

the bottom element of pointed complete partial orders (cppos). That is, negative types are

modelled by cppos. Values can’t diverge, so we only need complete partial orders (cpos)

to model value types.

The unrefined system is basically just the refined system with everything pertaining to

indexes erased. The program terms of the unrefined system have almost the same syntax

as those of the refined system, but an unrefined, recursive expression has no type annota-

tion, and we replace the expression unreachable (at L) by diverge|L|, which stands for an

inexhaustive pattern-matching error (checking against L). The unrefined system satisfies a

substitution lemma similar to that of the refined system, but its proof is simpler and does

not rely on subsumption admissibility, because the unrefined system has no subtyping.
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JPK : Cpo
J1K = ({•},⊑{•})

JP×QK = (JPK× JQK ,⊑JPK×JQK)

where (V11,V12)⊑D1×D2 (V21,V22) iff V11 ⊑D1 V12 and V21 ⊑D2 V22

J0K = ( /0,⊑ /0)

JP+QK = (JPK⊎ JQK ,⊑JPK⊎JQK)

where ( j,V1 j)⊑D1⊎D2 ( j,V2 j) iff V1 j ⊑D j V2 j

J↓NK = (JNK ,⊑JNK)

JµFK = (∪k∈N JFKk /0,⊑µJFK)

where V1 ⊑µJFK V2 iff there exists k ∈ N such that V1 ⊑JFKk+1 /0 V2

and ⊑JF1⊕F2KX =⊑JF1KX⊎JF2KX

and ⊑JB̂⊗P̂KX =⊑JB̂KX×JP̂KX

and ⊑JIdKX =⊑X

and ⊑JIKX =⊑{•}
and ⊑JQKX =⊑JQK

JNK : Cppo
JP→ NK = ({ f : JPK→ JNK | f is continuous} ,⊑JPK⇒JNK ,d 7→ ⊥JNK)

where f ⊑D⇒E g iff f (d)⊑E g(d) for all d ∈ D

J↑PK = (JPK⊎{⊥↑},
{
((1,d),(1,d′))

∣∣∣ d ⊑JPK d′
}
∪
{
((2,⊥↑),d)

∣∣ d ∈ J↑PK
}

,(2,⊥↑))

Figure 5.9: Denotational semantics of unrefined types
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JF K : Cpo→ Cpo
JF⊕GK = X 7→ JFK X ⊎ JGK X

JIK = X 7→ {•}
q

B̂⊗ P̂
y
= X 7→

q
B̂
y

X×
q

P̂
y

X

JPK = X 7→ JPK
JIdK = X 7→ X

fmap JF1⊕F2K f = d 7→

{
(1,(fmap JF1K f ) d′) if d = (1,d′)
(2,(fmap JF2K f ) d′) if d = (2,d′)

fmap JIK f = id{•}
fmap

q
B̂⊗ P̂

y
f = (d1,d2) 7→

(
(fmap

q
B̂
y

f ) d1,(fmap
q

P̂
y

f ) d2
)

fmap JPK f = idJPK

fmap JIdK f = f

Figure 5.10: Denotational semantics of unrefined functors

JΓ ⊢ h⇒ PK : JΓ K→ JPK
JxK

δ
= δ (x)

J(v : P)K
δ
= JvK

δ

JΓ ⊢ g⇒↑PK : JΓ K→ J↑PK
Jh(s)K

δ
= JsK

δ
JhK

δ

J(e : ↑P)K
δ
= JeK

δ

Figure 5.11: Denotational semantics of unrefined heads h and bound expressions g
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JΓ ⊢ v⇐ PK : JΓ K→ JPK
JxK

δ
= δ (x)

J⟨⟩K
δ
= •

J⟨v1,v2⟩Kδ
= (Jv1Kδ

,Jv2Kδ
)

Jinjk vK
δ
= (k,JvK

δ
)

Jinto(v)K
δ
= JvK

δ

J{e}K
δ
= JeK

δ

JΓ ⊢ e⇐ NK : JΓ K→ JNK
JreturnvK

δ
= (1,JvK

δ
)

JΓ ⊢ let x=g; e⇐ NK
δ
=

{
JeK(δ ,V/x) if JgK

δ
= (1,V )

⊥JNK if JgK
δ
= (2,⊥↑)

Jλx.eK
δ
=V 7→ JeK(δ ,V/x)

JΓ ⊢ rec x. e⇐ NK
δ
=

⊔
k∈N

(
V 7→ JΓ ,x : ↓N ⊢ e⇐ NK

δ ,V/x

)k
⊥JNK

Jmatch h {ri⇒ ei}i∈IKδ
= J{ri⇒ ei}i∈IKδ

JhK
δ

Figure 5.12: Denotational semantics of unrefined values v and expressions e

In CBPV, nontermination is regarded as an effect, so value and computation types de-

note different kinds of mathematical things: predomains and domains, respectively [Levy,

2004], which are both sets with some structure. Because we have recursive expressions,

we must model nontermination, an effect. We use domain theory. For our (unrefined) sys-

tem, we interpret (unrefined) positive types as predomains and (unrefined) negative types

as domains. The only effect we consider in this thesis is nontermination (though we simu-

late nonexhaustive pattern-matching errors with it); we take (chain-)complete partial orders

(cpos) as predomains, and pointed ((ω-)chain-)complete partial orders (cppos) as domains.
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JΓ ; [P] ⊢ {ri⇒ ei}i∈I ⇐ NK : JΓ K→ JPK→ JNK
J{⟨⟩⇒ e}K

δ
=V 7→ JeK

δ

J{⟨x1,x2⟩⇒ e}K
δ
= (V1,V2) 7→ JeK(δ ,V1/x1,V2/x2)

J{inj1 x1⇒ e1 | inj2 x2⇒ e2}Kδ
=V 7→

{
Je1Kδ ,V1/x1

if V = (1,V1)

Je2Kδ ,V2/x2
if V = (2,V2)

J{}K
δ
= empty function

J{into(x)⇒ e}K
δ
=V 7→ JeK

δ ,V/x

JΓ ; [N] ⊢ s⇒MK : JΓ K→ JNK→ JMK
Jv,sK

δ
= f 7→ JsK

δ
( f (JvK

δ
))

J·K
δ
=V 7→V

Figure 5.13: Denotational semantics of unrefined match expressions and spines

Positive types and functors The grammar for unrefined positive types is similar to that

for refined positive types (introduced later in Ch. 6), but lacks asserting and existential

types, and unrefined inductive types µF are not refined by measurements. Unrefined in-

ductive types use the unrefined functor grammar, which is the same as the refined functor

grammar but uses unrefined types in constant functors.

P,Q ::= 1 | P×Q | 0 | P+Q | ↓N | µF

The denotations of unrefined positive types are standard: Fig. 5.9. We briefly describe

their partial orders, then describe the denotation of functors, and lastly return to the deno-

tation of inductive types (which involve functors).

We give (the denotation of) 1 (denoting the distinguished terminal object {•}) the dis-

crete order {(•,•)}. For P×Q (denoting product) we use component-wise order (that is,
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(d1,d2)⊑D1×D2 (d
′
1,d′2) if d1 ⊑D1 d′1 and d2 ⊑D2 d′2), for 0 (denoting the initial object) we

use the empty order, and for P+Q (denoting coproduct, that is, disjoint union ⊎) we use

injection-wise order (inj j d ⊑D1⊎D2 injk d′ if j = k and d ⊑D j d′). We give ↓N the order of

N, that is, ↓ denotes the forgetful functor from the category Cppo of cppos and continu-

ous functions to the category Cpo of cpos and continuous functions. Finally, V1 ⊑JµFK V2

if V1 ⊑JFKk+1 /0 V2 for some k ∈ N, inheriting the type denotation orders as the functor is

applied.

The denotations of unrefined functors are standard Cpo endofunctors: Fig. 5.10. We

briefly describe them here. The sum functor ⊕ denotes a functor that sends a cpo to the

disjoint union ⊎ of its component applications (with usual injection-wise order), and its

functorial action is injection-wise. The product functor ⊗ denotes a functor that sends a

cpo to the product × of its component applications (with usual component-wise order),

and its functorial action is component-wise. The unit functor I denotes a functor sending

any cpo to 1 = {•} (discrete order), and its functorial action sends all morphisms to id{•}.

The constant (type) functor P denotes a functor sending any cpo to the cpo JPK, and its

functorial action sends all morphisms to the identity idJPK on JPK. The identity functor

Id denotes the identity endofunctor on Cpo. (Forgetting the order structure, functors also

denote endofunctors on the category Set of sets and functions.)

We now explain the denotational semantics of our algebraic datatypes. Semantically,

we build an inductive type (such as JList AK), by repeatedly applying (the denotation of) its

functor specification (such as JListFAK) to the initial object J0K = /0. For example,

JList AK =
⋃

k∈N
J1⊕ (A⊗ Id)Kk /0 = 1⊎

(
JAK×

(
1⊎

(
JAK×·· ·

)))
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where 1 = {•} (using the relatively direct functors with more complicated unrolling, dis-

cussed in Chapter 5). We denote the nil list [] by inj1 •, a list x :: [] with one term x by

inj2(JxK , inj1 •), and so on. In general, given a (polynomial) Set (category of sets and func-

tions) endofunctor F (which, for this thesis, will always be the denotation of a well-formed

(syntactic) functor, refined or otherwise), we define the operator µ−, which takes polyno-

mial Set endofunctors to sets, by µF = ∪k∈NFk /0. We then define JµFK = µ JFK. In our

system, for every well-formed (unrefined) functor F , the set µ JFK is a fixed point of JFK

(appendix Lemma D.8): that is, JFK (µ JFK) = µ JFK (and similarly for refined functors:

appendix Lemma E.10). One can further prove it’s the least fixed point. Strictly speaking,

if we ever say “foo denotes a cpo”, for example, we mean “we prove foo denotes a cpo”:

see Lemma D.15 (Unref. Type Denotations).

Negative types The grammar for unrefined negative types has unrefined function types

P→N and unrefined upshifts ↑P, with no guarding or universal types. We give the denota-

tional semantics of unrefined negative types in Fig. 5.9. We prove (Lemma D.15) unrefined

negative types denote cppos.

N ::= P→ N | ↑P

Function types P→ N denote continuous functions from JPK to JNK (which we some-

times write as JPK⇒ JNK), where its order is defined pointwise, together with the bottom

element (the “point” of “pointed cpo”) ⊥JP→NK that maps every V ∈ JPK to the bottom ele-

ment ⊥JNK of JNK (that is, ↑ denotes the lift functor from Cpo to Cppo). For our purposes,

this is equivalent to lifting JPK ∈ Cpo to Cppo and denoting arrow types by strict (⊥ goes

to ⊥) continuous functions so that function types denote Cppo exponentials.
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Upshifts ↑P denote JPK⊎{⊥↑} with the lift order

⊑J↑PK=
{
(inj1 d, inj1 d′)

∣∣∣ d ⊑JPK d′
}
∪
{
(inj2⊥↑,d)

∣∣ d ∈ J↑PK
}

and bottom element ⊥J↑PK = inj2⊥↑. We could put, say, • rather than ⊥↑, but I think the

latter is clearer in associating it with the bottom element of upshifts; or ⊥ rather than ⊥↑

but we often elide the “JAK” subscript in ⊥JAK when clear from context.

Well-typed program terms We write Γ ⊢O · · ·A and Γ ; [B] ⊢O · · ·A to stand for all six

unrefined program typing judgments: Γ ⊢ h⇒ P and Γ ⊢ g⇒ ↑P and Γ ⊢ v⇐ P and

Γ ⊢ e⇐ N and Γ ; [P] ⊢ {ri⇒ ei}i∈I ⇐ N and Γ ; [N] ⊢ s⇒↑P.

We define a semantic substitution δ for unrefined program variables Γ as follows

⊢ · : ·

⊢ δ : Γ

⊢ δ ,V/x : Γ ,x : P

The denotational semantics (Figs. 5.11 and 5.12) of (unrefined) well-typed program

terms of judgmental form Γ ⊢O · · ·A or Γ ; [B] ⊢O · · ·A are (proven to be) continuous func-

tions JΓ K→ JAK and JΓ K→ JBK→ JAK respectively, where JΓ K is the set of all semantic

substitutions ⊢ δ : Γ together with component-wise order. Similarly to function type de-

notations, the bottom element of a JΓ K→ JNK sends every δ ∈ JΓ K to ⊥JNK (equivalently,

we can lift source predomains and consider strict continuous functions). We only interpret

typing derivations, but we often only mention the program term in semantic brackets J−K.

For example, if Γ ⊢ x⇒ P, then JxK = (δ ∈ JΓ K) 7→ δ (x). We write the application of the

denotation JEK of a program term E (typed under Γ ) to a semantic substitution δ ∈ JΓ K
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as JEK
δ

. We only mention a few of the more interesting cases of the definition of typing

denotations. If Γ ; [N] ⊢ v,s⇒M, then

Jv,sK = (δ ∈ JΓ K) 7→ ( f 7→ JsK
δ
( f (JvK

δ
)))

Returner expressions denote monadic returns:

JreturnvK
δ
= inj1 JvK

δ

Let-binding denotes monadic binding:

Jlet x=g; eK
δ
=


JeK(δ ,V/x) if JgK

δ
= inj1V

⊥JNK if JgK
δ
= inj2⊥↑

A recursive expression denotes a fixed point obtained by taking the least upper bound (⊔)

of all its successive approximations:

JΓ ⊢ rec x. e⇐ NK
δ
=

⊔
k∈N

(
V 7→ JΓ ,x : ↓N ⊢ e⇐ NK

δ ,V/x

)k
⊥JNK

In the unrefined system, we have defined divergeN for any unrefined N. Unfolding

definitions, one can calculate

J· ⊢ divergeN ⇐↑↓NK· =⊥J↑↓NK

In the refined system we have unreachable expressions which check against any (simple6)

6Discussed when we introduced the refined system.
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refined negative type L under an inconsistent SMT context. We erase unreachable expres-

sions checking against L to diverge|L| where |L| erases indices. In this way, by showing

a well-typed refined expression is never a bottom element, we also show that the refined

system prevents nonexhaustive pattern match errors.

We will say more about the semantics of folds in Chapter 7, but note that the action of

rolling and unrolling syntactic values is essentially denoted by d 7→ d:

Jinto(v)K
δ
= JvK

δ

J{into(x)⇒ e}K
δ
=V 7→ JeK

δ ,V/x

This works due to the fact that unrolling is sound (roughly, the denotations of each side

of “⊜” in the unrolling judgment are equal: if ⊢ G[µF ] ⊜ P then JGK (µ JFK) = JPK) and

the fact that JFK (µ JFK) = µ JFK (and similarly for the refined system). See Lemma D.16

(Unref. Unroll Sound) and Lemma D.8 (Mu is Fixed Point).

Unrefined soundness Our proofs of (appendix) Lemma D.23 (Unrefined Typing Sound-

ness) and (appendix) Lemma D.25 (Unrefined Substitution Soundness) use standard do-

main theory [Gunter, 1993].

We interpret an unrefined syntactic substitution (typing derivation) Γ0 ⊢ σ : Γ as a

(proven continuous) function JΓ0K → JΓ K that takes a δ ∈ JΓ0K and uses δ to interpret

each of the entries in σ , resulting in a semantic substitution for Γ .

JΓ0 ⊢ · : ·K = (δ ∈ JΓ0K) 7→ ·
q

Γ0 ⊢
(
σ ,(v : P/x)

)
:
(
Γ ,x : P

)y
= (δ ∈ JΓ0K) 7→ ((JσK

δ
),JvK

δ
/x)
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Similarly to typing derivations, we only consider denotations of typing derivations Γ0 ⊢ σ :

Γ of substitutions, but often simply write JσK.

The key semantic properties of the unrefined system that we prove in the appendix are

as follows.

Unrefined typing soundness says that a term typed A under Γ denotes a continuous

function JΓ K→ JAK.

Lemma 5.3 (Unrefined Typing Soundness). (Lemma D.23)

Assume ⊢ δ : Γ .

(1) If Γ ⊢ h⇒ P, then JΓ ⊢ h⇒ PK
δ
∈ JPK.

(2) If Γ ⊢ g⇒↑P, then JΓ ⊢ g⇒↑PK
δ
∈ J↑PK.

(3) If Γ ⊢ v⇐ P, then JΓ ⊢ v⇐ PK
δ
∈ JPK.

(4) If Γ ⊢ e⇐ N, then JΓ ⊢ e⇐ NK
δ
∈ JNK.

(5) If Γ ; [P] ⊢ {ri⇒ ei}i∈I ⇐ N, then JΓ ; [P] ⊢ {ri⇒ ei}i∈I ⇐ NK
δ
∈ JPK⇒ JNK.

(6) If Γ ; [N] ⊢ s⇒↑P, then JΓ ; [N] ⊢ s⇒↑PK
δ
∈ JNK⇒ J↑PK.

Proof. By mutual induction on the structure of the given typing derivation. This lemma is

mutually recursive with the succeeding lemma.7

The proof of unrefined typing soundness is standard, and uses the well-known fact that

a continuous function in Cppo has a least fixed point. Among other things, we also use the

fact that µ JFK is a fixed point of JFK (appendix Lemma D.8). We also use the soundness

of unrefined unrolling.
7This is the style of proof found in the textbook of Gunter [1993], but it is the only place in the thesis

where I have two separate mutually recursive lemma statements standing for one lemma.
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Lemma 5.4 (Continuous Maps). (Lemma D.22)

Suppose ⊢ δ1 : Γ1 and ⊢ δ2 : Γ2 and (Γ1,y : Q,Γ2) ctx.

(1) If Γ1,y : Q,Γ2 ⊢ h⇒ P, then the function JhK
δ1,−/y,δ2

is continuous.

(2) If Γ1,y : Q,Γ2 ⊢ g⇒↑P, then the function JgK
δ1,−/y,δ2

is continuous.

(3) If Γ1,y : Q,Γ2 ⊢ v⇐ P, then the function JvK
δ1,−/y,δ2

is continuous.

(4) If Γ1,y : Q,Γ2 ⊢ e⇐ N, then the function JeK
δ1,−/y,δ2

is continuous.

(5) If Γ1,y : Q,Γ2; [P] ⊢ {ri⇒ ei}i∈I ⇐ N, then J{ri⇒ ei}i∈IKδ1,−/y,δ2
is continuous.

(6) If Γ1,y : Q,Γ2; [N] ⊢ s⇒↑P, then the function JsK
δ1,−/y,δ2

is continuous.

Proof. By mutual induction on the structure of the given typing derivation. This Lemma is

mutually recursive with the preceding Lemma (see footnote there).

Lemma 5.5 (Unrefined Substitution Typing Soundness). (Lemma D.24)

If Γ0 ⊢ σ : Γ , then ⊢ JσK
δ

: Γ for all ⊢ δ : Γ0.

Unrefined substitution soundness says that semantic and syntactic substitution com-

mute: if E is a program term typed under Γ and Γ0 ⊢ σ : Γ is a substitution, then J[σ ]EK =

JEK ◦ JσK.

Lemma 5.6 (Unrefined Substitution Soundness). (Lemma D.25)

Assume Γ0 ⊢ σ : Γ and ⊢ δ : Γ0.

(1) If Γ ⊢ h⇒ P, then
q

Γ0 ⊢ [σ ]hh⇒ P
y

δ
= JΓ ⊢ h⇒ PKJσK

δ
.

(2) If Γ ⊢ g⇒↑P, then JΓ0 ⊢ [σ ]g⇒↑PK
δ
= JΓ ⊢ g⇒↑PKJσK

δ
.

(3) If Γ ⊢ v⇐ P, then JΓ0 ⊢ [σ ]v⇐ PK
δ
= JΓ ⊢ v⇐ PKJσK

δ
.
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(4) If Γ ⊢ e⇐ N, then JΓ0 ⊢ [σ ]e⇐ NK
δ
= JΓ ⊢ e⇐ NKJσK

δ
.

(5) If Γ ; [P] ⊢ {ri⇒ ei}i∈I ⇐ N,

then JΓ0; [P] ⊢ [σ ]{ri⇒ ei}i∈I ⇐ NK
δ
= JΓ ; [P] ⊢ {ri⇒ ei}i∈I ⇐ NKJσK

δ
.

(6) If Γ ; [N] ⊢ s⇒↑P, then JΓ0; [N] ⊢ [σ ]s⇒↑PK
δ
= JΓ ; [N] ⊢ s⇒↑PKJσK

δ
.

We use unrefined type/substitution soundness to prove refined type/substitution sound-

ness, discussed in Ch. 7.

Warning! While we use P,Q,R to represent positive types of any form in the unrefined

system, we abandon this grammar in the refined system: there, P will be ∃ or Q, and Q will

be ∧ or R, and R will be simple in the sense of invariant under index extraction. Dually,

in the refined system, N will be ∀ or M, and M will be ⊃ or L, and L will be simple in the

sense of invariant under index extraction.
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Chapter 6

Declarative Refined System

We now present our core declarative calculus and type system.

First, we briefly discuss declarative typing judgments and their presuppositions, the

syntax of program types/functors, index terms/propositions/spines, index sorts, algebras,

program terms, and (logical and program) contexts. In Sec. 6.1, we discuss the mutually

recursive index sorting judgments Ξ ⊢ t : τ [ξ ] and Ξ ; [τ] ⊢ t : κ , the well-formedness of

(logical and program) contexts (Θ ctx and Θ ⊢Γ ctx), types (Ξ ⊢ A type[ξ ]), functors (Ξ ⊢

F functor[ξ ]), and algebras (Ξ ⊢ α : F(τ)⇒ τ). In Sec. 6.2 we discuss the propositional

validity (or truth) judgment Θ ⊢ ϕ true, index-level (hereditary) substitution [σ ]− where

Θ0 ⊢ σ : Θ , and logical properties required of the index domain. In Sec. 6.3, we discuss

subtyping/submeasuring (Θ ⊢ A ≤ B and Θ ⊢M ′(F ′) ≥M (F) and Ξ ⊢ α;F ≤τ β ;G).

In Sec. 6.4, we discuss the unrolling judgment for refined inductive types. In Sec. 6.5, we

discuss the refined typing system. In Sec. 6.6, we extend substitution to that of program

values for program variables, and prove a substitution lemma stating that typing is stable

under substitution (a key operational correctness result).

In Fig. 6.1, we summarize the judgments defining the declarative system (only the last

two judgments are used only in the metatheory), as well as their presuppositions. In the
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second column, we refer to where in the chapter we introduce the judgment. In the figure,

“pre.” (in the third column) abbreviates “presupposes”, which basically lists the judgments

(fourth column) we tend to leave implicit in rules defining the given judgment (first col-

umn). Presuppositions also indicate the (input or output) moding of judgments. For exam-

ple, on the one hand Θ ;Γ ⊢ v⇐ P presupposes the well-formedness of P; but on the other

hand, Θ ;Γ ⊢ h⇒P does not presuppose the well-formedness of P but rather we must prove

that the output-moded P is well-formed (which is straightforward). The presupposition

Ξ ⊢
−→
β : G(M (F))⇒M (F)

is syntactic sugar for it being the case that

Ξ ⊢ βk : G(τk)⇒ τk

for all (βk,(foldF _)ν _ =τk _) ∈ zip(
−→
β )(M (F))1.

Groups of mutually defined judgments are separated by blank lines.

Types Ultimately, we would like to refine algebraic datatypes µF by list measurements

M on µF . A measurement is an equality of the form measurek ν t=τ t where measurek :

µF→ τ and ν : µF (our ADT comprehensions have the form {ν : µF |M }) and t is a list

of index terms and projections (in other words, an index spine) of sort τ and t is an index

of the result sort of τ . More precisely, Ξ ; [τ] ⊢ t : κ and Ξ ⊢ t : κ (the indices t and t may

1We use the notation
−→
O for lists growing rightward, and

←−
O for lists growing leftward. We define the

metaoperation zip taking n lists of the same length as inputs (where n ≥ 2), and returning a list of n-tuples:
zip(·)(·) = · and zip(

−→
O ,Ok)(

−→
O ′ ,O ′k) = zip(

−→
O )(
−→
O ′),(Ok,O ′k) and similarly for three or more lists. We write

O to stand for an arbitrary metavariable. We often (not always) write “_” for metavariables we “don’t care
about”, that is, don’t use.
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Θ ctx (Sec. 6.1) pre. no judgment
Ξ ⊢ t : τ [ξt ] (Sec. 6.1) pre. Ξ ctx
Ξ ; [τ] ⊢ t : κ (Sec. 6.1) pre. Ξ ctx

ξ ⊢D det (Sec. 6.1) pre. no judgment

α ◦ injk ⊜ αk (Sec. 6.1) pre. no judgment

Ξ ⊢ A type[ξA] (Sec. 6.1) pre. Ξ ctx
Ξ ⊢M (F)msmts[ξ ] (Sec. 6.1) pre. Ξ ctx
Ξ ⊢F functor[ξF ] (Sec. 6.1) pre. Ξ ctx
Ξ ⊢ α : F(τ)⇒ τ (Sec. 6.1) pre. Ξ ⊢ F functor[ξF ]

Ξ ⊢ Γ ctx (Sec. 6.1) pre. Ξ ctx

Θ0;Γ0 ⊢ σ : Θ ;Γ (Sec. 6.2, 6.6) pre. Θ0 ctx and Θ ctx and Θ0 ⊢ Γ0 ctx and Θ ⊢ Γ ctx

⊢ δ : Θ ;Γ (Sec. 6.2, Ch. 7) pre. Θ ⊢ Γ ctx and Θ ctx

Θ ⊢ ϕ true (Sec. 6.2) pre. Θ ⊢ ϕ : B and Θ ctx

Θ ⊢ u≡ t : τ (Sec. 6.3) pre. Θ ⊢ u : τ and Θ ⊢ t : τ and Θ ctx
Θ ; [τ] ⊢ u≡ t : κ (Sec. 6.3) pre. Θ ; [τ] ⊢ u : κ and Θ ; [τ] ⊢ t : κ and Θ ctx

Θ ⊢ A≤± B (Sec. 6.3) pre. Θ ⊢ A type[ξA] and Θ ⊢ B type[ξB] and Θ ctx
Θ ⊢M ′(F ′)≥M (F) (Sec. 6.3) pre. Θ ⊢M ′(F ′)msmts[ξ ′] and Θ ⊢M (F)msmts[ξ ] and Θ ctx
Ξ ⊢ α;F ≤τ β ;G (Sec. 6.3) pre. Ξ ⊢ α : F(τ)⇒ τ and Ξ ⊢ β : G(τ)⇒ τ

Ξ ⊢ H
−→
β ;G;M (F)I⊜ dΘ ;R (Sec. 6.4) pre. Ξ ⊢M (F)msmts[ξ ] and Ξ ⊢

−→
β : G(M (F))⇒M (F)

Θ ;Γ ⊢ h⇒ P (Sec. 6.5) pre. Θ ctx and Θ ⊢ Γ ctx
Θ ;Γ ⊢ g⇒↑P (Sec. 6.5) pre. Θ ctx and Θ ⊢ Γ ctx
Θ ;Γ ⊢ v⇐ P (Sec. 6.5) pre. Θ ctx and Θ ⊢ Γ ctx and Θ ⊢ P type[ξP]

Θ ;Γ ⊢ e⇐ N (Sec. 6.5) pre. Θ ctx and Θ ⊢ Γ ctx and Θ ⊢ N type[ξN ]

Θ ;Γ ; [P] ⊢ {ri⇒ ei}i∈I ⇐ N (Sec. 6.5) pre. Θ ctx and Θ ⊢ Γ ctx and Θ ⊢ P type[ξP] and Θ ⊢ N type[ξN ]

Θ ;Γ ; [N] ⊢ s⇒↑P (Sec. 6.5) pre. Θ ctx and Θ ⊢ Γ ctx and Θ ⊢ N type[ξN ]

Θ ⊆Θ ′ (Sec. 6.2) pre. Θ ctx and Θ ′ ctx

Θ ⊢Θ1 ≡Θ2 ctx (Sec. 6.4) pre. (Θ ,Θ1) ctx and (Θ ,Θ2) ctx

Every judgment except submeasuring, unrolling, and algebra well-formedness presupposes
that no Id hypothesis occurs in its input context.

Figure 6.1: Declarative judgments and their presuppositions
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mention free variables dom(Ξ), but F and measurek may not and indeed are closed) where

κ is a first-order (result) sort, that is, a sort in which an arrow sort⇒ does not occur. It is

important in our system that t, the index on the right-hand side of a measurement, be first-

order: unrolling generates equalities with this t occurring in them, and we build asserting

types with these equalities and must typecheck values against them, which must verify the

asserted equality with this t. However, we cannot expect an SMT solver to succeed at this,

so to maintain decidability we require this t to be first-order.

So, to handle unrolling of refined ADTs (which, by the way, are positive), which gen-

erates asserted equalities, we also need to refine positive types P by index propositions ϕ

which should hold: these are called asserting types Q∧ϕ . We also need existential types

∃a : κ . P to express the existence of indices making assertions hold. Logically, dually, in

the negative polarity, we should have guarding types ϕ ⊃M and universal types ∀a : κ . N.

However, after working out a system for first-order single-measurements of algebraic

data [Economou et al., 2023] we discovered we often needed to extract index information.

For example, it simplifies the metatheory to assume types in program contexts don’t have

any extractable index information, so we extract such index information from types before

adding them to program contexts (this is sound because adding them to program contexts

means we are assuming them anyway). In that paper, we handled this using an extraction

judgment, but we later discovered it is much simpler to bake extraction directly into the

syntax of types.

Basically the point of the extraction judgment Θ ⊢ A⇝± A′ [Θ ′] was to extract from

A the indices Θ ′ we can logically assume to hold in assuming A, resulting in a type A′

whose only difference from A is its lack of the extracted indices: see Fig. 6.2. It extracted

quantified variables and ∧ and ⊃ propositions from a type, outputting the same type but
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Θ ⊢ A⇝± A′ [ΘA] Under Θ , type A extracts to A′ and ΘA

P ̸= ∃ or ∧ or ×
Θ ⊢ P⇝+ P [·]

Θ ⊢ Q⇝+ Q′ [ΘQ]

Θ ⊢ Q∧ϕ ⇝+ Q′ [ϕ ,ΘQ]

Θ ,a : τ ⊢ P⇝+ P′ [ΘP]

Θ ⊢ ∃a : τ . P⇝+ P′ [a : τ ,ΘP]

Θ ⊢ R1⇝
+ R′1 [ΘR1 ] Θ ⊢ R2⇝

+ R′2 [ΘR2]

Θ ⊢ R1×R2⇝
+ R′1×R′2 [ΘR1 ,ΘR2]

Θ ⊢ ↑P⇝− ↑P [·]
Θ ⊢M⇝− M′ [ΘM]

Θ ⊢ ϕ ⊃M⇝− M′ [ϕ ,ΘM]

Θ ,a : τ ⊢ N⇝− N′ [ΘN ]

Θ ⊢ ∀a : τ . N⇝− N′ [a : τ ,ΘN ]

Θ ⊢ R⇝+ R′ [ΘR] Θ ⊢ L⇝− L′ [ΘL]

Θ ⊢ R→ L⇝− R′→ L′ [ΘR,ΘL]

Figure 6.2: Declarative extraction

without these propositions, and the context ΘA with them. We call A′ and ΘA the type

and context extracted from A. For negative A, everything is extracted up to an upshift.

For positive A, everything is extracted up to any connective that is not ∃ or ∧ or ×. If

Θ ⊢ A⇝± A [·], then we say A is simple.

However, in this thesis, we take a simpler, grammatical approach, by stratifying type

syntax. First, we name the simple positive types as R and R′ and R′′ and R0 and R1 and so

on and (dually) we name the simple negative types as L and L′ and L′′ and L0 and L1 and

so on. Second, asserting types Q (and Q′ and so on) can be formed around simple positive

types R, and (dually) guarding types M (and M′ and so on) can be formed around simple

negative types L. Finally, existential types P (and P′ and so on) can be formed around

(simple positive or) asserting types Q, and (dually) universal types N (and N′ and so on)

can be formed around (simple negative or) guarding types M.

Types and functors are defined in Fig. 6.3. The only difference from the syntax of

unrefined types and functors (Fig. 5.1) is that types in constant functors are refined and we
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add ∧ and ∃ and ⊃ and ∀ and measurements M for µF . Types are polarized into positive

(value) types P and negative (computation) types N. We write A, B and C for types of either

polarity.

Types A,B,C ::= P | N
Positive types P ::= Q | ∃a : κ . P

Q ::= R | Q∧ϕ

R ::= 1 | R×R | 0 | P+P | ↓N | {ν : µF |M (F)}
Measurements on ν : µF M (F) ::= ·F |M (F),(foldF α)ν u=τ t
Negative types N ::= M | ∀a : κ . N

M ::= L | ϕ ⊃M
L ::= R→ L | ↑P

Functors F ,G,H ::= P̂ | F⊕F
Constant (product) functors P̂ ::= Î | P⊗ P̂
Identity (product) functors Î ::= I | Id⊗ Î
Base functors B̂ ::= P | Id

F ::= F | B̂

Figure 6.3: Types

After meditating on index extraction, we stratify positive types P so that existential

types ∃a : κ . P (written P) are on the outside, followed by asserting types Q∧ϕ (written

Q), with the innermost types being simple (written R) in the sense of invariance under in-

dex extraction. Positive types consist of the unit type 1 (which is simple), simple products

R1×R2, the void type 0 (which is simple), sums P1 +P2 (which are simple) (P1 and P2

are not simple, that is, are not written R1 and R2, because we cannot extract indices from

either summand even if we assume the sum holds2), downshifts (of negative types; thunk

types) ↓N (which are simple), asserting types Q∧ϕ (read “Q with ϕ”), index-level exis-

tential quantifications ∃a : κ . P, and refined algebraic datatypes (or refined inductive types

2This reflects the fact that our extraction judgment did not extract under sums, which is done to minimize
the amount of SMT logic in the system itself.
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or comprehensions) {ν : µF |M (F)} where M (F) is a list of measurements of the form

(foldF α)ν t=τ t. We read {ν : µF |M (F)} as comprising values ν of type µF (with al-

gebraic signature F) such that every (index-level) measurement (foldF α)ν t=τ t in M (F)

holds; in Sec. 6 and Ch. 7, we explain the metavariables F , α , τ , and t, as well as what these

and the syntactic parts µ and fold mean or denote. Briefly, µ− denotes “initial fixed point

of −” and a fold over F with α (having index carrier sort τ) denotes a semantic measure

on the inductive type µF into τ . We write M (F) with the F in parentheses because it is

convenient to have easy access to the underlying functor of a list of measurements, though

we sometimes omit it.

We stratify negative types N so that universal types ∀a : κ . N (written N) are on the

outside, followed by guarding types ϕ ⊃ M (written M), with the innermost types being

simple (written L) in the sense of invariance under index extraction. Negative types consist

of simple function types R→ L, upshifts (of positive types; lift or returning types) ↑P (dual

to ↓N), which are simple, guarding types ϕ ⊃M (read “ϕ implies M”; dual to Q∧ϕ), and

index-level universal quantifications ∀a : κ . N (dual to ∃a : κ . P).

In Q∧ϕ and ϕ ⊃M, the index proposition ϕ has no run-time content. Neither does the

a in ∃a : κ . P and ∀a : κ . N, nor the measurements M (F) in {ν : µF |M (F)}.

Index language: sorts, terms, and propositions Our type system is parametric in the

index domain, provided the latter has certain (basic) properties. For our system to be de-

cidable, the index domain must be decidable. We nonetheless work with a certain index

domain: Fig. 6.4 includes a quantifier-free logic (ignoring λ terms: by using hereditary

substutition we pass only first-order indices to “the SMT solver”, but we use lambda terms

to express multi-argument measures) of linear equality, inequality, arithmetic, and uninter-

preted functions, which is decidable [Barrett et al., 2009].
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Index variables a,b,c,d
Index terms t,u,ϕ ,ψ ::= a | n | t + t | t− t | (t, t) | λa. t | a(t)

| t = t | t ≤ t | ϕ ∧ϕ | ϕ ∨ϕ | ¬ϕ | tt | ff
Index spines t,u,a,b,c ::= · | t,t | .1,t | .2,t
Index sorts τ ,ω ::= B | N | Z | τ× τ | κ ⇒ τ

First-order index sorts κ ::= B | N | Z | κ×κ

Figure 6.4: Index domain

Sorts τ consist of booleans B, natural numbers N, integers Z, products τ1× τ2, and

functions κ ⇒ τ . The sorts B and N and Z are base sorts and their set of constants are

written Kκ for κ ∈ {B,N,Z}. First-order sorts are sorts with no⇒ occurring in them.

Non-propositional index terms t consist of variables a, function abstractions λa. t, ap-

plications a(t) of an uninterpreted function a to an index spine t, integer constants n, ad-

dition t1 + t2, subtraction t1− t2, and pairs (t1, t2). An index spine is a list of indices and

projections.

Propositional index terms ϕ are built over non-propositional index terms, and consist of

equality t1 = t2, inequality t1 ≤ t2, conjunction ϕ1∧ϕ2, disjunction ϕ1∨ϕ2, negation ¬ϕ ,

trivial truth tt, and trivial falsity ff.

Measurements As we will discuss in Chapter 7, every polynomial endofunctor F has

an initial fixed point µF satisfying a recursion principle for defining measures (on µF) by

folds with algebras. We define algebras in Fig. 6.5. An algebra α is a list (with separator

||||| ) of clauses p⇒ t which pattern match on algebraic structure (p, q, and o are patterns) and

bind variables in index bodies t. Sum algebra patterns p consist of inj1 p and inj2 p (which

match on sum functors⊕). Product algebra patterns q consist of tuples (o,q) (which match

on ⊗) ending in the unit pattern () (which matches on I). Base algebra patterns o consist

of wildcard patterns ⊤ (which match on constant functors P), variable patterns a (which
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match on the identity functor Id), and pack patterns pk(a,o) (which match on existential

constant functors ∃a : τ . P, where a is also bound in the body t of the algebra clause).

Algebras α ,β ::= · | (p⇒ t |||||α)
Sum algebra patterns p ::= inj1 p | inj2 p | q
Product algebra patterns q ::= () | (o,q)
Base algebra patterns o ::= ⊤ | a | pk(a,o)

Figure 6.5: Algebras

For example, given a type P, consider the functor I ⊕ (P⊗ Id⊗ I). To specify the

function length : List P→N computing the length of a list of values of type P, we write the

algebra inj1()⇒0||||| inj2 (⊤,(a,()))⇒1+a with which to fold List P.

With the pack algebra pattern, we can use indexes of an inductive type in our measures.

For example, given a : N, and defining the singleton type Nat(a) as

{ν : µNatF | (foldNatF ixnat)ν = a}

where NatF = I⊕ Id⊗ I and ixnat is

inj1()⇒0||||| inj2 (a,())⇒1+a

consider lists of natural numbers, specified by I⊕∃b : N.Nat(b)⊗ Id⊗ I. Folding such a

list with the algebra

inj1()⇒0||||| inj2 (pk(b,⊤),a,())⇒a+b

sums all the numbers in the list. (For clarity, we updated the definitions in Chapter 5 to

agree with our grammars as presented in Fig. 6.3 and Fig. 6.5.) As another example, to
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define the algebra for computing whether a list of natural numbers is in increasing order,

we can write

inj1()⇒λb. tt||||| inj2 (pk(c,⊤),(a,()))⇒λb.c≥ b∧a(c)

Program terms Program terms are defined in Fig. 6.6. We polarize terms into two main

syntactic categories: expressions (which have negative type) and values (which have pos-

itive type). Program terms are further distinguished according to whether their princi-

pal types are synthesized (heads and bound expressions) or checked (spines and patterns).

There is no difference between the program terms of the refined system and the program

terms of the unrefined system, except for the type annotations (in the former they are re-

finement types).

Program variables x,y,z
Expressions e ::= returnv | λx.e | rec x : N. e | unreachable

| let x=g; e | match h {ri⇒ ei}i∈I
Values v ::= x | ⟨⟩ | ⟨v,v⟩ | inj1 v | inj2 v | into(v) | {e}
Heads h ::= x | (v : P)
Bound expressions g ::= h(s) | (e : ↑P)
Spines s ::= · | v,s
Patterns r ::= into(x) | ⟨⟩ | ⟨x,y⟩ | inj1 x | inj2 x

Figure 6.6: Program terms

Expressions e consist of functions λx.e, recursive expressions rec x : N. e, let-bindings

let x=g; e, match expressions match h {ri⇒ ei}i∈I , value returners (or producers) returnv,

and an unreachable expression unreachable (such as an impossible pattern match). Bound

expressions g, which can be let-bound, consist of expressions annotated with a returner type

(e : ↑P) and applications h(s) of a head h to a spine s. Heads h, which can be applied to a
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spine or pattern-matched, consist of variables x and positive-type-annotated values (v : P).

Spines s are lists of values; we often omit the empty spine ·, writing (for example) v1,v2

instead of v1,v2, ·. In match expressions, heads are matched against patterns r.

Values consist of variables x, the unit value ⟨⟩, pairs ⟨v1,v2⟩, injections into sum type

injk v where k is 1 or 2, rollings into inductive type into(v), and thunks (suspended compu-

tations) {e}.

Contexts A logical context Θ ::= · | Θ ,a d÷τ | Θ ,a÷τ | Θ ,a Id | Θ ,ϕ is an ordered list

of index propositions ϕ , Id variable hypotheses3 a Id, and (index) variable sortings a : τ ,

(which may be used in propositions). In order to mark whether an index variable is value-

determined, we split4 the colons : of index variable sortings in two: ÷ and d÷. If a d÷ κ

then a is value-determined; else, if a÷ κ , then a is not known to be value-determined.

We write logical contexts without propositions as Ξ , and the operation − merely removes

propositions from logical contexts. So, for any Θ we know Θ is a Ξ . We sometimes put a

d (for “(value-)det.”) superscript on a logical context: this means it is a logical context in

which every : is d÷ (that is, in which every index variable sorting in it is value-determined).

The superscript is a part of the name of the logical context: for example, dΞ (pronounced

“Ξ det.”) and Ξ are distinct context names, and dΞ is not to be understood as “the logical

context named Ξ such that every sorting is value-determined”. A program variable context

(or program context) Γ ::= · | Γ ,x : P is a set of (program) variable typings x : P.
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Θ ctx Input logical context Θ is well-formed

· ctx
LogCtxEmpty

Θ ctx a /∈ dom(Θ)

(Θ ,a÷ τ) ctx
(Θ ,a d÷ τ) ctx

(Θ ,a d÷ τ ,a Id) ctx

LogCtxVar[Det][Id]

Θ ctx Θ ⊢ ϕ : B
(Θ ,ϕ) ctx

LogCtxProp

Figure 6.7: Declarative logical context well-formedness

6.1 Context Well-Formedness, Index Sorting, and Type Well-Formedness

Figure 6.7 defines the well-formedness of logical contexts. It is defined mutually with the

sorting judgment of indices: index terms in well-formed logical contexts must have boolean

sort under a well-formed Ξ . Id variable hypotheses, discussed later when we introduce

algebra well-formedness, in well-formed logical contexts must occur immediately after the

sorting of its variable which must be value-determined.

In well-formed program variable contexts Ξ ⊢ Γ ctx, the types (of program variables)

must be well-formed under (presupposed well-formed) Ξ ; further, we must not be able to

extract index information from these types. For example, x : 1∧ff is an ill-formed program

context because ff can be extracted, but x : ↓↑(1∧ff) is well-formed because nothing under

a shift type can be extracted.

In well-formed logical contexts and well-formed program contexts, each variable can

be declared at most once.
3To be explained later, when we get to algebra well-formedness.
4Alternatively, we could have gone with Θ ::= · | Θ ,a : τ | Θ ,a det | Θ ,a Id | Θ ,ϕ but I didn’t.
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Ξ ⊢ t : τ [ξt ]

Under input Ξ , input index t has input sort τ

and output value-determined dependencies ξt
Note that Ξ ⊢ t : τ abbreviates Ξ ⊢ t : τ [_] where “_” means “don’t care”

(a : τ) ∈ Ξ

Ξ ⊢ a : τ [·]
IxVar

Ξ ⊢ t : τ [ξ ′] ξ ⊊ ξ
′

Ξ ⊢ t : τ [ξ ]
IxSub

t ∈Kκ

Ξ ⊢ t : κ [·]
IxConst

κ ∈ {N,Z} Ξ ⊢ t1 : κ [ξ1] Ξ ⊢ t2 : κ [ξ2]

Ξ ⊢ t1 + t2 : κ [·] Ξ ⊢ t1− t2 : κ [·]
Ix+ and Ix−

Ξ ⊢ t1 : τ1 [ξ1] Ξ ⊢ t2 : τ2 [ξ2]

Ξ ⊢ (t1, t2) : τ1× τ2 [·]
Ix×

Ξ ,a÷κ ⊢ t : τ [ξt ]

Ξ ⊢ λa. t : κ ⇒ τ [·]
Ixλ

(a : τ) ∈ Ξ Ξ ; [τ] ⊢ t : κ

Ξ ⊢ a(t) : κ [·]
IxApp

(a d÷κ) ∈ Ξ (t d÷κ) /∈ Ξ d÷Ξ ⊢ t : κ [ξt ]

Ξ ⊢ a = t : B [FV(t)�a] Ξ ⊢ t = a : B [FV(t)�a]
Ix=L and Ix=R

(a d÷κ) ∈ Ξ (b d÷κ) ∈ Ξ

Ξ ⊢ a = b : B [a�b,b�a]
Ix=LR

Ξ ⊢ u1 = t1 : B [ξ1] Ξ ⊢ u2 = t2 : B [ξ2]

Ξ ⊢ (u1,u2) = (t1, t2) : B [ξ1∪ξ2]
Ix=×

no other rule applies Ξ ⊢ t1 : κ [ξ1] Ξ ⊢ t2 : κ [ξ2]

Ξ ⊢ t1 = t2 : B [·]
Ix=

Ξ ⊢ ϕ1 : B [ξ1] Ξ ⊢ ϕ2 : B [ξ2]

Ξ ⊢ ϕ1∧ϕ2 : B [ξ1∪ξ2]
Ix∧

Ξ ⊢ ϕ1 : B [ξ1] Ξ ⊢ ϕ2 : B [ξ2]

Ξ ⊢ ϕ1∨ϕ2 : B [·]
Ix∨

Ξ ⊢ ϕ : B [ξϕ ]

Ξ ⊢ ¬ϕ : B [·]
Ix¬

κ ∈ {N,Z} Ξ ⊢ t1 : κ [ξ1] Ξ ⊢ t2 : κ [ξ2]

Ξ ⊢ t1 ≤ t2 : B [·]
Ix≤

Ξ ; [τ] ⊢ t : κ
Under input Ξ , fully applying an index of sort τ to t (inputs)
yields an index of sort κ (output)

Ξ ; [κ] ⊢ · : κ
IxSpineNil

Ξ ⊢ t0 : κ0 Ξ ; [τ] ⊢ t : κ

Ξ ; [κ0⇒ τ] ⊢ t0,t : κ
IxSpineEntry

k ∈ {1,2} Ξ ; [τk] ⊢ t : κ

Ξ ; [τ1× τ2] ⊢ .k,t : κ
IxSpineProjk

Figure 6.8: Declarative index spine sorting
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Figure 6.8 defines a largely standard index sorting judgment Ξ ⊢ t : τ [ξ ] presuppos-

ing Ξ ctx and saying that, under sortings Ξ , index term t has sort τ , outputting value-

determined dependencies ξ . For example, a : N ⊢ ¬(a≤ a+1) : B [·] and a : N ⊢ a = 3 :

N [ /0�a]. We treat the sort of index sorting (except the spine judgment output) as an input,

but we could do sort inference. In general we leave enhancing inference to future work.

What is novel is the ξ output, which soundly tracks value-determined dependencies.

For example, if we have a value of type 1∧ ((a,5) = (3,b)) then it must be the case that a

and b are uniquely determined, semantically speaking: in particular, a must be equal to 3

and b must be equal to 5. However, if we have a value of type 1∧ ((a = 3)∨ (a = 4)) then

a is not uniquely determined, which is why rule Ix∨ outputs an empty set of dependencies.

If we have a value of type 1∧ ((a = 3)∨ (a = 3)) it is true that a is uniquely determined,

but to track this would require bringing the SMT logic into our index sorting judgment,

which would greatly complicate things (if it would work at all). In this thesis, we take

a loosely coupled approach, where we underapproximate the set of uniquely determined

indices by way of a simple inspection of syntax: an equality a = t or t = a uniquely de-

termines a if the free variables of t are uniquely determined, and we can collect all these

dependencies that should hold conjunctively (via rules Ix∧ and Ix=×). For example, a

value of type 1∧ ((a = 1)∧ ((2+ a = c)∧ (b = a+ c))) determines a to be 1 and c to

be 3 and b to be 4 semantically speaking: the ξ of this type (its set of value-determined

dependencies) is /0�a,{a}�c,{a,c}�b which means that a is value-determined and that c

is value-determined if a is value-determined and that b is value-determined if a and c are

both value-determined. As such, in our system, a set of value-determined dependencies ξ

is a set of Horn clauses [Horn, 1951] D�a where we write index variable sets as A, B, C,

or D. We want to track these dependencies if we can, so rule Ix= is the last possible rule
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you want to use for an equality index: we express this with the side condition “no other

rule applies”, in this case no rule with an equality index of the form of the other rules.

We can take unions and intersections ξ ∪ξ ′ and ξ ∩ξ ′ and the notation ξ ,D�a means

ξ ∪D�a together with D�a /∈ ξ .

To simplify metatheory, we only add value-determined dependencies: that is why, for

example, rules Ix=L and Ix=R have premise a d÷ κ ∈ Ξ and not a : κ ∈ Ξ , and premise

d÷Ξ ⊢ t : κ [ξt ] and not Ξ ⊢ t : κ [ξt ], where the d÷ operation gets the value-determined

sublist of a logical context and also removes propositions (explained in Sec. 6.2).

Definition 6.1 (Get Value-Determined Indices (“Get Det.”)).

For any Θ ctx, define d÷(Θ) by:

d÷(·) = ·

d÷(Θ ,a÷ τ) = d÷Θ

d÷(Θ ,a d÷ τ) = d÷Θ ,a d÷ τ

d÷(Θ ,a d÷ τ ,a Id) = d÷Θ ,a d÷ τ ,a Id

d÷(Θ ,ϕ) = d÷Θ

Rule Ix∧ takes the union of the output dependencies of the conjuncts as all the depen-

dencies still hold in the conjunction. Rule Ix=× is similar to Ix∧. The rule IxSub is only

used in the metatheory for syntactic substitution, discussed later. Every other rule outputs

the empty ξ : this is sound but not complete. The most important thing that we should

check first when determining whether we have set up the output ξ correctly in our rules,

is whether we can prove a lemma called the soundness of value-determined dependencies.
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(See Lemma 7.1 in Chapter 7.) The rule

(a d÷κ) ∈ Ξ (t d÷κ) /∈ Ξ d÷Ξ ⊢ t : κ [ξt ]

Ξ ⊢ a = t : B [ξt ∪FV(t)�a]

for example, is unsound, so we exclude ξt from the output of Ix=L. If we had the unsound

rule instead, the ξ of a = (b = 0) would be /0�a, /0�b even though neither a nor b require

unique solutions to make the equality true. Both tt= (0 = 0) and ff = (1 = 0) are true but

tt ̸= ff and 0 ̸= 1, violating the requirement that ξ tracks only value-determined indices.

How does an index variable b get marked in a context as determined in the first place?

Ultimately, if b is determined according to some set ξ of Horn clauses: ξ ⊢ b det. We

define the judgment as follows.

/0�a ∈ ξ

ξ ⊢ a det

DetUnit
ξ ⊢ c det ξ ∪C�b ⊢ a det

ξ ,(C,c)�b ⊢ a det

DetCut

Rule DetUnit says the variable a is determined under ξ if according to ξ it depends on

nothing. In DetCut, we write (C,c): this notation means C∪{c} together with c /∈ C. The

rule DetCut says a is determined under ξ ,(C,c)�b if it is determined under ξ ∪C�b and

we know that c is determined under ξ . By ξ ⊢D det we mean ξ ⊢ a det for all a ∈D. For

example, /0�a,{a}�c,{a,c}�b ⊢ {a,b,c} det.

More abstractly, we can define a closure operator cl which takes a ξ and an initial set C

of index variables as inputs and computes the set of all value-determined variables:
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Definition 6.2 (ξ Closure Operator). Define

cl0(ξ )(D) =D

cln+1(ξ )(D) = cln(ξ )(D)∪{b | A⊆ cln(ξ )(D) for some A�b ∈ ξ}

Define

cl(ξ )(D) =
⋃

k∈N
clk(ξ )(D)

Definition 6.2 (= B.1) is equivalent to the operator c of Wild [2017] who surveys pure

Horn formulas. It is straightforward to prove that cl(ξ )(−) is monotone: if A ⊆B then

cl(ξ )(A)⊆ cl(ξ )(B) for any ξ . The operator cl(−)(C) is also monotone (for any C).

We prove cl and det are equivalent5. We use these notions interchangeably and may

refer to both as dependency closure.

Lemma 6.1 (Equivalence of cl and det). (Lemma B.4)

ξ ⊢D det if and only if D⊆ cl(ξ )( /0)

Figure 6.9 defines type well-formedness Ξ ⊢ A type[ξ ], read “under Ξ , type A is well-

formed and has value-determined dependencies ξ ”. The judgment Ξ ⊢ A type[ξ ] presup-

poses Ξ ctx. The metavariable ξ is an output in Ξ ⊢ A type[ξ ], and like the output of index

sorting, tracks value-determined dependencies, in this case, of comprehension types in A:

the right-hand sides t of measurements (foldF α)ν t =τ t in M (F) depend on the result

of the application of their measures (foldF α) (which we require to be closed) to a value ν

and a value-determined index spine t; as well as by index equalities which must hold (as

described by index sorting).

5It may be simpler to use only cl, but I just happened to use det first, and then only later, namely when I
needed to prove algorithmic completeness, found it wise to use cl.
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Ξ ⊢M (F)msmts[ξM (F)]
Under input Ξ , input measurements M (F) are well-formed,
with output value-determined dependencies ξM (F)

· ⊢ F functor[_]
Ξ ⊢ ·F msmts[·]

Ξ ⊢M (F)msmts[ξ ] · ⊢ α : F(τ)⇒ τ d÷Ξ ; [τ] ⊢ t : κ (t d÷κ) ∈ Ξ

Ξ ⊢M (F),(foldF α)ν t=τ t msmts[ξ ∪FV(t)�t]

Ξ ⊢M (F)msmts[ξ ]
· ⊢ α : F(τ)⇒ τ d÷Ξ ; [τ] ⊢ t : κ (t d÷κ) /∈ Ξ d÷Ξ ⊢ t : κ

Ξ ⊢M (F),(foldF α)ν t=τ t msmts[ξ ]

Ξ ⊢ A type[ξA]
Under Ξ (input), type A (input) is well-formed,
with (output) value-determined dependencies ξA

Ξ ,dΞ ⊢ Q type[ξQ] ξQ− d÷Ξ ⊢ d
Ξ det

Ξ ⊢ ∃dΞ . Q type[ξQ− d
Ξ ]

DeclTp∃

Ξ ⊢ R type[ξR] Ξ ⊢ −→ϕ : B [ξ−→
ϕ
]

Ξ ⊢ R∧−→ϕ type[ξR∪ξ−→
ϕ
]

DeclTp∧

Ξ ⊢M (F)msmts[ξ ]

Ξ ⊢ {ν : µF |M (F)} type[ξ ]
DeclTpµ

Ξ ⊢ P1 type[ξ1] Ξ ⊢ P2 type[ξ2]

Ξ ⊢ P1 +P2 type[·]
DeclTp+

Ξ ⊢ R1 type[ξ1] Ξ ⊢ R2 type[ξ2]

Ξ ⊢ R1×R2 type[ξ1∪ξ2]
DeclTp×

Ξ ⊢ 0 type[·]
DeclTp0

Ξ ⊢ 1 type[·]
DeclTp1

Ξ ⊢ N type[ξN ]

Ξ ⊢ ↓N type[·]
DeclTp↓

Ξ ⊢ P type[ξP]

Ξ ⊢ ↑P type[·]
DeclTp↑

Ξ ⊢ R type[ξR] Ξ ⊢ L type[ξL]

Ξ ⊢ R→ L type[ξR∪ξL]
DeclTp→

Ξ ⊢ L type[ξL] Ξ ⊢ −→ϕ : B [ξ−→
ϕ
]

Ξ ⊢ −→ϕ ⊃ L type[ξL∪ξ−→
ϕ
]

DeclTp⊃

Ξ ,dΞ ⊢M type[ξM] ξM− d÷Ξ ⊢ d
Ξ det

Ξ ⊢ ∀dΞ . M type[ξM− d
Ξ ]

DeclTp∀

Figure 6.9: Declarative well-formedness of types (and measurements)
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That mostly explains rule DeclTpµ and the auxiliary rules used in its premise. The

algebra/functor well-formedness premises of these auxiliary rules require the closedness of

measures: · ⊢ α : F(τ)⇒ τ has an empty context. This ensures that existential variables

never appear in algebras, which will be helpful later because folds with algebras solve

existential variables when typechecking a value (see Chapter 8). Previously we allowed

free variables in F but this would greatly complicate the more general setting, if it would

work at all. It’s unclear at the moment what (if anything) free index variables in F would

provide.

Rules DeclTp∧ and DeclTp⊃ include the dependencies of the index equalities which

must hold (as described by index sorting). The notation Ξ ⊢ −→ϕ : B [ξ ] means that for

all ϕk ∈ −→ϕ there exists ξk such that Ξ ⊢ ϕk : B [ξk], and also ξ = ∪
ϕk∈
−→
ϕ

ξϕk . A value

of product type is a pair of values, so we take the union of what each component value

determines. We also take the union for function types R→ L, because to use a function,

due to focusing, we must provide values for all its arguments. The ξ of Nat(a)→↑Nat(a)

is /0�a, so ∀a : N.Nat(a)→ ↑Nat(a) is well-formed. In applying a head of this type to a

value, we must instantiate a to an index semantically equal to what that value determines;

for example, if the value is one, then a gets instantiated to an index semantically equal to

1 ∈ N.

However, a value of sum type is either a left- or right-injected value, but we don’t know

which, so we output · in rule DeclTp+6. The unit type 1 and void (empty) type 0 both have

empty ξ . We also empty out value-determined dependencies at shifts, preventing certain

quantifications over shifts. For example, ∀a : N. ↑Nat(a) (which is void anyway) is not

6Previously, we took the intersection (in that case of only unit dependencies /0�a), but we changed that
in the upgrade to multiple higher-order measurements. We did this to keep the metatheory simple. In future
work it would be interesting to add some kind of intersection (and more generally to make the syntactic
tracking of value-determined indices more complete).
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well-formed. Crucially, we will see that this restriction, together with focusing, guarantees

indexes will be algorithmically solved by the end of certain stages. Again this restriction is

sound but not complete: in future work it would be interesting to improve completeness.

In order to allow output existentials to depend on input universals, we make use of the

distinction between d÷ and ÷ in logical contexts: we require bound indices to be value-

determined under the ξ of the bodies of the binders assuming the variables marked d÷ are

determined. This makes types like

∀a : N.Nat(a)→↑∃b : B. {v : NatList | isincr v a = b}

well-formed (this type is inhabited by any function taking a natural number and returning

a list of natural numbers in increasing order starting from that input natural number, such

as for example a singleton list containing that number plus 100). In this example, b is

determined by the input natural number which determines a, together with how the function

of this type is defined: for example, applying λx.return [x+100] to 3 determines b to be

true, but applying λx.return [0] to 2 determines b to be false.

The way we happen to assume the variables marked d÷ are determined is by subtracting

them from ξ . We define the subtraction operation on ξ as follows.

·−a≜ ·

(ξ ,D�c)−a≜


ξ −a if c = a

(ξ −a)∪ ((D−a)�c) else

We define the notation ξ −C by ξ − /0 = ξ and ξ − (C,c) = (ξ − c)−C. We define the

notation ξ − dΞ by ξ − dom(dΞ). At this point the premises ξQ− d÷Ξ ⊢ dΞ det of rules
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DeclTp∃ and DeclTp∀ should be understandable (recall the operator d÷− gets the value-

determined sublist of a logical context). These rules output the ξ of the body of the binders

with the bound variables subtracted: ξ should only refer to free value-determined index

variables.

We define functor and algebra well-formedness in Fig. 6.10.

Functor well-formedness Ξ ⊢F functor[ξ ] (presupposes Ξ ctx and is read “under Ξ

functor F is well-formed and outputs value-determined dependencies ξ ”) is similar to type

well-formedness: constant functors output the ξ of the underlying positive type, the sum,

identity, and unit functors Id and I have empty ξ , and the product functor B̂⊗ P̂ takes

the union of the component ξ s. The outputs of DeclFunc⊕ and DeclFunc⊗ reflect the

unrolling of algebraic datatypes (Sec. 6.4), which generates + types from ⊕ functors and

× types from ⊗ functors. That I has empty ξ reflects that 1 (unrolled from I) does too. We

need to consider the output ξ of functors in order to prove that we can always form valid

types with unrolling outputs.

Figure 6.10 defines algebra well-formedness Ξ ⊢ α : F(τ) ⇒ τ which presupposes

Ξ ctx and Ξ ⊢ F functor[ξ ], and is read “under Ξ , algebra α is well-formed and has

the ‘type’ F(τ)⇒ τ”. Rule DeclAlg⊕ uses the judgment α ◦ injk ⊜ αk that outputs the

kth clauses αk of input algebra α . It is defined in Fig. 6.11. Comprehension type well-

formedness depends on closed measures, but index variables can be bound in the body of

an algebra: the rule DeclAlg∃ simultaneously binds dΞ
′ in both t and Q, and the rule

DeclAlgId only binds a in t. For metatheoretic convenience, we set up algebra well-

formedness so that the pack pattern must be used even if nothing is bound in the algebra

body. We mark the variables a of Id functor patterns by putting a Id immediately after

them in well-formed logical contexts: we do this to restrict the power of submeasuring and
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Ξ ⊢F functor[ξF ]
Under Ξ (input), functor F (input) is well-formed,
with (output) value-determined dependencies ξF

Ξ ⊢ P type[ξ ]

Ξ ⊢ P functor[ξ ]
DeclFuncConst

Ξ ⊢ Id functor[·]
DeclFuncId

Ξ ⊢ I functor[·]
DeclFuncI

Ξ ⊢ B̂ functor[ξ1] Ξ ⊢ P̂ functor[ξ2]

Ξ ⊢ B̂⊗ P̂ functor[ξ1∪ξ2]
DeclFunc⊗

Ξ ⊢ F1 functor[ξ1] Ξ ⊢ F2 functor[ξ2]

Ξ ⊢ F1⊕F2 functor[·]
DeclFunc⊕

Ξ ⊢ α : F(τ)⇒ τ
Under Ξ (input), α (input) is a well-formed algebra of kind F(τ)⇒ τ

(inputs: F and τ)

α ◦ inj1 ⊜ α1
α ◦ inj2 ⊜ α2

Ξ ⊢ α1 : F1(τ)⇒ τ

Ξ ⊢ α2 : F2(τ)⇒ τ

Ξ ⊢ α : (F1⊕F2)(τ)⇒ τ
DeclAlg⊕

Ξ ⊢ Q type[ξQ] Ξ ⊢ q⇒ t : P̂(τ)⇒ τ

Ξ ⊢ (⊤,q)⇒ t : (Q⊗ P̂)(τ)⇒ τ
DeclAlgConst

Ξ ,dΞ
′ ⊢ (⊤,q)⇒ t : (Q⊗ P̂)(τ)⇒ τ

Ξ ⊢ (pk(dΞ
′
,⊤),q)⇒ t : (∃dΞ

′
. Q⊗ P̂)(τ)⇒ τ

DeclAlg∃

Ξ ,a d÷ τ ,a Id ⊢ q⇒ t : Î(τ)⇒ τ

Ξ ⊢ (a,q)⇒ t : (Id⊗ Î)(τ)⇒ τ
DeclAlgId

d÷Ξ ⊢ t : τ

Ξ ⊢ ()⇒ t : I(τ)⇒ τ
DeclAlgI

Ξ ⊢ α : (F)B⇒ B= _ 7→ tt
α : F(B)⇒ B is constantly true, often writing α as tt(F)

(inputs: α and F)

Ξ ⊢ α1 : (F1)B⇒ B= _ 7→ tt Ξ ⊢ α2 : (F2)B⇒ B= _ 7→ tt

Ξ ⊢ inj1 α1||||| inj2 α2 : (F1⊕F2)B⇒ B= _ 7→ tt

Ξ ⊢ q⇒ t : (P̂)B⇒ B= _ 7→ tt

Ξ ⊢ (pk(dΞ ,⊤),q)⇒ t : (∃dΞ . Q⊗ P̂)B⇒ B= _ 7→ tt

Ξ ⊢ q⇒ t : (Î)B⇒ B= _ 7→ tt

Ξ ⊢ (a,q)⇒ t : (Id⊗ Î)B⇒ B= _ 7→ tt Ξ ⊢ ()⇒ tt : (I)B⇒ B= _ 7→ tt

Figure 6.10: Declarative well-formedness of functors and algebras
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simplify metatheory, in particular the interaction of subtyping/submeasuring and unrolling.

We sort algebra bodies only when a product ends at a unit (possible by design of the functor

grammar), and merely under the value-determined sublist of Ξ , which is always Ξ itself

because (in algebra WF) we always begin with empty Ξ and only add value-determined

variables. For simplicity, rule DeclAlgConst requires the type to be Q (so it can’t be an ∃),

forcing the use of the pack pattern (an implementation may want to relax this). The figure

also defines constantly true algebras, used later to handle empty lists of measurements in

subtyping.

α ◦ inj1 ⊜ α1
α ◦ inj2 ⊜ α2

The left pattern of algebra α (input) is α1 (output)
The right pattern of algebra α (input) is α2 (output)

· ◦ inj1 ⊜ ·
α ◦ inj1 ⊜ β

(inj2 p⇒ t |||||α)◦ inj1 ⊜ β

α ◦ inj1 ⊜ β

(inj1 p⇒ t |||||α)◦ inj1 ⊜ (p⇒ t |||||β )

· ◦ inj2 ⊜ ·
α ◦ inj2 ⊜ β

(inj1 p⇒ t |||||α)◦ inj2 ⊜ β

α ◦ inj2 ⊜ β

(inj2 p⇒ t |||||α)◦ inj2 ⊜ (p⇒ t |||||β )

Figure 6.11: Algebra pattern selection

By restricting the bodies of algebras to (value-determined) index terms t and the carriers

of our F-algebras to index sorts τ , we uphold the phase distinction: we can therefore safely

refine inductive types by folding them with algebras, and also manage decidable typing.

6.2 Properties of the Index Domain

The denotations of indices are defined in Fig. A.47. We prove (Lemma C.21) well-sorted

index terms and spines Ξ ⊢ t : τ and Ξ ; [ω] ⊢ u : κ denote functions JtK : JΞK→ JτK and

JuK : JΞK → JωK → JκK. For each Θ ctx, we define JΘK to be the set of index-level
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semantic substitutions (defined in this paragraph) {δ | ⊢ δ : Θ}. For example, J4+aK3/a =

7 and Jb = 1+0K1/b = {•} (that is, true) and Ja = 1K2/a = /0 (that is, false). An index-level

semantic substitution ⊢ δ : Θ (presupposes Θ ctx) assigns exactly one semantic index value

d to each index variable in dom(Θ) such that every proposition ϕ in Θ is true (written {•};

false is /0):

⊢ · : ·

⊢ δ : Θ d ∈ JτK a /∈ dom(Θ)

⊢ (δ ,d/a) : (Θ ,a : τ[,a Id])

⊢ δ : Θ JϕK
δ
= {•}

⊢ δ : (Θ ,ϕ)

A propositional validity or truth judgment Θ ⊢ ϕ true, which is a semantic entailment

relation, holds if ϕ is valid under Θ , that is, if ϕ is true under every interpretation of

variables in Θ such that all propositions in Θ are true. We say t and t ′ are logically equal

or SMT-equal under Θ if Θ ⊢ t = t ′ true (or equivalently Θ ⊢ t ′ = t true).

An index-level syntactic substitution σ is a list of index terms to be substituted for

index variables: σ ::= · | σ , t/a. The metaoperation [σ ]O , where O is some syntax with

free index variables, like an index term (or index spine), program term, or type, is parallel
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hereditary substitution7:

⟨t | ·⟩= t

⟨b | u⟩= b(u) if u ̸= ·

⟨λb. t | u0,u⟩= ⟨[u0/b]t | u⟩

⟨(t1, t2) | .k,u⟩= ⟨tk | u⟩ if k ∈ {1,2}

⟨a(t) | u⟩= ⟨a | t,u⟩

⟨t | u⟩ is undefined for inputs t and u not matching the above patterns

(⟨t | u⟩ is defined if Ξ ⊢ t : τ and Ξ ; [τ] ⊢ u : κ by Lemma 6.2)

[σ ](a(u)) =


u if ⟨σ(a) | [σ ]u⟩= u

a([σ ]u) if a /∈ dom(σ)

[σ ](a(u)) is undefined if a ∈ dom(σ) and ⟨σ(a) | [σ ]u⟩ is undefined

([σ ](a(u)) is defined if a ∈ dom(σ), Ξ0 ⊢ σ : Ξ and Ξ ; [τ] ⊢ u : κ by Lemma 6.2)

[σ ]a =


σ(a) if a ∈ dom(σ)

a else

[σ ](t1 + t2) = [σ ]t1 +[σ ]t2
...

[σ ]tt= tt

[σ ](¬ϕ) = ¬([σ ]ϕ)

...

7Previously[Economou et al., 2023], it was sequential substitution, but we found parallel substitution
simpler when we extended the system with multi-argument measures, which also necessitated making the
substitution hereditary.
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Index substitution is hereditary, that is, performs reduction as it substitutes, in order to

maintain the form of uninterpreted functions where a variable is always the head of an

application, and never a lambda term.

Syntactic substitutions (index-level) are typed (“sorted”) in a largely standard way. Be-

cause syntactic substitutions substitute terms that may have free variables, their judgment

form includes a context to the left of the turnstile, in contrast to semantic substitution:

Θ0 ⊢ · : ·

Θ0 ⊢ σ : Θ Θ0 ⊢ t : τ a /∈ dom(Θ)

Θ0 ⊢ (σ , t/a) : (Θ ,a÷ τ)

Θ0 ⊢ σ : Θ d÷Θ0 ⊢ t : τ a /∈ dom(Θ)

Θ0 ⊢ (σ , t/a) : (Θ ,a d÷ τ[,a Id])

Θ0 ⊢ σ : Θ Θ0 ⊢ [σ ]ϕ true

Θ0 ⊢ σ : (Θ ,ϕ)

What’s nonstandard (or new) is the third rule, which should be read as two rules:

Θ0 ⊢ σ : Θ d÷Θ0 ⊢ t : τ a /∈ dom(Θ)

Θ0 ⊢ (σ , t/a) : (Θ ,a d÷ τ)

Θ0 ⊢ σ : Θ d÷Θ0 ⊢ t : τ a /∈ dom(Θ)

Θ0 ⊢ (σ , t/a) : (Θ ,a d÷ τ ,a Id)

We require well-typed substitutions to substitute value-determined index terms, terms whose

free variables are value-determined, for value-determined index variables. As a conse-

quence, substitution preserves well-formedness.

Whenever we want to apply a substitution to a value-determined index, it should result

in a value-determined index, so that all its free variables are determined and hence still get
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subtracted in the key side premise of DeclTp∃ and DeclTp∀. Whenever a substitution is

applied to a value-determined index, it is first restricted to its value-determined part. Now

we can explain why d÷− also removes propositions: otherwise, Θ0 ⊢ σ : Θ would not imply

d÷Θ0 ⊢ σ↾d÷Θ
: d÷Θ . Consider

Θ = a d÷N,b÷N,c d÷N,b > a−1,b < a+1,b > c−1,b < c+1

We have Θ ⊢Θ/Θ : Θ ,a= c but a d÷N,c d÷N,b> a−1,b< a+1,b> c−1,b< c+1 is not

even a well-formed context because b is no longer in scope for any of the propositions, but

which are needed to verify a = c. To get this to work, we’d have to strengthen the coupling

of our system to the SMT logic, but in this thesis we attempt to maximize the looseness of

SMT coupling.

Derivations with logical contexts often need to be weakened in the metatheory, and for

this it’s convenient to define the following judgment. Figure 6.12 defines the judgment

Θ ⊆Θ ′ which presupposes Θ ctx and Θ ′ ctx and says Θ is a subcontext of Θ ′.

Θ ⊆Θ ′ Input logical context Θ is a subcontext of input Θ ′

· ⊆ ·
Θ ⊆Θ

′

Θ ⊆Θ
′,a : τ

Θ ⊆Θ
′

Θ ⊆Θ
′,ϕ

Θ ⊆Θ
′

Θ ,a÷ τ ⊆Θ
′,a÷ τ

Θ ,a d÷ τ ⊆Θ
′,a d÷ τ

Θ ,a d÷ τ ,a Id⊆Θ
′,a d÷ τ ,a Id

Θ ⊆Θ
′

Θ ,ϕ ⊆Θ
′,ϕ

Figure 6.12: Logical subcontext

The decidability of our system depends on the decidability of propositional validity.

The first-order fragment of our index domain is decidable [Barrett et al., 2009]. We use
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hereditary substitution to SMT-verify indices only in the first-order fragment. Our system

is parametric in the index domain, provided the latter has certain properties. In particu-

lar, propositional validity must satisfy the following basic properties required of a logical

theory (Θ ctx is logical context well-formedness).

• Reflexivity8: If Θ1,ϕ ,Θ2 ctx then Θ1,ϕ ,Θ2 ⊢ ϕ true.

• Transitivity9: If Θ1 ⊢ ψ true and Θ1,ψ ,Θ2 ⊢ ϕ true then Θ1,Θ2 ⊢ ϕ true.

• Weakening: If Θ ⊆Θ ′ and Θ ⊢ ϕ true then Θ ′ ⊢ ϕ true.

• Substitution: If Θ ⊢ ϕ true and Θ0 ⊢ σ : Θ then Θ0 ⊢ [σ ]ϕ true.

• Equivalence: The relation Θ ⊢ t1 = t2 true is an equivalence relation.

• Consistency: It is not the case that · ⊢ ff true.

We also assume that Ξ ⊢ t : τ [ξ ] (and the mutually recursive Ξ ; [τ] ⊢ t : κ) is decidable

and satisfies weakening and substitution. Further, the ξ output should be sound: if Ξ ⊢

ϕ : B [ξ ] and δ1,δ2 ∈ JΞK and JϕK
δ1
= {•} = JϕK

δ2
then for all D�a ∈ ξ if δ1↾D = δ2↾D

then δ1(a) = δ2(a).10 (For convenience, we define the judgment δ1↾ξ = δ2↾ξ by “for all

D�a ∈ ξ if δ1↾D = δ2↾D then δ1(a) = δ2(a)”.)

Our example index domain satisfies all these properties.

8Also called “Assumption”. It also looks like identity arrows in a category or the distinguished initial rule
in a sequent calculus. It’s not exactly what we usually call reflexivity (xRx) but this slight abuse (perhaps) of
language seems similar to that of “Transitivity”, discussed next footnote.

9Also called “Consequence”. It also looks like arrow composition in a (multi [Došen, 1997]) category or
a cut in a sequent calculus. Ripley [2017] rightly points out that “transitivity” is a bit of a misnomer here (it’s
not exactly xRy∧yRz⊃ xRz), but there seems to be a tradition for describing such a property of consequence
relations in this way, which I don’t mind following.

10We define δ↾D by ·↾D = · and (δ ,d/a)↾D =

{
δ↾D,d/a if a ∈D

δ↾D else
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Proving the substitution lemma at the index level is tricky due to the use of hereditary

substitution. It is mutually recursive with sorting the active part of hereditary substitution:

part (3) below.

Lemma 6.2 (Ix. Syntactic Substitution). (Lemma C.17)

(1) If Ξ ⊢ t : τ [ξt ] and Ξ0 ⊢ σ : Ξ then Ξ0 ⊢ [σ ]t : τ [d[σ ]ξt ]

(2) If Ξ ; [τ] ⊢ t : κ and Ξ0 ⊢ σ : Ξ then Ξ0; [τ] ⊢ [σ ]t : κ .

(3) If Ξ0 ⊢ u : ω and Ξ0; [ω] ⊢ t : κ then Ξ0 ⊢ ⟨u | t⟩ : κ .

Follow the link to the proof in the appendix to see the complicated induction metric.

It uses some properties of substitution on ξ like the fact that it distributes over set union.

Hereditary substitution also complexifies a needed distribution property and its induction

metric.

Lemma 6.3 (Ix. Barendregt). (Lemma C.20)

Assume Ξ0 ⊢ σ : Ξ1 and Ξ1,Ξ2 ⊢ σ ′ : Ξ ′

and dom(Ξ ′)∩dom(Ξ0) = /0 and dom(Ξ ′) ̸= /0.

(1) If Ξ1,Ξ ′,Ξ2 ⊢ t : τ then [σ ][σ ′]t = [[σ ]σ ′][σ ]t.

(2) If Ξ1,Ξ ′,Ξ2; [τ] ⊢ t : κ then [σ ][σ ′]t= [[σ ]σ ′][σ ]t.

(3) If Ξ1,Ξ2 ⊢ u : ω and Ξ1,Ξ2; [ω] ⊢ t : κ then [σ ]⟨u | t⟩= ⟨[σ ]u | [σ ]t⟩.

We often implicitly use this lemma and similar lemmas using it, like Lemma C.38

(Type/Functor Barendregt).

We also prove index level syntactic and semantic substitution commute.
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Lemma 6.4 (Index Substitution Soundness). (Lemma C.24)

Assume Ξ0; · ⊢ σ : Ξ ; · and ⊢ δ : Ξ0; ·.

(1) If Ξ ⊢ t : τ [ξt ] then J[σ ]tK
δ
= JtKJσK

δ
(for any derivation Ξ0 ⊢ [σ ]t : τ [d[σ ]ξt ]).

(2) If Ξ ; [τ] ⊢ t : κ then J[σ ]tK
δ
= JtKJσK

δ
(for any derivation Ξ0; [τ] ⊢ [σ ]t : κ).

(3) If Ξ0 ⊢ u : ω and Ξ0; [ω] ⊢ t : κ then J⟨u | t⟩K
δ
= JtK

δ
JuK

δ
.

This is necessary to prove the semantic soundness of syntactic substitution typing. That

is, a syntactic substitution denotes a semantic substitution: for example (at the index level),

Lemma C.25.

We prove type well-formedness is stable under syntactic substitution: Lemma C.51

(WF Syn. Substitution). This uses weakening and some technical lemmas pertaining to ξ .

6.3 Subtyping and Submeasuring

Declarative subtyping Θ ⊢ A ≤± B is defined in Fig. 6.13. Like in the PhD thesis of Dun-

field [2007b], our subtyping relation mixes syntax and semantics: it is based on syntax at

the level of types but semantics at the level of indices. An SMT solver should soundly and

completely implement semantic entailment.

Subtyping is polarized into mutually recursive positive Θ ⊢ P′ ≤+ P and negative Θ ⊢

N ≤− N′ relations. The design of inference rules for subtyping is guided by sequent calculi,

most clearly seen in the left and right rules pertaining to quantifiers (∃, ∀), asserting types

(∧), and guarding types (⊃). This is helpful to establish key properties such as reflexivity

and transitivity (viewing subtyping as a sequent system, we might instead say that the

structural identity and cut rules, respectively, are admissible). We interpret types as sets

with some additional structure (Chapter 7), but considering only the sets, we prove that a
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Θ ⊢M ′(F ′)≥M (F) Under Θ , measurement list M ′(F ′) covers M (F) (all inputs)

· ⊢ tt(F
′);F ′ ≤B tt(F);F

Θ ⊢M ′(F ′)≥ ·F

Θ ⊢M ′(F ′)≥M (F) (foldF ′ α
′)ν t′ =τ t ′ ∈M ′(F ′)

· ⊢ α
′;F ′ ≤τ α;F d÷Θ ; [τ] ⊢ t′ ≡ t : κ d÷Θ ⊢ t ′ = t true

Θ ⊢M ′(F ′)≥M (F),(foldF α)ν t=τ t

Θ ⊢ A≤± B Under input Θ , input type A is a subtype of input B

Θ ⊢ 1≤+ 1
≤+1

Θ ⊢ 0≤+ 0
≤+0

Θ ⊢ R1 ≤+ R′1 Θ ⊢ R2 ≤+ R′2
Θ ⊢ R1×R2 ≤+ R′1×R′2

≤+×
Θ ⊢ P1 ≤+ P′1 Θ ⊢ P2 ≤+ P′2

Θ ⊢ P1 +P2 ≤+ P′1 +P′2
≤++

Θ ,−→ϕ ⊢ R≤+ P

Θ ⊢ R∧−→ϕ ≤+ P
≤+∧L

Θ ,dΞ ⊢ Q≤+ P

Θ ⊢ ∃dΞ . Q≤+ P
≤+∃L

Θ ⊢ R≤+ R′ Θ ⊢ −→ϕ true

Θ ⊢ R≤+ R′∧−→ϕ
≤+∧R

d÷Θ ⊢ σ : dΞ Θ ⊢ R≤+ [σ ]Q

Θ ⊢ R≤+ ∃dΞ . Q
≤+∃R

Θ ⊢M ′(F ′)≥M (F)

Θ ⊢
{

ν : µF ′
∣∣ M ′(F ′)

}
≤+ {ν : µF |M (F)}

≤+µ

Θ ⊢ N ≤− N′

Θ ⊢ ↓N ≤+ ↓N′
≤+↓

Θ ⊢ P≤+ P′

Θ ⊢ ↑P≤− ↑P′
≤–↑

Θ ⊢ L′ ≤− L Θ ⊢ −→ϕ true

Θ ⊢ −→ϕ ⊃ L′ ≤− L
≤–⊃L

d÷Θ ⊢ σ : dΞ Θ ⊢ [σ ]M ≤− L

Θ ⊢ ∀dΞ . M ≤− L
≤–∀L

Θ ,−→ϕ ⊢ N ≤− L

Θ ⊢ N ≤− −→ϕ ⊃ L
≤–⊃R

Θ ,dΞ ⊢ N ≤− M

Θ ⊢ N ≤− ∀dΞ . M
≤–∀R

Θ ⊢ R′ ≤+ R Θ ⊢ L≤− L′

Θ ⊢ R→ L≤− R′→ L′
≤–→

Figure 6.13: Declarative subtyping
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subtype denotes a subset of the set denoted by any of its supertypes. That is, membership of

a (semantic) value in the subtype implies its membership in any supertype of the subtype.

We may also view subtyping as implication.

Consider the perfectly reasonable (but ungrammatical because the product types do not

have simple components) question of judgment a : N ⊢ 1× (1∧a = 3)≤+ (1∧a≥ 3)×1:

(ignoring the violation of grammar) subtyping for the first component requires verifying

a ≥ 3, which is impossible under no further logical assumptions. But from a logical per-

spective, 1×(1∧a = 3) implies a≥ 3. The idea is that, for a type in an assumptive position

(that is, a positive subtype or negative supertype), it does not matter which product com-

ponent (products are viewed conjunctively) or function argument (in our system, functions

must be fully applied to values) to which index data is attached. Economou et al. [2023]

made room for this kind of judgment via the obviated extraction judgment, but now we

require types to be simple wherever they need to be, via the type grammar and subtyp-

ing rules. In this example, the product types are ungrammatical because 1∧ a = 3 and

1∧a≥ 3 are not simple (that is, they are not of form R; rather, they have form Q∧ϕ) and

grammatically the factors of a product type must be simple.

According to our delay principle (mentioned in Ch. 3), in order to prevent backtracking,

we should delay index verification until as much information as possible has been collected

soundly. This is why we require the subtype of≤+∃R and≤+∧R (and, dually, the supertype

of ≤–∀L and ≤–⊃L) to be simple: that is, rules ≤+∃L and ≤+∧L (and, dually, ≤–∀R and

≤–⊃R) must have already been applied (if possible).

Rule ≤+∧R and its dual rule ≤–⊃L verify the validity of the attached propositions.

The notation Θ ⊢ −→ϕ true means Θ ⊢ ϕk true for all ϕk ∈ −→ϕ . In rule ≤+∃R and its dual rule

≤–∀L, we assume that we can conjure suitable index terms, the codomain of substitution σ
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(the terms being substituted); in practice (that is, algorithmically), we will have to introduce

existential variables, and then solve them.

For the unit type and the void type, rules ≤+1 and ≤+0 are simply reflexivity. Product

subtyping ≤+× is covariant subtyping of component types: a product type is a subtype of

another if each component of the former is a subtype of the respective component of the

latter. We have covariant shift rules ≤+↓ and ≤–↑. Function subtyping ≤–→ is standard:

contravariant (in moving from conclusion to premise, the subtyping direction flips) in the

function type’s domain and covariant (in moving from conclusion to premise, the subtyping

direction does not change) in the function type’s codomain.

Economou et al. [2023] used judgmental equivalence rather than subtyping premises in

rule≤++, but that is unnecessary. Rule≤++ is simply covariant subtyping of the respective

summands, which may or may not be simple. While this is an improvement, the rule is still

somewhat restrictive as written: for example, (1∧ff)+(1∧ff) logically implies (1+1)∧ff

but the former is not a subtype of the latter. (It may be possible to increase the power of

≤++ by extracting the strongest consequence of the subtype, but this is potential future

work.) Regardless, we don’t expect this to be very restrictive in practice because program-

mers tend not to work with sum types themselves, but rather algebraic inductive types (like

µF), and don’t need to directly compare, via subtyping, (the unrolling of) different such

types (such as the type of lists and the type of natural numbers). Further, unrolling never

outputs a sum type with (a positive, nonzero number of) outer assertions like in (1+1)∧ff.

Rule ≤+µ says {ν : µF ′ |M ′(F ′)} is a subtype of {ν : µF |M (F)} if M ′(F ′) covers

M (F): for each measurement (foldF α)ν t =τ t in M (F), there exists a measurement

(foldF ′ α
′)ν t′=τ t ′ in M ′(F ′) such that α ′ is a submeasure of α , that is, · ⊢α ′;F ′≤τ α;F ,

and the spines the measures are being applied to are SMT-equivalent, that is, d÷Θ ; [τ] ⊢ t′≡
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t : κ , and the results are SMT-equivalent, that is, d÷Θ ⊢ t ′ = t true.

Ξ ⊢ α;F ≤τ β ;G
Under Ξ , algebra α : F(τ)⇒ τ is a submeasure of β : G(τ)⇒ τ

(inputs: Ξ ,α ,F ,τ ,β ,G)

α ◦ inj1 ⊜ α1
α ◦ inj2 ⊜ α2

β ◦ inj1 ⊜ β1
β ◦ inj2 ⊜ β2

Ξ ⊢ α1;F1 ≤τ β1;G1
Ξ ⊢ α2;F2 ≤τ β2;G2

Ξ ⊢ α;F1⊕F2 ≤τ β ;G1⊕G2
Meas≤⊕

Ξ ,dΞ
′ ⊢ (⊤,q)⇒ t;Q⊗ P̂≤τ (o′,q′)⇒ t ′;P⊗ P̂′

Ξ ⊢ (pk(dΞ
′
,⊤),q)⇒ t;∃dΞ

′
. Q⊗ P̂≤τ (o′,q′)⇒ t ′;P⊗ P̂′

Meas≤∃L

d÷Ξ ⊢ σ : dΞ
′

Ξ ⊢ (⊤,q)⇒ t;Q⊗ P̂≤τ (⊤,q′)⇒ [σ ]t ′; [σ ]Q′⊗ P̂′

Ξ ⊢ (⊤,q)⇒ t;Q⊗ P̂≤τ (pk(dΞ
′
,⊤),q′)⇒ t ′;∃dΞ

′
. Q′⊗ P̂′

Meas≤∃R

Ξ ⊢ Q≤+ Q′ Ξ ⊢ q⇒ t; P̂≤τ q′⇒ t ′; P̂′

Ξ ⊢ (⊤,q)⇒ t;Q⊗ P̂≤τ (⊤,q′)⇒ t ′;Q′⊗ P̂′
Meas≤Const

Ξ ,a d÷ τ ,a Id ⊢ q⇒ t; Î ≤τ q′⇒ t ′; Î

Ξ ⊢ (a,q)⇒ t; Id⊗ Î ≤τ (a,q′)⇒ t ′; Id⊗ Î
Meas≤Id

d÷Ξ ⊢ u≡ t : τ

Ξ ⊢ ()⇒u; I ≤τ ()⇒ t; I
Meas≤I

Figure 6.14: Declarative submeasuring

Figure 6.14 defines the declarative submeasuring used by the≤+µ rule in subtyping. In

this definition of submeasuring, the functors must be structurally equivalent, but we allow

subtyping at constant functors; and parts of algebra bodies with free Id variables must be

structurally equivalent, but we allow SMT equivalence for the parts of the bodies without

free Id variables (see Fig. 6.15). Because we can pack indices in the bodies of algebras and

because we allow subtyping at constant functors, in rule Meas≤∃R we need to apply the

substitution σ to the (super)body t ′ as well as the (super)type Q′. That’s why we cannot
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Θ ⊢ u≡ t : τ Under Θ , index terms u and t are equivalent and have sort τ (inputs: Θ , u, t, τ)

Θ − Id ⊢ u = t true
Θ ⊢ u≡ t : κ

(a : τ) ∈Θ

Θ ⊢ a≡ a : τ

κ ∈ {N,Z} FV(u1,u2, t1, t2)⊈ dom(Θ − Id) Θ ⊢ u1 ≡ t1 : κ Θ ⊢ u2 ≡ t2 : κ

Θ ⊢ u1 +u2 ≡ t1 + t2 : κ

Θ ⊢ u1−u2 ≡ t1− t2 : κ

FV(u1,u2, t1, t2)⊈ dom(Θ − Id) or τ1× τ2 ̸= κ Θ ⊢ u1 ≡ t1 : τ1 Θ ⊢ u2 ≡ t2 : τ2

Θ ⊢ (u1,u2)≡ (t1, t2) : τ1× τ2

FV(u, t)⊈ dom((Θ ,a÷κ)− Id) Θ ,a÷κ ⊢ u≡ t : τ

Θ ⊢ λa.u≡ λa. t : κ ⇒ τ

FV(a,t,t′)⊈ dom(Θ − Id) (a d÷ τ) ∈Θ Θ ; [τ] ⊢ t≡ t′ : κ

Θ ⊢ a(t)≡ a(t′) : κ

FV(t1, t2, t ′1, t ′2)⊈ dom(Θ − Id)
Θ ⊢ t1 : κ Θ ⊢ t ′1 : κ Θ ⊢ t1 ≡ t ′1 : κ Θ ⊢ t2 ≡ t ′2 : κ

Θ ⊢ t1 = t2 ≡ t ′1 = t ′2 : B

FV(ϕ1,ϕ2,ψ1,ψ2)⊈ dom(Θ − Id) Θ ⊢ ϕ1 ≡ ψ1 : B Θ ⊢ ϕ2 ≡ ψ2 : B
Θ ⊢ ϕ1∧ϕ2 ≡ ψ1∧ψ2 : B
Θ ⊢ ϕ1∨ϕ2 ≡ ψ1∨ψ2 : B

FV(ϕ ,ψ)⊈ dom(Θ − Id) Θ ⊢ ϕ ≡ ψ : B
Θ ⊢ ¬ϕ ≡ ¬ψ : B

FV(t1, t2, t ′1, t ′2)⊈ dom(Θ − Id) κ ∈ {N,Z} Θ ⊢ t1 ≡ t ′1 : κ Θ ⊢ t2 ≡ t ′2 : κ

Θ ⊢ t1 ≤ t2 ≡ t ′1 ≤ t ′2 : B

Θ ; [τ] ⊢ t≡ t′ : κ
Under Θ , index spines t and t′ are equivalent and have sort τ returning κ

(Inputs: Θ ,τ ,t,t′; outputs: κ)

Θ ; [κ] ⊢ · ≡ · : κ

Θ ⊢ t0 ≡ t ′0 : κ0 Θ ; [τ] ⊢ t≡ t′ : κ

Θ ; [κ0⇒ τ] ⊢ t0,t≡ t ′0,t′ : κ

k ∈ {1,2} Θ ; [τk] ⊢ t≡ t′ : κ

Θ ; [τ1× τ2] ⊢ .k,t≡ .k,t′ : κ

Figure 6.15: Declarative index equivalence
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simply have the proposed (incorrect) rule

Ξ ⊢ P≤+ P′ Ξ ⊢ q⇒ t; P̂≤τ q′⇒ t ′; P̂′

Ξ ⊢ (⊤,q)⇒ t;P⊗ P̂≤τ (⊤,q′)⇒ t ′;P′⊗ P̂′

replacing the rules Meas≤∃L, Meas≤∃R, and Meas≤Const (as we wouldn’t have access

to the substitution we need to apply to t ′). We slightly disobey the delay principle (see

Ch. 3) in rule Meas≤∃R in that Q might not be simple, but these indices in σ are conjured

from nowhere anyway in the declarative system such that the subtyping in Meas≤Const

holds. We completely uphold the delay principle in the algorithmic system. Rule Meas≤Id

is paired with an implicit rule

Ξ ⊢ (a,q)⇒ t; Id⊗ Î ≤τ (a,q′)⇒ [a/a′]t ′; Id⊗ Î

Ξ ⊢ (a,q)⇒ t; Id⊗ Î ≤τ (a′,q′)⇒ t ′; Id⊗ Î

Rule Meas≤Id puts an Id variable hypothesis in the context, which is used by index equiv-

alence in rule Meas≤I in order to simplify the interaction between submeasuring and un-

rolling when it comes to proving subsumption admissibility, discussed in Sec. 6.4. Index
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equivalence (Fig. 6.15) uses the operation −− Id that subtracts Id variables from well-

formed logical contexts, defined as follows.

·− Id= ·

(Θ ,a÷ τ)− Id= (Θ − Id),a÷ τ

(Θ ,a d÷κ)− Id= (Θ − Id),a d÷κ

(Θ ,a d÷ τ ,a Id)− Id=Θ − Id

(Θ ,ϕ)− Id= (Θ − Id),ϕ

Anyway, this kind of submeasuring allows us to express that, for example, the type

of lists of nonzero natural numbers is a subtype of the type of lists of natural numbers

(and more). I anticipate this should also help with polymorphism and abstract refinements,

potential extensions of this thesis in future.

In the appendix, we prove that subtyping is reflexive (Lemma C.62) and transitive

(Lemma C.63). This relies on the reflexivity and transitivity of index equivalence among

other basic properties.

6.4 Unrolling

Given a : N, in our system, the type List P a of a-length lists of elements of type P

is defined as {ν : µListFP | (foldListFP lenalg)ν = a} where ListFP = I⊕ (P⊗ Id⊗ I) and

lenalg = inj1()⇒ 0||||| inj2 (⊤,(b,()))⇒ 1+b. Assuming we have suc : ∀a : N. Nat(a)→

↑Nat(1+a) for incrementing a (program-level) natural number by one, we define length
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in our system as follows:

rec length : (∀a : N.List(P)(a)→↑Nat(a)). λx. match x. {

into(x′)⇒match x′ {

inj1 ⟨⟩ ⇒ -- a = 0

returninto(inj1 ⟨⟩)

| inj2 ⟨_,⟨y,⟨⟩⟩⟩ ⇒ -- a = 1+a′ such that a′ is the length of y

let z′ = length(y);

let z = suc(z′);

returnz

}

}

Checking length against its type annotation, the lambda rule assumes x : List(P)(a) for

an arbitrary a : N. Upon matching x against the pattern into(x′), we know x′ should have

the unrolled type of List(P)(a). Ignoring refinements, we know that the erasure of this

unrolling should be a sum type where the left component represents the empty list and the

right component represents a head element together with a tail list. However, in order to

verify the refinement that length does what we intend, we need to know more about the

length index associated with x—that is, a—in the case where x is nil and in the case where

x is a cons cell. Namely, the unrolling of List(P)(a) should know that a = 0 when x is the

empty list, and that a = 1+a′ where a′ is the length of the tail of x when x is a nonempty

list. This is the role of the unrolling judgment, to output just what we need here (left of ⊜
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are inputs; right of ⊜ are outputs):

· ⊢ {ν : ListFP[µListFP] | lenalg(ListFP (foldListFP lenalg)ν) =N a}

⊜ (1∧a = 0)+
(
P× (∃a′ : N.

{
ν : µListFP

∣∣ (foldListFP lenalg)ν =N a′
}
× (1∧a = 1+a′))

)︸ ︷︷ ︸
R

That is, the type of P-lists of length a unrolls to either the unit type 1 (representing the

empty list) together with the fact that a is 0, or the product of P (the type of the head

element) and P-lists (representing the tail) of length a′ such that a′ is a minus one. The

above is actually syntactic sugar for the unrolling judgment we will present:

· ⊢ Hlenalg;ListFP;(foldListFP lenalg)ν ·=N aI⊜ ·;R

Refined inductive type unrolling Ξ ⊢ H
−→
β ;G;M (F)I ⊜ dΘ ;R, inspired by work in fi-

brational dependent type theory [Atkey et al., 2012], is defined in Fig. 6.16. The functor G

is called the principal functor and
−→
β the principal measures of the unrolling judgment; we

speak of “G-unrolling” (. . . outputs dΘ and R, say). The judgment Ξ ⊢ H
−→
β ;G;M (F)I ⊜

dΘ ;R presupposes that Ξ ⊢M (F)msmts[ξ ] and that

Ξ ⊢ βk : G(τk)⇒ τk

for all (βk,(foldF _)ν _ =τk _) ∈ zip(
−→
β )(M (F)). As in the list example above, unrolling is

always initiated with Ξ = · and G = F and M (F)⇝
−→
β where⇝ on measurements simply

extracts the algebras in the same order: here,⇝ is defined by ·F ⇝ ·

and M (F),(foldF αk)ν tk =τk tk⇝
−→
α ,αk if M (F)⇝−→α .
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Ξ ⊢ H
−→
β ;G;M (F)I⊜ dΘ ;R The “

−→
β ;G” part of unrolling {ν : µF |M (F)} (ins.: Ξ ,

−→
β ,G,M (F))

corresponds to the (from outputs dΘ and R) type ∃dΘ . (R∧ dΘ)

−→
β ◦ inj1 ⊜

−→
β1−→

β ◦ inj2 ⊜
−→
β2

Ξ ⊢ H
−→
β1;G1;M (F)I⊜ d

Θ 1;R1

Ξ ⊢ H
−→
β2;G2;M (F)I⊜ d

Θ 2;R2

Ξ ⊢ H
−→
β ;G1⊕G2;M (F)I⊜ ·;(∃dΘ 1. (R1∧ d

Θ 1))+(∃dΘ 2. (R2∧ d
Θ 2))

H⊕I

(dΞ
′
may be · and −→ϕ may be ·)

−→
β ⇝

−→
β
′

Ξ ,dΞ
′ ⊢ H
−→
β
′; P̂;M (F)I⊜ d

Θ 0;R0

Ξ ⊢ H
−→
β ;∃dΞ

′
. R′∧−→ϕ ⊗ P̂;M (F)I⊜ d

Ξ
′
,dΘ 0,−→ϕ ;R′×R0

HConstI

−−−→
a d÷ τ =−→a d÷M (F)

Ξ ,
−−−−−−→
a d÷ τ ,a Id ⊢ H

−−−→
q⇒ t ′; Î;M (F)I⊜ Ξ

′′,
−−→
ψ
′′;R′′

Ξ ;Ξ
′′;zip(−→a )(M (F)) ⊢

−−→
ψ
′′ ⇝ Ξ̌1;M1(F);

−→
ψ
′

Ξ ;Ξ
′′;zip(−→a )(M (F)) ⊢ R′′⇝ Ξ̌2;M2(F);R′

Ξ̌ = Ξ̌1∪ Ξ̌2 M ′(F) = M1(F)∪M2(F)

dom(Ξ ′)∩dom(Ξ ,
−−−→
a d÷ τ ,Ξ ′′, Ξ̌) = /0 ρ = Ξ

′/Ξ̌ is a variable renaming

Ξ ⊢ H
−−−−−−→
(a,q)⇒ t ′; Id⊗ Î;M (F)I⊜ Ξ

′,Ξ ′′, [ρ]
−→
ψ
′;
{

ν : µF
∣∣ [ρ]M ′(F)

}
× [ρ]R′

HIdI

−→
t ′ @M (F)⊜−→ϕ

Ξ ⊢ H
−−−−→
()⇒ t ′; I;M (F)I⊜−→ϕ ;1

HII

where

· ◦ injk ⊜ ·

−→
β ◦ injk ⊜

−→
β
′

βn ◦ injk ⊜ βnk
−→
β ,βn ◦ injk ⊜

−→
β
′ ,βnk

·⇝ ·

−→
β ⇝

−→
β
′

−→
β ,(pk(dΞ

′
,⊤),q)⇒ t ′⇝

−→
β
′ ,q⇒ t ′

−→
β ,(⊤,q)⇒ t ′⇝

−→
β
′ ,q⇒ t ′

·@ ·⊜ ·

−→u @M (F)⊜−→ϕ
(−→u , t ′)@ (M (F),(foldF α)ν t=τ t)⊜−→ϕ ,(t = ⟨t ′ | t⟩)

· d÷·F = ·
(−→a ,ak)

d÷ (M (F),(foldF αk)ν tk =τk tk) = (−→a d÷M (F)) ,ak
d÷ τk

Figure 6.16: Unrolling
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We define the following metaoperations to form types with logical contexts.

∃·. P = P

∃(Θ ,a÷κ). P = ∃Θ . P

∃(Θ ,a d÷κ). P = ∃Θ . (∃a d÷κ . P)

∃(Θ ,ϕ). P = ∃Θ . P

Q∧·= Q

Q∧ (Θ ,a : κ) = Q∧Θ

Q∧ (Θ ,ϕ) = (Q∧ϕ)∧Θ

∀·. N = N

∀(Θ ,a÷κ). N = ∀Θ . N

∀(Θ ,a d÷κ). N = ∀Θ . (∀a d÷κ . N)

∀(Θ ,ϕ). N = ∀Θ . N

· ⊃M = M

(Θ ,a : κ)⊃M =Θ ⊃M

(Θ ,ϕ)⊃M =Θ ⊃ (ϕ ⊃M)

H⊕I unrolls each branch and then sums the types formed (using the above metaoperations)

from the outputs. HConstI collects (in the logical context output together with the rest of

the unrolling context output) the indices of the constant functor, and outputs the product

of the underlying simple type R′ and the rest of the simple unrolling output type R0. HIdI

outputs the product of the original inductive type but with measurements given by the

recursive results Ξ ′ of the measures (over which we will existentially quantify), together

with the rest of the unrolling. The recursive results are calculated by a kind of hereditary

substitution on Î-unrolling outputs defined in Fig. 6.17, which we often call the liftapps

judgment (as in lifting the applications of Id variables). In particular, the judgment

Ξ ;Ξ
′;
−−−−−−−−−−−−→
(a,LαMF ν _ =τ _) ⊢ O ⇝ Ξ̌ ;M ′(F);O ′

replaces in O (an output of Î unrolling) each application of an Id variable ak ∈−→a to a spine

u with a fresh variable which is basically the result of the recursive fold applied to the spine
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u. We say “basically” because the same Id variable ak can be used in u11, and these also

get replaced in the same way, so the fresh variable is the result of the recursive fold applied

to the output u′ of the same judgment with input u. We keep track of which applications

were already lifted by a superscript on special variables ǎa(u) and then take the union of

the output contexts and measurements with these special variables to avoid redundancy.

In HIdI, we then discharge these special variables by renaming them (ρ) to fresh index

variables (normal ones). HII outputs the unit type together with the index term equalities

given by the (unrolled) measurements. We have set up these rules so that the output logical

context dΘ of P̂-unrolling can always be partitioned like so:

d
Ξ︸︷︷︸

result of Id var. apps.

, d
Ξ
′︸︷︷︸

existentials of constant functors

, −→
ψ︸︷︷︸

HII ctx. output

, −→
ϕ︸︷︷︸

assertions of constant functors

If our functor and algebra grammars were instead more direct, like those implicitly

used in the introduction (Chapter 1) and background (Chapter 3), and explicitly discussed

in Chapter 5, then we would have to modify the unrolling judgment, and it would need

more rules. We expect everything would still work, but we prefer having to consider fewer

rules when proving metatheory.

We prove that we can form (well-formed) types from refined unrolling outputs. The

proof is tedious, largely uninteresting, and requires proving auxilliary judgments transform

ξ nicely: Lemma C.54 (liftapps WF). In future work it would be a good idea to simplify the

liftapps judgment and related metatheory if possible. This is also intrinsically challenging

to simplify because there is much freedom in how one can define an algebra.

Lemma 6.5 (Unrolling Output WF). (Lemma C.55)

11Due to modularity, Id variables other than ak (from independent measures) cannot be used in u, hence
why the main premise of the third rule singles out the ak entry.



6.4. UNROLLING 197

Ξ ;Ξ ′;
−−−−−−−−−−−−→
(a,LαMF ν _ =τ _) ⊢ O ⇝ Ξ̌ ;M ′(F);O ′

Presupposes Fk = F and FV(Fk,αk) = /0 for all
(ak,LαkMFk ν _ =τk _) ∈

−−−−−−−−−−−−→
(a,LαMF ν _ =τ _);

and O is well-formed under Ξ ,Ξ ′,
−−−−−−→
a d÷ τ ,a Id

(Inputs: left of⇝; outputs: right of⇝)
ak /∈ FV(t) for all (ak,_) ∈

−−−−−−−−−−−−→
(a,LαMF ν _ =τ _)

Ξ ;Ξ
′;
−−−−−−−−−−−−→
(a,LαMF ν _ =τ _) ⊢ t⇝ ·; ·F ; t

(ak,LαkMF ν _ =τk _) ∈
−−−−−−−−−−−−→
(a,LαMF ν _ =τ _)

Ξ ;Ξ
′;
−−−−−−−−−−−−→
(a,LαMF ν _ =τ _) ⊢ ak⇝ ǎak(·)

k
d÷ τk;LαkMF ν ·=τk ǎak(·)

k ; ǎak(·)
k

(ak,LαkMF ν _ =τk _) ∈
−−−−−−−−−−−−→
(a,LαMF ν _ =τ _)

Ξ ;Ξ
′;(ak,LαkMF ν _ =τk _) ⊢ u⇝ Ξ̌ ;M ′(F);u′ d÷(Ξ ,Ξ ′, Ξ̌); [τk] ⊢ u′ : κ

Ξ ;Ξ
′;
−−−−−−−−−−−−→
(a,LαMF ν _ =τ _) ⊢ ak(u)⇝ Ξ̌ , ǎak(u

′)
k

d÷κ;M ′,LαkMF ν u′ =τk ǎak(u
′)

k ; ǎak(u
′)

k

ak ̸= b for all (ak,_) ∈
−−−−−−−−−−−−→
(a,LαMF ν _ =τ _)

Ξ ;Ξ
′;
−−−−−−−−−−−−→
(a,LαMF ν _ =τ _) ⊢ u⇝ Ξ̌ ;M ′;u′

Ξ ;Ξ
′;
−−−−−−−−−−−−→
(a,LαMF ν _ =τ _) ⊢ b(u)⇝ Ξ̌ ;M ′;b(u′)

op ∈ {¬−} Ξ ;Ξ
′;
−−−−−−−−−−−−→
(a,LαMF ν _ =τ _) ⊢ t⇝ Ξ̌ ;M ′; t ′

Ξ ;Ξ
′;
−−−−−−−−−−−−→
(a,LαMF ν _ =τ _) ⊢ op t⇝ Ξ̌ ;M ′;op t ′

op∈ {−+−,−−−,−=−,−≤−,−∧−,−∨−,(−,−)}
Ξ ;Ξ

′;
−−−−−−−−−−−−→
(a,LαMF ν _ =τ _) ⊢ t1⇝ Ξ̌1;M1; t ′1

Ξ ;Ξ
′;
−−−−−−−−−−−−→
(a,LαMF ν _ =τ _) ⊢ t2⇝ Ξ̌2;M2; t ′2

Ξ ;Ξ
′;
−−−−−−−−−−−−→
(a,LαMF ν _ =τ _) ⊢ t1 op t2⇝ Ξ̌1∪ Ξ̌2;M1∪M2; t ′1 op t ′2

Ξ ;Ξ
′;
−−−−−−−−−−−−→
(a,LαMF ν _ =τ _) ⊢ ·⇝ ·; ·F ; ·

Ξ ;Ξ
′;
−−−−−−−−−−−−→
(a,LαMF ν _ =τ _) ⊢ t⇝ Ξ̌ ;M ; t ′ Ξ ;Ξ

′;
−−−−−−−−−−−−→
(a,LαMF ν _ =τ _) ⊢ t⇝ Ξ̌

′;M ′;t′

Ξ ;Ξ
′;
−−−−−−−−−−−−→
(a,LαMF ν _ =τ _) ⊢ t,t⇝ Ξ̌ ∪ Ξ̌

′;M ∪M ′; t ′,t′

Ξ ;Ξ
′;
−−−−−−−−−−−−→
(a,LαMF ν _ =τ _) ⊢ t⇝ Ξ̌ ;M ′;t′

Ξ ;Ξ
′;
−−−−−−−−−−−−→
(a,LαMF ν _ =τ _) ⊢ .k,t⇝ Ξ̌ ;M ′; .k,t′

Ξ ;Ξ
′;
−−−−−−−−−−−−→
(a,LαMF ν _ =τ _) ⊢M0⇝ Ξ̌ ;M ;M ′

0

Ξ ;Ξ
′;
−−−−−−−−−−−−→
(a,LαMF ν _ =τ _) ⊢ R⇝ Ξ̌

′;M ′;R′

Ξ ;Ξ
′;
−−−−−−−−−−−−→
(a,LαMF ν _ =τ _) ⊢ {ν : µF |M0}×R⇝ Ξ̌ ∪ Ξ̌

′;M ∪M ′;
{

ν : µF
∣∣ M ′

0
}
×R′

Ξ ;Ξ
′;
−−−−−−−−−−−−→
(a,LαMF ν _ =τ _) ⊢ 1⇝ ·; ·F ;1 Ξ ;Ξ

′;
−−−−−−−−−−−−→
(a,LαMF ν _ =τ _) ⊢ ·F ⇝ ·; ·F ; ·F

Ξ ;Ξ
′;
−−−−−−−−−−−−→
(a,LαMF ν _ =τ _) ⊢M0⇝ Ξ̌ ;M ;M ′

0

Ξ ;Ξ
′;
−−−−−−−−−−−−→
(a,LαMF ν _ =τ _) ⊢ t⇝ Ξ̌

′;M ′;t′

Ξ ;Ξ
′;
−−−−−−−−−−−−→
(a,LαMF ν _ =τ _) ⊢M0,(foldF α)ν t=τ t⇝ Ξ̌ ∪ Ξ̌

′;M ∪M ′;M ′
0,(foldF α)ν t′ =τ t

Figure 6.17: A judgment (also called “liftapps”) used for HIdI
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If Ξ ⊢ H
−→
β ;G;M (F)I⊜ dΘ ;R and Ξ ⊢ G functor[ξG]

then there exists ξ such that Ξ ⊢ ∃dΘ . R∧ dΘ type[ξ ] and ξG ⊆ ξ .

Unrolling and subtyping There are four key lemmas for proving subsumption admissi-

bility in the refined ADT cases (see Sec. 6.6).

First, unrolling a sublist of measurements outputs a supertype:

Lemma 6.6 (Unroll Sublist). (Lemma C.78)

If Ξ ⊢ H
−→
β ;G;M (F)I⊜ dΘ ;R and zip(

−→
β ′)(M ′(F))⊆ zip(

−→
β )(M (F))

then Ξ ⊢ H
−→
β ′;G;M ′(F)I⊜ dΘ

′;R′. and Ξ ⊢ ∃dΘ . R∧ dΘ ≤+ ∃dΘ ′. R′∧ dΘ
′.

Second, unrolling a superlist of measurements outputs a subtype:

Lemma 6.7 (Unroll Superlist). (Lemma C.79)

If Ξ ⊢ H
−→
β ′;G;M ′(F)I⊜ dΘ

′;R′ and zip(
−→
β ′)(M ′(F))⊆ zip(

−→
β )(M (F))

then Ξ ⊢ H
−→
β ;G;M (F)I⊜ dΘ ;R and Ξ ⊢ ∃dΘ . R∧ dΘ ≤+ ∃dΘ ′. R′∧ dΘ

′.

These first two lemmas allow us to set up a situation involving the measurement cov-

ering judgment dΞ ⊢M ′(F)′ ≥≡ M (F) which simply means Θ ⊢M ′(F) ≥M (F) and

#M ′ = #M and M ′ and M are in the same order:

· ⊢ tt(F
′);F ′ ≡B tt(F);F

Θ ⊢ ·F ′ ≥≡ ·F

Θ ⊢M ′(F ′)≥≡M (F)

· ⊢ α
′;F ′ ≤τ α;F d÷Θ ; [τ] ⊢ t′ ≡ t : κ d÷Θ ⊢ t ′ = t true

Θ ⊢M ′(F ′),(foldF ′ α
′)ν t′ =τ t ′ ≥≡M (F),(foldF α)ν t=τ t

Third, unrolling supermeasures outputs a supertype:
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Lemma 6.8 (Unroll to Supertype). (Lemma C.75)

If dΞ ,Ξ ⊢ H
−→
β ;G;M (F)I⊜ dΘ ;R

and Ξ ⊢
−→
β ;G≤−→

τ

−→
β ′;G′ and dΞ ⊢M (F)≥≡M ′(F ′)

then there exist dΘ ′ and R′ such that dΞ ,Ξ ⊢ H
−→
β ′;G′;M ′(F ′)I⊜ dΘ

′;R′

and dΞ ,Ξ ⊢ ∃dΘ . R∧ dΘ ≤+ ∃dΘ ′. R′∧ dΘ
′.

Fourth and finally, unrolling submeasures outputs a subtype:

Lemma 6.9 (Unroll to Subtype). (Lemma C.77)

If dΞ ,Ξ ⊢ H
−→
β ;G;M (F)I⊜ dΘ ;R

and Ξ ⊢
−→
β ′;G′ ≤−→

τ

−→
β ;G and dΞ ⊢M ′(F ′)≥≡M (F)

then there exist dΘ ′ and R′ such that dΞ ,Ξ ⊢ H
−→
β ′;G′;M ′(F ′)I⊜ dΘ

′;R′

and dΞ ,Ξ ⊢ ∃dΘ ′. R′∧ dΘ
′ ≤+ ∃dΘ . R∧ dΘ .

We state these last two lemmas in the appendix with more technical information to

facilitate the proof. In particular, for Lemma 6.8 (Unroll to Supertype),

naming dΞ ,Ξ ⊢ ∃dΘ . R∧ dΘ ≤+ ∃dΘ ′. R′∧ dΘ
′ by D ,

if G = Î

then dΞ , d÷Ξ ,dΘ ⊢ dΘ − dΘ ≡ dΘ
′− dΘ

′ : B

and every subderivation dΞ , d÷Ξ ,dΘ ⊢M1 ≥M ′
1 that is a premise of ≤+µ in D

satisfies dΞ , d÷Ξ ,dΘ ⊢M1 ≥≡M ′
1,

and the ≤+∃R-witness dΞ , d÷Ξ ,dΘ ⊢ σ : dΘ ′ of D

is the identity substitution on dΘ
′ and dom(dΘ

′
) = dom(dΘ). (Similarly for Lemma 6.9

(Unroll to Subtype).) These facts greatly simplify the proof, and are the entire point of

Id variables and how they are used in submeasuring (in particular, submeasuring’s use of

index equivalence at leaves).
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Here the logical context equivalence judgment (Fig. 6.18) is helpful as we can always

swap out judgmentally equivalent logical contexts without changing the structure or height

of a derivation. (See, for example, appendix Lemma C.71 (Ctx. Equiv. Compat).) We

also use this judgment elsewhere in the metatheory (algorithmic completeness). Two log-

ical contexts are judgmentally equivalent under Θ if they have exactly the same variable

sortings (in the same list positions) and logically equivalent (under Θ ) propositions, in the

same order. The most interesting rule is the one for propositions, where, in the second

premise, we filter out propositions from Θ1 because we want each respective proposition to

be logically equivalent under the propositions (and indexes) of Θ , but variables in Θ1 (or

Θ2) may appear in ϕ1 (or ϕ2). (Note that it is equivalent to use Θ2 rather than Θ1 in the

second premise of the last rule.)

Θ ⊢Θ1 ≡Θ2 ctx Under input Θ , input logical contexts Θ1 and Θ2 are equivalent

Θ ⊢ · ≡ · ctx
Ctx≡Empty

Θ ⊢Θ1 ≡Θ2 ctx

Θ ⊢Θ1,a÷ τ ≡Θ2,a÷ τ ctx
Θ ⊢Θ1,a d÷ τ ≡Θ2,a d÷ τ ctx

Ctx≡Var

Θ ⊢Θ1 ≡Θ2 ctx Θ ,Θ1 ⊢ ϕ1 ≡ ϕ2 : B
Θ ⊢Θ1,ϕ1 ≡Θ2,ϕ2 ctx

Ctx≡Prop

Figure 6.18: Declarative logical context equivalence

6.5 Typing

Declarative bidirectional typing rules are given in Figs. 6.19, 6.20, and 6.21. By careful

design, guided by logical principles, all typing rules are syntax-directed. That is, when

deriving a conclusion, at most one rule is compatible with the syntax of the input program

term and the principal input type. All declarative typing judgments with input contexts Θ
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Θ ;Γ ⊢ h⇒ P Under inputs Θ and Γ , input head h synthesizes (output) type P

(x : R) ∈ Γ

Θ ;Γ ⊢ x⇒ R
Decl⇒Var

Θ ⊢ P type[ξP] Θ ;Γ ⊢ v⇐ P
Θ ;Γ ⊢ (v : P)⇒ P

Decl⇒ValAnnot

Θ ;Γ ⊢ g⇒↑P Under inputs Θ and Γ , input bound expression g synthesizes (output) type ↑P

Θ ;Γ ⊢ h⇒↓N Θ ;Γ ; [N] ⊢ s⇒↑P
Θ ;Γ ⊢ h(s)⇒↑P

Decl⇒App

Θ ⊢ P type[ξP] Θ ;Γ ⊢ e⇐↑P
Θ ;Γ ⊢ (e : ↑P)⇒↑P

Decl⇒ExpAnnot

Figure 6.19: Declarative head and bound expression type synthesis

and Γ presuppose Θ ctx and Θ ⊢ Γ ctx.

To manage the interaction between subtyping and program typing, types in a well-

formed (under Θ ) program context Γ must be simple. We maintain this invariant in

program typing by extracting indices before adding any variable typings to the context.

Extracting indices is made easy by the type grammar: any positive type can be written

uniquely (up to alpha-equivalence) as ∃dΞ . R∧−→ϕ (type R is simple); any negative type can

be written uniquely (up to alpha-equivalence) as ∀dΞ .−→ϕ ⊃ L (type L is simple).

The judgment Θ ;Γ ⊢ h⇒ P (Fig. 6.19) synthesizes the type P from the head h. This

judgment is synthesizing, because it is used in what are, from a Curry–Howard perspective,

kinds of cut rules: Decl⇒App and Decl⇐match, discussed later. The synthesized type is

the cut type, which does not appear in the conclusion of Decl⇒App or Decl⇐match. For

head variables, we look up the variable’s type in the context Γ (Decl⇒Var). For annotated

values, we synthesize the annotation (Decl⇒ValAnnot).
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Θ ;Γ ⊢ v⇐ P Under inputs Θ and Γ , input value v checks against input type P

(x : R′) ∈ Γ Θ ⊢ R′ ≤+ R
Θ ;Γ ⊢ x⇐ R

Decl⇐Var
Θ ;Γ ⊢ ⟨⟩ ⇐ 1

Decl⇐1

Θ ;Γ ⊢ v1⇐ R1 Θ ;Γ ⊢ v2⇐ R2

Θ ;Γ ⊢ ⟨v1,v2⟩ ⇐ R1×R2
Decl⇐×

Θ ;Γ ⊢ v⇐ Pk

Θ ;Γ ⊢ injk v⇐ P1 +P2
Decl⇐+k

d÷Θ ⊢ σ : dΞ Θ ;Γ ⊢ v⇐ [σ ]Q

Θ ;Γ ⊢ v⇐ (∃dΞ . Q)
Decl⇐∃

Θ ⊢ −→ϕ true Θ ;Γ ⊢ v⇐ R

Θ ;Γ ⊢ v⇐ R∧−→ϕ
Decl⇐∧

∄x. v =
−−−→iinjki

(−−−−→j⟨_ j,−⟩ x
)

d÷Θ ⊢ H−→iαi ;F ;M (F)I⊜ d
Θ ;R Θ ;Γ ⊢ v⇐∃dΘ . (R∧ d

Θ)

Θ ;Γ ⊢ into(v)⇐

ν : µF

∣∣∣∣∣∣∣
−−−−−−−−−−−−−−→i
(foldF αi)ν ti =τi ui︸ ︷︷ ︸

M (F)


Decl⇐µ

Θ ;Γ ⊢ e⇐ N
Θ ;Γ ⊢ {e}⇐ ↓N

Decl⇐↓

Θ ;Γ ⊢ e⇐ N Under inputs Θ and Γ , input expression e checks against input type N

Θ ;Γ ⊢ v⇐ P
Θ ;Γ ⊢ returnv⇐↑P

Decl⇐↑

Θ ;Γ ⊢ g⇒↑(∃dΞ . R∧−→ψ ) Θ ,dΞ ,−→ψ ;Γ ,x : R ⊢ e⇐ L
Θ ;Γ ⊢ let x=g; e⇐ L

Decl⇐let

Θ ;Γ ⊢ h⇒ P Θ ;Γ ; [P] ⊢ {ri⇒ ei}i∈I ⇐ L
Θ ;Γ ⊢match h {ri⇒ ei}i∈I ⇐ L

Decl⇐match

Θ ;Γ ,x : R ⊢ e⇐ L
Θ ;Γ ⊢ λx.e⇐ R→ L

Decl⇐λ
Θ ⊢ ff true

Θ ;Γ ⊢ unreachable⇐ L
Decl⇐Unreachable

Θ ⊢ ∀a d÷N,dΞ . M ≤− L
Θ ,a÷N;Γ ,x : ↓∀a′ d÷N,dΞ . a′ < a⊃ [a′/a]M ⊢ e⇐∀dΞ . M

Θ ;Γ ⊢ rec x : (∀a d÷N,dΞ . M). e⇐ L
Decl⇐rec

Θ ,dΞ ;Γ ⊢ e⇐M

Θ ;Γ ⊢ e⇐∀dΞ . M
Decl⇐∀

Θ ,−→ϕ ;Γ ⊢ e⇐ L

Θ ;Γ ⊢ e⇐−→ϕ ⊃ L
Decl⇐⊃

Figure 6.20: Declarative value and expression type checking
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Θ ;Γ ; [P] ⊢ {ri⇒ ei}i∈I ⇐ N
Under Θ and Γ , patterns ri match against type P
and branch expressions ei check against type N (all inputs)

Θ ,dΞ ;Γ ; [Q] ⊢ {ri⇒ ei}i∈I ⇐ N

Θ ;Γ ; [∃dΞ . Q] ⊢ {ri⇒ ei}i∈I ⇐ N
DeclMatch∃

Θ ,−→ϕ ;Γ ; [R] ⊢ {ri⇒ ei}i∈I ⇐ N

Θ ;Γ ; [R∧−→ϕ ] ⊢ {ri⇒ ei}i∈I ⇐ N
DeclMatch∧

Θ ;Γ ,x1 : R1,x2 : R2 ⊢ e⇐ N
Θ ;Γ ; [R1×R2] ⊢ {⟨x1,x2⟩⇒ e}⇐ N

DeclMatch×

Θ ,dΞ 1,−→ψ 1;Γ ,x1 : R1 ⊢ e1⇐ N Θ ,dΞ 2,−→ψ 2;Γ ,x2 : R2 ⊢ e2⇐ N

Θ ;Γ ; [(∃dΞ 1. R1∧−→ψ 1)+(∃dΞ 2. R2∧−→ψ 2)] ⊢ {inj1 x1⇒ e1 | inj2 x2⇒ e2}⇐ N
DeclMatch+

Θ ;Γ ; [0] ⊢ {}⇐ N
DeclMatch0

M (F)⇝−→α d÷Θ ⊢ H−→α ;F ;M (F)I⊜ d
Θ ;R Θ ,dΘ ;Γ ,x : R ⊢ e⇐ N

Θ ;Γ ; [{ν : µF |M (F)}] ⊢ {into(x)⇒ e}⇐ N
DeclMatchµ

Θ ;Γ ; [N] ⊢ s⇒↑P
Under inputs Θ and Γ ,
if a head of type ↓N (input: N) is applied to the spine s (input),
then it will return a result of type ↑P (output)

d÷Θ ⊢ σ : dΞ Θ ;Γ ; [[σ ]M] ⊢ s⇒↑P

Θ ;Γ ; [∀dΞ . M] ⊢ s⇒↑P
DeclSpine∀

Θ ⊢ −→ϕ true Θ ;Γ ; [L] ⊢ s⇒↑P

Θ ;Γ ; [−→ϕ ⊃ L] ⊢ s⇒↑P
DeclSpine⊃

Θ ;Γ ⊢ v⇐ R Θ ;Γ ; [L] ⊢ s⇒↑P
Θ ;Γ ; [R→ L] ⊢ v,s⇒↑P

DeclSpineApp

Θ ;Γ ; [↑P] ⊢ · ⇒ ↑P
DeclSpineNil

Figure 6.21: Declarative pattern matching and spine typing
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The judgment Θ ;Γ ⊢ g⇒ ↑P (Fig. 6.19) synthesizes the type ↑P from the bound ex-

pression g. Similarly to the synthesizing judgment for heads, this judgment is synthe-

sizing because it is used in a cut rule Decl⇐let (the synthesized type is again the cut

type). Bound expressions only synthesize an upshift because of their (lone) role in rule

Decl⇐let, discussed later. For an application of a head to a spine (Decl⇒App), we

first synthesize the head’s type (which must be a downshift), and then check the spine

against the thunked computation type, synthesizing the latter’s return type. (Function ap-

plications must always be fully applied, but we can simulate partial application via η-

expansion. For example, given x : P1 and h⇒ ↓(P1→ P2→↑Q), to partially apply h to

x we can write λy. let z=h(x,y); · · ·.) For annotated expressions, we synthesize the anno-

tation (Decl⇒ExpAnnot), which must be an upshift. If an e of type N is a function to be

applied (as a head to a spine; Decl⇒App) only if the guards of N can be verified and the

universally quantified indexes of N can be instantiated, then the programmer must annotate

it like so: (return{e} : ↑↓N). The two annotation rules have explicit type well-formedness

premises to emphasize that type annotations are provided by the programmer.

The judgment Θ ;Γ ⊢ v⇐ P (Fig. 6.20) checks the value v against the type P. From a

Curry–Howard perspective, this judgment corresponds to a right-focusing stage. Accord-

ing to rule Decl⇐∃, a value checks against an existential type if there is an index instan-

tiation it checks against (declaratively, indices are conjured, but algorithmically we will

have to solve for them). For example, as discussed in Sec. 6.1, checking the program value

one representing 1 against type ∃a : N.Nat(a) solves a to an index semantically equal to 1.

According to rule Decl⇐∧, a value checks against an asserting type if it the asserted propo-

sition ϕ holds (and the value checks against the type to which ϕ is connected). Instead of
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a general value type subsumption rule like

Θ ;Γ ⊢ v⇐ P′ Θ ⊢ P′ ≤+ P

Θ ;Γ ⊢ v⇐ P

we restrict the subsumption rule to simple (value) variables and simple supertypes, and

prove that subsumption is admissible (see Section 6.6). This is easier to implement effi-

ciently because the type checker would otherwise have to guess P′ (and possibly need to

backtrack), whereas Decl⇐Var need only look up the variable. Further, requiring the input

type of Decl⇐Var to be simple means that any top-level ∃ or ∧ constraints must be verified

before subtyping, eliminating nondeterminism of verifying these in subtyping or typing.

Rule Decl⇐µ checks the unrolled value against the unrolled inductive type. Its first

premise requires the unrolled value to not be in a certain form, namely it cannot be zero or

more injections applied to zero or more right-associative pairs where the rightmost factor

is a variable; this form should be excluded by elaboration from a surface language using

named constructors. For example, a unary constructor cons (first among two construc-

tors of an ADT) applied to a variable x would be elaborated to into(inj1 ⟨x,⟨⟩⟩), which is

permissible under this restriction (the rightmost factor is ⟨⟩). This restriction on unrolled

values greatly simplifies the typing algorithm and its metatheory.

Rule Decl⇐1 says ⟨⟩ checks against 1. Rule Decl⇐× says a pair checks against a

product if each pair component checks against its corresponding factor. Rule Decl⇐+k

says a value injected into the kth position checks against a sum if it can be checked against

the kth summand. Rule Decl⇐↓ checks the thunked expression against the computation

type N under the given thunk type ↓ N.

The judgment Θ ;Γ ⊢ e⇐ N (Fig. 6.20) checks the expression e against the type N.
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From a Curry–Howard perspective, this judgment is a right-inversion stage with stable

moments (Decl⇐let and Decl⇐match, which enter left- or right-focusing stages, respec-

tively). To eliminate Decl⇐∀ and Decl⇐⊃ nondeterminism the other (expression) rules

must check against a simple type L. This means Decl⇐∀ and Decl⇐⊃ must always be

applied first if possible.

All applications h(s) must be named and sequenced via Decl⇐let, which we may think

of as monadic binding, and is a key cut rule. Other computations—annotated returner ex-

pressions (e : ↑P)—must also be named and sequenced via Decl⇐let. It would not make

sense to allow arbitrary negative annotations because that would require verifying con-

straints and instantiating indexes that should only be done when the annotated expression

is applied, which does not occur in Decl⇐let itself.

Heads, that is, head variables and annotated values, can be pattern matched via rule

Decl⇐match. From a Curry–Howard perspective, Decl⇐match is a cut rule dual to the

cut rule Decl⇐let: the latter binds the result of a computation to a (sequenced) compu-

tation, whereas the former binds the deconstruction of a value to, and directs control flow

of, a computation. Rule Decl⇐λ is standard (beside the fact that the arrow type must

be simple). Rule Decl⇐rec requires an annotation that universally quantifies over the ar-

gument a that must be smaller at each recursive call, as dictated by its annotation in the

last premise: x : ↓
(
∀a′ : N. (a′ < a)⊃ [a′/a]M

)
only allows x to be used for a′ < a, ensur-

ing that refined recursive functions are well-founded (according to < on naturals). Rule

Decl⇐↑ checks that the value being returned has the positive type under the given returner

type (↑); this may be thought of as a monadic return operation. Rule Decl⇐Unreachable

says that unreachable checks against any type, provided the logical context is inconsistent;

for example, an impossible pattern in pattern matching extracts to an inconsistent context.
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Rule Decl⇐rec appears to handle only one termination metric, namely < on natural

numbers. But it actually handles more. For example, if either n1 or n2 get smaller in ap-

plying a function of type ∀n1,n2.M then ∀n,n1,n2.n = n1+n2 ⊃M suffices for Decl⇐rec.

However, we probably cannot simulate lexicographic induction. Adding further termina-

tion metrics should be straightforward but it would also take a lot of work and not be

terribly interesting. Regardless, it would be sensible to make the metric parametric in the

typing rule for (total) recursive expressions. It may be possible to use program-level ghost

parameters (like the one we used in the old mergesort example of Economou et al. [2023]

to express the sum of integers getting smaller) to simulate lexicographic induction but that

takes us away from the spirit of refinement types (programmers shouldn’t have to refactor

their code so much).

The judgment Θ ;Γ ; [P] ⊢ {ri⇒ ei}i∈I ⇐ N (Fig. 6.21) decomposes P, according to

patterns ri (if P ̸= ∧ or ∃, which have no computational content; if P = ∧ or ∃, the index

is put in logical context for use), and checks that each branch ei has type N. The rules

are straightforward. Indexes from matching on existential and asserting types are used, not

verified (as in value typechecking); we deconstruct heads, and to synthesize a type for a

head, its indexes must hold, so within the pattern matching stage itself we may assume and

use them. From a Curry–Howard perspective, this judgment corresponds to a left-inversion

stage. However, it is not strongly focused, that is, it does not decompose P eagerly and

as far as possible; therefore, “stage” might be slightly misleading. If our system were

more strongly focused, we would have nested patterns, at least for all positive types except

inductive types; it’s unclear how strong focusing on inductive types would work.

The judgment Θ ;Γ ; [N] ⊢ s⇒↑P (Fig. 6.21) checks the spine s against N, synthesizing

the return type ↑P. From a Curry–Howard perspective, this judgment corresponds to a
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left-focusing stage. The rules are straightforward: decompose the given N, checking index

constraints (DeclSpine∀ and DeclSpine⊃) and values (DeclSpineApp) until an upshift, the

return type, is synthesized (DeclSpineNil). Similarly to dual rule Decl⇐∃, the declarative

rule DeclSpine∀ conjures indices measuring a value, but in this case argument values of a

spine. For example, in applying a head of type ∀a : N.Nat(a)→↑Nat(a) to the spine with

program value one representing 1, we must instantiate a to an index semantically equal to 1;

we show how this works algorithmically in Sec. 8.5. All universal quantifiers (in the input

type of a spine judgment) are solvable algorithmically because they are value-determined.

6.6 Program Substitution

A key correctness result that we prove is a substitution lemma: substitution (of index terms

for index variables and program values for program variables) preserves typing. We now

extend the index-level syntactic substitutions (and the parallel substitution operation) in-

troduced in Chapter 6.2. A syntactic substitution σ ::= · | σ , t/a | σ ,v : P/x is essentially

a list of terms to be substituted for variables. Substitution application [σ ]− is a parallel

substitution metaoperation on types and terms. On program terms, it avoids full hereditary

substitution12 [Watkins et al., 2004, Pfenning, 2008] at the program level, in the sense that,

at head variables (note the h superscript in the Fig. 6.22 definition; we may elide h if clear

from context), an annotation is produced if the value and the head variable being replaced

by it are not equal—thereby modifying the syntax tree of the substitutee but not reducing it.

Otherwise, substitution is standard (homomorphic application) and does not use the value’s

associated type given in σ : see Fig. 6.22.

In the definition given in Fig. 6.22, an annotation is not produced if v = x so that x : P/x

12Typically, hereditary substitution reduces terms after substitution, modifying the syntax tree.
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[σ ]hx =

{
x if x /∈ dom(σ) or σ(x) = (x : P)
σ(x) else

[σ ]h(v : P) = ([σ ]v : [⌊σ⌋]P)

[σ ](h(s)) = ([σ ]hh)([σ ]s)
[σ ](e : ↑P) = ([σ ]e : [⌊σ⌋](↑P))

[σ ]x =

{
x if x /∈ dom(σ)

v if σ(x) = (v : P)

[σ ]⟨v1,v2⟩= ⟨[σ ]v1, [σ ]v2⟩
...

[σ ](match h {ri⇒ ei}i∈I) = match
(
[σ ]hh

)
([σ ]{ri⇒ ei}i∈I)

...
[σ ](λx.e) = λx. [σ ]e

[σ ](rec x : (∀a : N. N). e) = rec x : [⌊σ⌋](∀a : N. N). [σ ]e
...

Figure 6.22: Definition of syntactic substitution on program terms

is always an identity substitution: that is, [_,x : P/x,_]hx = x (the program terms x and

(x : P) are syntactically distinct). As usual, we assume variables are alpha-renamed to

avoid capture by substitution.

The judgment Θ0;Γ0 ⊢ σ : Θ ;Γ (appendix Fig. A.19) presupposes the well-formedness

of all the contexts, and means that, under Θ0 and Γ0, we know σ is a substitution of index

terms and program values for variables in Θ and Γ , respectively. The key rule of this

judgment is for program value entries (the three elided rules are similar to the three rules

for syntactic substitution typing at index level, found in Sec. 6.2, but adds program contexts
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Γ where appropriate):

Θ0;Γ0 ⊢ σ : Θ ;Γ Θ0;Γ0 ⊢ v⇐ [⌊σ⌋]P x /∈ dom(Γ )

Θ0;Γ0 ⊢ (σ ,v : P/x) : Θ ;Γ ,x : P

Economou et al. [2023] applied σ to v in the premise because their substitution was ap-

plied sequentially, but now substitution is parallel so this is unnecessary. The value v may

mention variables in dom(Γ0) and dom(Θ0), and P may mention variables in dom(Θ). The

metaoperation ⌊−⌋ filters out program variable entries (program variables cannot appear in

types, functors, algebras or indexes).

That substitution respects typing is an important correctness property of the type sys-

tem. All six parts are mutually recursive.

Lemma 6.10 (Syntactic Substitution). (Lemma C.82 in appendix)

Assume Θ0;Γ0 ⊢ σ : Θ ;Γ .

(1) If Θ ;Γ ⊢ h⇒ P

then there exists P′ such that Θ0 ⊢ P′ ≤+ [⌊σ⌋]P and Θ0;Γ0 ⊢ [σ ]hh⇒ P′.

Moreover, either (a) P′ = [⌊σ⌋]P or (b) P′ = R for some R.

(2) If Θ ;Γ ⊢ g⇒↑P

then there exists P′ such that Θ0 ⊢ ↑P′ ≤− [⌊σ⌋]↑P and Θ0;Γ0 ⊢ [σ ]g⇒↑P′.

(3) If Θ ;Γ ⊢ v⇐ P then Θ0;Γ0 ⊢ [σ ]v⇐ [⌊σ⌋]P.

(4) If Θ ;Γ ⊢ e⇐ N then Θ0;Γ0 ⊢ [σ ]e⇐ [⌊σ⌋]N.

(5) If Θ ;Γ ; [P] ⊢ {ri⇒ ei}i∈I ⇐ N

then Θ0;Γ0; [[⌊σ⌋]P] ⊢ [σ ]{ri⇒ ei}i∈I ⇐ [⌊σ⌋]N.
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(6) If Θ ;Γ ; [N] ⊢ s⇒↑P then Θ0;Γ0; [[⌊σ⌋]N] ⊢ [σ ]s⇒ [⌊σ⌋]↑P.

In part (1), if substitution creates a head variable with stronger type, then the stronger

type P′ is synthesized. The proof relies on other structural properties such as weakening. It

also relies on subsumption admissibility, which captures what we mean by “stronger type”.

All parts are mutually recursive. The proof of subsumption admissibility uses previously

mentioned lemmas 6.9, 6.7, 6.6, 6.8, and on the interaction of subtyping and unrolling.

The former two for checking types against inductive values and, dually, the latter two for

pattern-matching on inductive values.

Lemma 6.11 (Subsumption Admissibility). (Lemma C.80 in appendix)

Assume Θ ⊢ Γ ′ ≤+ Γ . Then:

(1) If Θ ;Γ ⊢ h⇒ P

then there exists P′ such that Θ ⊢ P′ ≤+ P and Θ ;Γ ′ ⊢ h⇒ P′.

Moreover, either (a) P′ = P or (b) P′ = R for some R.

(2) If Θ ;Γ ⊢ g⇒↑P

then there exists P′ such that Θ ⊢ ↑P′ ≤− ↑P and Θ ;Γ ′ ⊢ g⇒↑P′.

(3) If Θ ;Γ ⊢ v⇐ P and Θ ⊢ P≤+ P′, then Θ ;Γ ′ ⊢ v⇐ P′.

(4) If Θ ;Γ ⊢ e⇐ N and Θ ⊢ N ≤− N′, then Θ ;Γ ′ ⊢ e⇐ N′.

(5) If Θ ;Γ ; [P] ⊢ {ri⇒ ei}i∈I ⇐ N and Θ ⊢ N ≤− N′ and Θ ⊢ P′ ≤+ P

then Θ ;Γ ′; [P′] ⊢ {ri⇒ ei}i∈I ⇐ N′.

(6) If Θ ;Γ ; [N] ⊢ s⇒↑P and Θ ⊢ N′ ≤− N

then there exists P′ such that Θ ⊢ ↑P′ ≤− ↑P and Θ ;Γ ′; [N′] ⊢ s⇒↑P′.
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Subtypes are stronger than supertypes. That is, if we can check a value against a type,

then we know that it also checks against any of the type’s supertypes; similarly for expres-

sions. Pattern matching is similar, but it also says we can match on a stronger type. A head

or bound expression can synthesize a stronger type under a stronger context. Similarly,

with a stronger input type, a spine can synthesize a stronger return type.
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Chapter 7

Semantics and Typing Soundness

We prove type (and substitution) soundness of the declarative (refined) system with respect

to a domain-theoretic denotational semantics. Refined typing soundness implies the refined

system’s totality and logical consistency.

Refinement type systems refine already-given type systems, and the soundness of the

former depends on that of the latter [Melliès and Zeilberger, 2015]. Thus, the semantics of

our refined system is defined in terms of that of its underlying, unrefined system, which we

discussed in Chapter 5.

The category rCpo of refined cpos has (D,R) as objects (corresponding to value types)

where D is a cpo and R ⊆ D (this is a slight abuse of notation: we mean R is a subset

of the underlying set of D which is a set equipped with a complete partial order), and a

morphism (corresponding to a refined value typing derivation) f : (D1,R1)→ (D2,R2) in

rCpo is a morphism f : D1 → D2 in Cpo such that f (R1) ⊆ R2. The category rCppo is

defined similarly to rCpo. A refined functor applies its erasure to D and the refined functor

itself to R; and its application to morphisms is just the application of its erasure. Our refine-

ment system semantically corresponds to an adjunction of lift and thunk functors between
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subcategories R and R of rCpo and rCppo respectively; the unrefined system also seman-

tically corresponds to an adjunction of lift and thunk functors but between subcategories U

and U of Cpo and Cppo respectively (R and U stand for “refined” and “unrefined” at value

level; when underlined, at computation level). In terms of Melliès and Zeilberger [2015]

our refined system can be described by the commutative diagram

R rCpo

R rCppo

U Cpo

U Cppo

where the functors going straight down forget the refinement subset R and the diagonal

arrows are pairs of adjoint lift and thunk functors where, as usual, lifting is left adjoint.

Indexes A sort τ denotes (JτK ,⊑JτK) where ⊑JτK = {(d,d) | d ∈ JτK} is the discrete or-

der, which is a cpo.

Semantic Substitution We introduced semantic substitutions δ (at the index level) when

discussing propositional validity (Sec. 6.2). Here, they are extended in the obvious way to

semantic program values by adding the rule

⊢ δ : Θ ;Γ V ∈ JPK⌊δ⌋ x /∈ dom(Γ )

⊢ (δ ,V/x) : Θ ;Γ ,x : P



215

(where ⌊−⌋ filters out program entries, which is not strictly necessary here, but it empha-

sizes that no program variables occur in types) and modifying the other rules:

⊢ · : ·; ·

⊢ δ : Θ ;Γ d ∈ JτK a /∈ dom(Θ)

⊢ δ ,d/a : Θ ,a : τ[,a Id];Γ

⊢ δ : Θ ;Γ JϕK
δ
= {•}

⊢ δ : Θ ,ϕ;Γ

Notation: we define JΘ ;Γ K = {δ | ⊢ δ : Θ ;Γ } and JΘK = JΘ ; ·K and JΓ K = J·;Γ K.

Index erasure The index erasure metaoperation |−| (Figs. 7.1, 7.2, and 7.3) erases all

indexes from well-formed (refined) types, well-typed program terms (which can have type

annotations, but those do not affect program denotation), and (well-typed) syntactic and

semantic substitutions.

|1|= 1
|R×R′|= |R|× |R′|

|0|= 0
|P+P′|= |P|+ |P′|
|↓N|= ↓|N|

|{ν : µF |M (F)}|= µ|F |
|∃a : κ . P|= |P|
|Q∧ϕ|= |Q|
|R→ L|= |R| → |L|
|↑P|= ↑|P|

|∀a : κ . N|= |N|
|ϕ ⊃M|= |M|

|F⊕G|= |F |⊕ |G|
|I|= I

|B̂⊗ P̂|= |B̂|⊗ |P̂|
|P|= |P|
|Id|= Id

Figure 7.1: Index erasure of refined types and functors to unrefined types and functors

We use many facts about erasure to prove refined type/substitution soundness (appendix

lemmas):
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|x|= x
|(v : P)|= (|v| : |P|)
|h(s)|= |h|(|s|)

|(e : N)|= (|e| : |N|)
|·|= ·
|v,s|= |v|, |s|
|⟨⟩|= ⟨⟩

|⟨v1,v2⟩|= ⟨|v1|, |v2|⟩
|inj1 v|= inj1 |v|
|inj2 v|= inj2 |v|
|into(v)|= into(|v|)
|{e}|= {|e|}

|returnv|= return |v|
|let x=g; e|= let x= |g|; |e|

|match h {ri⇒ ei}i∈I|= match |h| |{ri⇒ ei}i∈I|
|λx.e|= λx. |e|

|rec x : (∀a : N. N). e|= rec x. |e|
|Θ ;Γ ⊢ unreachable⇐ L|= diverge|L|

|{ri⇒ ei}i∈I|= {ri⇒|ei|}i∈I

Figure 7.2: Index erasure of refined program terms

|·|= ·
|σ , t/a|= |σ |

|σ ,v : R/x|= |σ |, |v| : |R|/x

|·|= ·
|δ ,d/a|= |δ |
|δ ,V/x|= |δ |,V/x

Figure 7.3: Index erasure of substitution
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• Refined types and functors denote subsets of what their erasures denote: Lemma

D.26 (Refinement Subset of Erasure).

• Refined and unrefined functor applications agree on refined domain: Lemma D.27

(Refined and Unrefined fmap Agree).

• Index substitution does not affect result of erasure: Lemma D.28 (Erasure Subst.

Invariant).

• The erasure of both types appearing in subtyping judgments results in equal (unre-

fined) types: Lemma D.29 (Subtyping Erases to Equality).

• Refined unrolling and typing are sound with respect to their erasure: Lemma D.30

(Unrolling Erasure), Lemma D.31 (Erasure of Typing), and Lemma D.33 (Erasure of

Substitution Typing).

• Erasure commutes with syntactic and semantic substitution: Lemma D.32 (Erasure

and Substitution Commute) and Lemma D.34 (|−| and J−K Commute).

Types, functors, algebras, and folds The denotations of refined types and functors are

defined as logical subsets of the denotations of their erasures (together with their erasure

denotations themselves). They are defined mutually with the denotations of well-formed

algebras.

In appendix Fig. A.49, we recursively define the denotations of well-formed types Ξ ⊢

A type[_]. This judgment is mutually recursive with functor and algebra well-formedness,

discussed soon. We prove (refined) types denote refined cp(p)os, (refined) functors denote

refined cpos, and (refined) algebras denote algebras over (refined) functors. By a refined

cp(p)o we mean a cp(p)o together with a subset of it.
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We briefly discuss a few of the cases of the denotation of a (refined) type, well-formed

under Ξ , at δ ∈ JΞK. The denotation of an asserting type is the set of refined values such

that the asserted index proposition holds (read {•} as true and /0 as false):

JQ∧ϕK
δ
= {V ∈ J|Q|K |V ∈ JQK

δ
and JϕK

δ
= {•}}

Existential and universal types denote elements of their erasure such that the relevant index

quantification holds:

J∃a : τ . PK
δ
=
{

V ∈ J|P|K
∣∣∣ ∃d ∈ JτK.V ∈ JPK

δ ,d/a

}
J∀a : τ . NK

δ
=
{

f ∈ J|N|K
∣∣∣ ∀d ∈ JτK. f ∈ JNK

δ ,d/a

}

Guarding types denote elements of their erasure such that they are also in the refined type

being guarded if the guard holds ({•} means true):

Jϕ ⊃MK
δ
= { f ∈ J|M|K | if JϕK

δ
= {•} then f ∈ JMK

δ
}

The denotation of refined function types JR→ LK
δ

is not the set JRK
δ
⇒ JLK

δ
of (continu-

ous) functions from refined R-values to refined L-values; if it were, then typing soundness

would break:

J·; · ⊢ λx.returnx⇐ ((1∧ff)+(1∧ff))→↑1K· = J|λx.returnx|K·

= Jλx.returnxK·

= (y 7→ inj1 y)
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which is not in the empty set ( /0⇒{•}⊎{⊥↑}). Instead, the denotation of a refined function

type is a set

{ f ∈ J|R→ L|K | ∀V ∈ JRK
δ

. f (V ) ∈ JLK
δ
}

of unrefined (continuous) functions that take refined values to refined values. The denota-

tion of refined upshifts enforces termination (if refined typing soundness holds, and we will

see it does):

J↑PK
δ
= {inj1V |V ∈ JPK

δ
}

Note that divergence inj2⊥↑ is not in the set J↑PK
δ

.

In Fig. A.50, we recursively define the denotations of well-formed refined functors

F and algebras α (mutually with well-formed refined types, discussed previously). The

main difference between refined and unrefined functors is that in refined functors, constant

functors produce subsets of their erasure. Is is straightforward to prove all functors, refined

or otherwise, (forgetting the partial order structure) denote endofunctors on the category of

sets and functions.

As with our unrefined functors, we prove (Lemma E.10) our refined functors denote

functors with a fixed point: JFK
δ
(µ JFK

δ
) = µ JFK

δ
. Moreover, µ JFK

δ
satisfies a recur-

sion principle such that we can recursively define measures on µ JFK
δ

via JFK
δ

-algebras

(discussed next).

Categorically, given an endofunctor F , an F-algebra is an evaluator map α : F(τ)→ τ

for some carrier set τ . We may think of this in terms of elementary algebra: we form

algebraic expressions with F and evaluate them with α . A morphism f from algebra α :

F(τ)→ τ to algebra β : F(τ ′)→ τ ′ is a morphism f : τ→ τ ′ such that f ◦α = β ◦ (F( f )).
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If an endofunctor F has an initial1 algebra into : F(µF)→ µF , then it has a recursion

principle. By the recursion principle for µF , we can define a recursive function from µF

to τ by folding µF with an F-algebra α : F(τ)→ τ like so:

(foldF α) : µF → τ

(foldF α) v = α

((
fmap F (foldF α)

) (
out(v)

))
where out : µF→ F(µF), which by Lambek’s lemma exists and is inverse to into, embeds

(semantic) inductive values into the unrolling of the (semantic) inductive type (we usually

elide fmap). Conveniently, in our system’s semantics, out is always d 7→ d, and we almost

never explicitly mention it. Syntactic values v in our system must be rolled into induc-

tive types—into(v)—and this is also how (syntactic) inductive values are pattern-matched

(“applying out” to into(v)), but into(−) conveniently also denotes d 7→ d (our into) and

we also almost never explicitly mention into.

We specify inductive types abstractly as sums of products so that they denote polyno-

mial endofunctors more directly. Polynomial endofunctors always have a “least” (initial)

fixed point2, and hence specify inductive types, which have a recursion principle. For ex-

ample, we specify (modulo the unrolling simplification) len : ListFA(N)⇒ N (Chapter 1)

by the (syntactic) algebra

α = inj1()⇒0||||| inj2 (⊤,a)⇒1+a

1An object X in a category C is initial if for every object Y in C, there exists a unique morphism X → Y
in C. Algebras and their homomorphisms form a category.

2This is not necessarily the case for all endofunctors. Therefore, not all endofunctors can be said to
specify an inductive type. For example, consider the powerset functor (assuming a conventional logic—in an
unconventional logic it is possible to prove the universal set equals its powerset [Petersen, 2023]).
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which denotes the (semantic) algebra

JαK : JListFAK (N)︸ ︷︷ ︸
1⊎(JAK×N)

→ N

defined by JαK = [• 7→ 0,(a,n) 7→ 1+n]. By initiality (the recursion principle), there is a

unique function

foldJListFAK JαK : µ JListFAK→ N

such that foldJListFAK JαK = JαK ◦ (JFK (foldJListFAK JαK)), which semantically captures len

(Chapter 1). Lemma E.9 (Semantic Fold) proves this equality for any F and α .

In our system, a well-formed refined ADT {ν : µF |M (F)} denotes

{V ∈ µ J|F |K |V ∈ µ JFK· and JM (F)K
δ

V = {•}}

where JM (F)K
δ

V is true (that is, {•}) if and only if

JtK
δ ′ ((foldJFK· JαK·)V ) = JtK

δ ′ for all (foldF α)ν t=τ t ∈M (F)

where δ ′ = δ↾d÷Ξ
.

A well-formed algebra Ξ ⊢ α : F(τ)⇒ τ denotes a dependent function

∏
δ∈JΞK

JFK
δ
JτK→ JτK

The definition (appendix Fig. A.50) is mostly standard, but the unit and pack cases could

use some explanation. To emphasize that the bodies of algebras must be value-determined,
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we restrict δ to d÷Ξ at algebra bodies:

JΞ ⊢ ()⇒ t : I(τ)⇒ τK
δ
• = Jd÷Ξ ⊢ t : τK

δ↾d÷Ξ

This is not strictly necessary, though, because weakening a derivation does not change

its denotation (see, for example, Lemma E.5 (J−K Weakening Invariant); we often use

such weakening denotation invariance lemmas implicitly). The most interesting part of the

definition concerns index packing in measures:

r
Ξ ⊢ (pk(dΞ

′
,⊤),q)⇒ t : (∃dΞ

′
. Q⊗ P̂)(τ)⇒ τ

z

δ
(V1,V2) =

r
Ξ ,dΞ

′ ⊢ (⊤,q)⇒ t : (Q⊗ P̂)(τ)⇒ τ

z

(δ ,δ ′)
(V1,V2)

where δ ′ ∈
r
dΞ
′
z

satisfies V1 ∈ JQK
δ ,δ ′

The pack clause lets us bind the witness δ ′ of dΞ
′ in the existential type ∃dΞ

′. Q to

dom(dΞ
′
) in the body t of the algebra. We know δ ′ exists since V1 ∈

r
∃dΞ

′. Q
z

δ
, but it is

not immediate that it is unique. However, we prove δ ′ is uniquely determined by V1. We

call this property the soundness of value-determined indexes: syntactic value-determined

indices are determined uniquely by semantic values. It is decomposed into two lemmas,

the soundness of value-determined dependencies (the ξ outputs of well-formedness judg-

ments) and the dependency agreement closure.

We define dependency agreement δ1↾ξ = δ2↾ξ (that is δ1 and δ2 agree at dependencies

ξ ) by for all B�a ∈ ξ if δ1↾B = δ2↾B then δ1(a) = δ2(a).

Lemma 7.1 (Soundness of Value-Determined Dependencies). (Lemma E.17)

Assume ⊢ δ1 : Ξ and δ2 : Ξ .

(1) If Ξ ⊢ P type[ξ ] and V ∈ JPK
δ1

and V ∈ JPK
δ2

then δ1↾ξ = δ2↾ξ .
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(2) If Ξ ⊢F functor[ξ ] and X1 and X2 are sets and V ∈ JF K
δ1

X1 and V ∈ JF K
δ2

X2

then δ1↾ξ = δ2↾ξ .

(3) If Ξ ⊢M (F)msmts[ξ ] and V ∈ µ JFK· and JM (F)K
δ1

V = {•}= JM (F)K
δ2

V

then δ1↾ξ = δ2↾ξ .

If according to ξ the index a depends on C the first part says a is uniquely determined

by the semantic value V if the indices in C are uniquely determined. The next lemma shows

dependency agreement interacts with dependency closure as expected. If δ1 and δ2 agree

at ξ and δ1 and δ2 agree at dΞ
′ and dΞ 0 is value-determined under ξ assuming dΞ

′ is

value-determined then δ1 and δ2 agree at dΞ 0.

Lemma 7.2 (Dependency Agreement Closure). (Lemma E.15)

If δ1↾ξ = δ2↾ξ and δ1↾dΞ
′ = δ2↾dΞ

′ and ξ − dΞ
′ ⊢ dΞ 0 det

then δ1↾dΞ 0
= δ2↾dΞ 0

.

We only need these two lemmas in situations involving measures, so that the Ξ of

the first part (the type part) of the former is dΞ . Suppose dΞ ⊢ ∃dΞ
′. Q type[ξ ] and

δ ∈
q
dΞ

y
. By inversion on type well-formedness, ξQ− d÷dΞ ⊢ dΞ

′
det. Since dΞ is all

value-determined, its value-determined sublist d÷dΞ is itself: ξQ− dΞ ⊢ dΞ
′
det. Due to

the way we interpret pack algebras, in the metatheory we sometimes get into a situation

where δ1 ∈
r
dΞ
′
z

and δ2 ∈
r
dΞ
′
z

and V ∈ JQK
δ ,δ1

and V ∈ JQK
δ ,δ2

and we need to prove

JαK
δ ,δ1

V = JαK
δ ,δ2

V . By Lemma 7.1 (Soundness of Value-Determined Dependencies) we

have (δ ,δ1)↾ξQ
= (δ ,δ2)↾ξQ

. By Lemma 7.2 (Dependency Agreement Closure) we have

δ1 = δ2 and the desired equivalence, of the application of two apparently different semantic

algebras (arising from the nondeterminism of the definition of the denotation of syntactic

algebras) to the same value, follows.
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Our well-formedness and index sorting rules do not track value-determined indices

completely. We leave it to future work to enhance the completeness of syntactic well-

formedness. This would likely involve strengthening the coupling of the SMT logic to our

system.

Well-typed program terms Appendix Fig. A.51 specifies the denotations of well-typed

refined program terms in terms of the denotations of their erasure. The denotation of a

refined program term E typed under (Θ ;Γ ), at refined semantic substitution δ ∈ JΘ ;Γ K, is

the denotation J|E|K|δ | of the (derivation of the) term’s erasure |E| at the erased substitution

|δ |. For example,

JΘ ;Γ ⊢ e⇐ NK = (δ ∈ JΘ ;Γ K) 7→ J|Γ | ⊢ |e| ⇐ |N|K|δ |

Unrolling Lemmas E.10 and E.9 imply denotation of a refined ADT can be equirecur-

sively unrolled:

Lemma 7.3 (Semantic Unroll). (Lemma E.11)

If Ξ ⊢ {ν : µF |M (F)} type[ξ ] and δ ∈ JΞK

then the set

{
V ∈ JFK

δ
(µ JFK

δ
)
∣∣∣ JtK

δ
(JαK

δ
(JFK

δ
(foldJFK

δ
JαK

δ
)V )) = JtK

δ
for all LαMF ν t=τ t ∈M (F)

}

is equal to the set

{V ∈ µ JFK
δ
| JM (F)K

δ
V = {•}}

We also prove (appendix Lemma E.20) that unrolling is sound:
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Lemma 7.4 (Unrolling Soundness). (Lemma E.20)

If Ξ ⊢ H
−→
β ;G;M (F)I⊜ dΘ ;R and ⊢ δ : Ξ

then the set of all semantic values V ∈ JGK
δ
(µ JFK

δ
) such that

∀(β ,LαMF ν t=τ t) ∈ zip(
−→
β )(M (F)). JtK

δ
(Jβ K

δ
(JGK

δ
(foldJFK

δ
JαK

δ
)V )) = JtK

δ

is equal to the set
q
∃dΘ . R∧ dΘ

y
δ

.

We use the soundness of value-determined indices in HConstI and HIdI cases of the

proof. The hardest case is HIdI because we have to prove the “hereditary substitution” or

“liftapps” judgment used there preserves denotation. To this end, we define the denotation

of the special temporary contexts used only by Id-unrolling, and implicitly use the fact that

denotation of u is invariant under weakening its sorting derivation.
q

Ξ̌
yfix

δ Semantics for liftapps output contexts

Define
q

Ξ̌
yfix

δ
to be the fixed point of applying

q
Ξ̌

y
δ ,− initially to

q
Ξ̌

y
δ

where

J·K
δ
= ·

r
Ξ̌ , ǎa(u)

z

δ
=

q
Ξ̌

y
δ

,(JuK
δ

δ (a))/ǎa(u)

Lemma 7.5 (liftapps Sound). (Lemma E.19)

If Ξ ;Ξ ′′;
−−−−−−−−−−−−−−−→
(a,(foldF α)ν _ =τ _) ⊢ O ⇝ Ξ̌ ;M ′(F);O ′ and ⊢ δ ,δ2,δ1 : Ξ ,Ξ ′′,

−−−→
a d÷ τ

and dom(δ2)= dom(Ξ ′′) and dom(δ1)= dom(
−−−→
a d÷ τ)=−→a = π1

(
unzip

(−−−−−−−−−−−−−−−→
(a,(foldF α)ν _ =τ _)

))
then FV(O ′)∩dom(

−−−→
a d÷ τ) = /0 and JOK

δ ,δ2,δ1
= JO ′K

δ ,δ2,JΞ̌Kfix
δ ,δ2,δ1

;

moreover, if V ∈ µ JFK
δ

then:

dk = (foldJFK
δ
JαkKδ

)V for all (dk/ak,(foldF αk)ν _ =τk _) ∈ zip(δ1)(
−−−−−−−−−−−−→
(foldF α)ν _ =τ _)
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implies JM ′(F)K
δ ,δ2,JΞ̌Kfix

δ ,δ2,δ1

V holds.

These two unrolling lemmas (Lemma 7.4 and Lemma 7.3) are used to prove that refined

typing is sound in the two cases for refined ADTs (value typing and pattern matching).

Subtyping We prove that subtyping/submeasuring is sound:

Lemma 7.6 (Subtyping Soundness). (Lemma E.23)

(1) If Θ ⊢ A≤± B and δ ∈ JΘK then JAK
δ
⊆ JBK

δ
.

(2) If Ξ ⊢ α;F ≤τ β ;G and δ ∈ JΞK then JFK
δ

X ⊆ JGK
δ

X for any X ∈ Set.

(3) If Ξ ⊢ α;F ≤τ β ;G and δ ∈ JΞK then JαK
δ
= Jβ K

δ
on JFK

δ
JτK.

(4) If Θ ⊢M ′(F ′)≥M (F) and δ ∈ JΘK

then for all V we know JM ′(F ′)K
δ

V implies JM (F)K
δ

V .

Part (3) uses the soundness of value-determined indices.

It may be worthwhile in future to investigate increasing the semantic completeness of

syntactic subtyping but in this thesis we try to keep subtyping as simple as possible.

Typing soundness Denotational-semantic typing soundness says that if a program term

has type A under Θ and Γ , then the mathematical denotation of that program term at any

interpretation of (that is, semantic environment for) Θ and Γ is an element of the mathe-

matical denotation of A at that interpretation, that is, the program term denotes a dependent

function ∏δ∈JΘ ;Γ K JAK⌊δ⌋. This more or less corresponds to proving (operational) typing

soundness with respect to a big-step operational semantics. Refined types pick out subsets

of values of unrefined types. Therefore, by typing soundness, if a program has a refined



227

type, then we have learned something more about that program than the unrefined system

can verify for us.

Theorem 7.1 (Typing Soundness). (Thm. E.1)

Assume ⊢ δ : Θ ;Γ . Then:

(1) If Θ ;Γ ⊢ h⇒ P then JhK
δ
∈ JPK⌊δ⌋.

(2) If Θ ;Γ ⊢ g⇒ N then JgK
δ
∈ JNK⌊δ⌋.

(3) If Θ ;Γ ⊢ v⇐ P then JvK
δ
∈ JPK⌊δ⌋.

(4) If Θ ;Γ ⊢ e⇐ N then JeK
δ
∈ JNK⌊δ⌋.

(5) If Θ ;Γ ; [P] ⊢ {ri⇒ ei}i∈I ⇐ N then J{ri⇒ ei}i∈IKδ
∈ JPK⌊δ⌋⇒ JNK⌊δ⌋.

(6) If Θ ;Γ ; [N] ⊢ s⇒↑P then JsK
δ
∈ JNK⌊δ⌋⇒ J↑PK⌊δ⌋.

(All parts are mutually recursive.) The proof (appendix Thm. E.1) uses the soundness

of unrolling and subtyping. The proof is mostly straightforward. The hardest case3 is

the one for recursive expressions in part (4), where we use an upward closure lemma—in

particular, part (3) below—to show that the fixed point is in the appropriately refined set:

Lemma 7.7 (Upward Closure). (Lemma E.26)

Assume ⊢ δ : Ξ .

(1) If Ξ ⊢ α : F(τ)⇒ τ then JαK
δ

is monotone.

(2) If Ξ ⊢F functor[_] and Ξ ⊢ F functor[_] and k ∈ N

and V ∈ JF K
δ
(JFKk

δ
/0) and V ⊑J|F |K(J|F |Kk /0) V ′

then V ′ ∈ JF K
δ
(JFKk

δ
/0).

3I don’t know if this is interesting, but observe that the set ∪k∈N{Xk} (where Xk is defined in the proof) is
a filter on the unrefined set.
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(3) If Ξ ⊢ A type[_] and V ∈ JAK
δ

and V ⊑J|A|K V ′ then V ′ ∈ JAK
δ

.

The proof of upward closure uses one of the more interesting induction metrics:

Proof. By lexicographic induction, first, on the structure of A or F (parts (1), (2) and (3),

mutually), and, second, on ⟨k,F structure⟩ (part (2)), where ⟨. . .⟩ denotes lexicographic

order.

This is also the only place, other than subtyping soundness and unrolling soundness,

where we use the soundness of value-determined indexes (namely, for the pack case in part

(1)).

Substitution soundness We interpret a syntactic substitution (typing derivation) Θ0;Γ0 ⊢

σ : Θ ;Γ as a function JσK : JΘ0;Γ0K → JΘ ;Γ K on semantic substitutions. Or rather, we

prove this the case: Lemma E.28 (Substitution Typing Soundness). The denotation of σ at

δ is4

J·K
δ
= ·

Jσ , t/aK
δ
= JσK

δ
,JtK⌊δ⌋ /a

Jσ ,v : P/xK
δ
= JσK

δ
,JvK

δ
/x

For more details see appendix Def. C.2. Substitution soundness holds (appendix Thm. E.2):

if E is a program term typed under Θ and Γ , and Θ0;Γ0 ⊢σ : Θ ;Γ , then J[σ ]EK = JEK◦JσK.

(Recall we proved a syntactic substitution lemma: Lemma 6.10.) That is, substitution and

denotation commute, or (in other words) syntactic substitution and semantic substitution

are compatible.
4Economou et al. [2023] pre-applied the syntactic substitution prefix because there the substitution oper-

ation was sequential not parallel.
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Logical consistency, total correctness, and partial correctness Our semantic typing

soundness result implies that our system is logically consistent and totally correct.

A logically inconsistent type (for example, 0 or ↑0 or ↑(1∧ff)) denotes the empty set,

which is uninhabited.

Corollary 7.1 (Logical Consistency). If ·; · ⊢ e⇐ ↑P, then ↑P is logically consistent, that

is, J↑PK· ̸= /0.

Total correctness means that every closed computation (that is specified as total) returns

a value of the specified type:

Corollary 7.2 (Total Correctness).

If ·; · ⊢ e⇐↑P, then JeK· ̸=⊥J↑PK· , that is, e does not diverge semantically speaking.

Proof.

⊢ · : ·; · By rule

JeK· ∈ J↑PK⌊·⌋ By Theorem 7.1 (Typing Soundness)

= J↑PK· By definition of ⌊−⌋

= {inj1V |V ∈ JPK·} By definition of J−K·

Therefore, JeK· ̸= inj2⊥↑ =⊥J↑PK· ,

However, in order for this result to imply that expressions deemed total by our refine-

ment type system do not operationally or computationally diverge, or diverge syntactically

speaking—that is, that the e above terminates (and returns a value)—then we must com-

bine it with Theorem 5.3 (Computational Adequacy of the Denotational Semantics)5 and

the fact that erasure of type annotations (the partial inverse of bidirectionalization) pre-

serves denotation.
5Which uses a Tait/Plotkin style logical relation.
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Our system can be extended to include partiality, simply by adding a partial upshift

type connective ↿P (“partial upshift of P”), with type well-formedness and subtyping rules

similar to those of ↑P, and the following two expression typechecking rules. The first rule

introduces the new connective ↿P; the second rule lacks a termination refinement such as

that in Decl⇐rec, so it may yield divergence.

Θ ;Γ ⊢ v⇐ P

Θ ;Γ ⊢ returnv⇐ ↿P

Θ ;Γ ,x : ↓N ⊢ e⇐ N

Θ ;Γ ⊢ rec x. e⇐ N

The denotation of the partial upshift at δ ∈ JΞK is defined as follows:

JΞ ⊢ ↿P type[_]K
δ
= {d ∈ J↑|P|K | if d ̸=⊥ then d = inj1V for some V ∈ JPK

δ
}

It is straightforward to update the metatheory to prove partial correctness: If a closed

computation (that is specified as partial) terminates, then it returns a value of the specified

type. Partial correctness is a corollary of the updated typing soundness result:

if ·; · ⊢ e⇐ ↿P and JeK· ̸=⊥ then JeK· = inj1V and V ∈ JPK·.
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Chapter 8

Algorithmic System

Dunfield and Krishnaswami [2013] prove the completeness of a bidirectional type system

for higher-rank polymorphism. Dunfield and Krishnaswami [2019] extended this line of

work to a form of indexed types much less general than the one presented in this thesis,

although the latter lacks polymorphism. We design our algorithmic system in the spirit

of those of Dunfield and Krishnaswami [2013, 2019]: unification/existential variables are

created and solved in an algorithmic context, which we say extends with each solution

added. Its judgments and presuppositions are summarized in Fig. 8.1 but the last two

judgments are only used in metatheory. Mutually defined judgments are grouped together

(separated by new lines).

The algorithmic rules closely mirror the declarative rules, except a few key differences:

• Whenever a declarative rule conjures an index term, the corresponding algorithmic

rule adds to the input algorithmic context Θ̂ an existential variable (written with a

hat: â; also called evars) to be solved. An algorithmic context Θ̂ is a logical context

Θ (which has universal variables or uvars) followed by evars and their solutions.

– We delay solving evars until all constraints are collected. We solve evars by
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Θ̂ algctx (Fig. A.52) pre. no judgment
Ξ̂ ▷ t : τ [ξt ] (Fig. A.54) pre. Ξ̂ algctx
Ξ̂ ; [τ]▷ t : κ (Fig. A.55) pre. Ξ̂ algctx

Ξ̂ ▷A type[ξ ] (Fig. A.56) pre. Ξ̂ algctx
Ξ̂ ▷M (F)msmts[ξ ] (Fig. A.56) pre. Ξ̂ algctx
Ξ̂ ▷F functor[ξ ] (Fig. A.57) pre. Ξ̂ algctx
Ξ̂ ▷α : F(τ)⇒ τ (Fig. A.57) pre. Ξ̂ ▷F functor[ξF ]

Ξ̂ ⊢ (∀)W wf[ξ ] (Fig. A.58) pre. Ξ̂ algctx

Ξ̂ ⊢ χ Wf[ξ ] (Fig. A.58) pre. Ξ̂ algctx

Θ̂ ⊢W Inst▶ ⊣ Θ̂ ′ (Fig. A.61) pre. Θ̂ algctx and Θ̂ ⊢W wf

Θ̂ ⊢ (∀)W Inst ⊣ Θ̂ ′ (Fig. A.61) pre. Θ̂ algctx and Θ̂ ⊢ (∀)W wf

Θ̂ ⊢W fixInst ⊣ Θ̂ ′ (Fig. A.61) pre. Θ̂ algctx and Θ̂ ⊢W wf[ξ ]

Θ̂ present (Fig. A.53) pre. Θ̂ algctx

Θ |= (∀)W (Fig. A.59) pre. Θ ctx and Θ ⊢ (∀)W wf[ξ ]

Θ̂ ; · ⊢W fixInstChk ⊣Ω (Fig. A.61) pre. Θ̂ ctx and Θ̂ ⊢W wf[ξ ]
Θ ⊢ A <:± B (Fig. A.62) pre. Θ ctx and Θ ▷A type[ξA] and Θ ▷B type[ξB]

Θ̂ ⊢ R <:+ P / (∀)W (Fig. A.62) pre. ∥Θ̂∥▷R type[ξR] and Θ̂ ▷P type[ξP] and Θ̂ present

Θ̂ ⊢ N <:− L / (∀)W (Fig. A.62) pre. Θ̂ ▷N type[ξN ] and ∥Θ̂∥▷L type[ξL] and Θ̂ present

Θ̂ ⊢M ′(F ′)≥M (F) /W (Fig. A.62) pre. ∥Θ̂∥▷M ′(F ′)msmts[ξ ′] and Θ̂ ▷M (F)msmts[ξ ] and Θ̂ present
Ξ ▷α;F <:τ β ;G (Fig. A.64) pre. Ξ ▷α : F(τ)⇒ τ and Ξ ▷β : G(τ)⇒ τ

Ξ̂ ▷ H
−→
β ;G;M (F)I⊜ dΘ ;R (Fig. A.65) pre. Ξ̂ ▷M (F)msmts[ξ ] and Ξ̂ ▷

−→
β : G(M (F))⇒M (F) and Ξ̂ present

Θ ;Γ ◁χ (Fig. A.60) pre. Θ ⊢ χ Wf[ξ ] and Θ algctx and Θ ⊢ Γ ctx

Θ̂ ;Γ ⊢ χ fixInstChk ⊣Ω (Fig. A.61) pre. Θ̂ ⊢ χ Wf[ξ ] and Θ̂ algctx and ∥Θ̂∥ ⊢ Γ ctx
Θ ;Γ ▷h⇒ P (Fig. A.66) pre. Θ algctx and Θ ⊢ Γ ctx
Θ ;Γ ▷g⇒↑P (Fig. A.66) pre. Θ algctx and Θ ⊢ Γ ctx

Θ̂ ;Γ ⊢ v⇐ P / χ ⊣ ∆ (Fig. A.67) pre. ∥Θ̂∥ ⊢ Γ ctx and Θ̂ ▷P type[ξP] and Θ̂ present
Θ ;Γ ▷ v⇐ P (Fig. A.67) pre. Θ algctx and Θ ⊢ Γ ctx and Θ ▷P type[ξP]

Θ ;Γ ▷ e⇐ N (Fig. A.68) pre. Θ algctx and Θ ⊢ Γ ctx and Θ ⊢ N type[ξN ]

Θ ;Γ ; [P]▷{ri⇒ ei}i∈I ⇐ N (Fig. A.69) pre. Θ algctx and Θ ⊢ Γ ctx and Θ ⊢ P type[ξP] and Θ ⊢ N type[ξN ]

Θ̂ ;Γ ; [N] ⊢ s⇒↑P / χ ⊣ ∆ (Fig. A.70) pre. ∥Θ∥ ⊢ Γ ctx and Θ̂ ▷N type[ξN ] and Θ̂ present
Θ ;Γ ; [M]▷ s⇒↑P (Fig. A.70) pre. Θ algctx and Θ ⊢ Γ ctx and Θ ▷M type[ξM]

Θ̂
SMT−−−→ Θ̂ ′ (Fig. A.71) pre. Θ̂ algctx and Θ̂ ′ algctx

Θ̂
SMT−−−→ Θ̂ ′ (Fig. A.72) pre. Θ̂ algctx and Θ̂ ′ algctx

Every judgment except submeasuring, unrolling, and algebra well-formedness presupposes
that no Id hypothesis occurs in its input context.

Figure 8.1: Algorithmic judgments and their presuppositions
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simple matching on constraint equalities that should hold: if â = t should hold

and the only evars occurring in t will be solved later (that is, they are marked

with a ▶ prefix in the algorithmic context), then we eagerly solve â as t. This

is done repeatedly until a fixed point is reached, applying the solutions to the

constraints. Then we solve the remaining evars, those we already knew could

be solved at this point (those we previously said “will be solved later”) such

that all the constraints hold.

• Whenever a declarative rule checks a constraint (Θ ⊢ ϕ true or dΞ ⊢ t ≡ u : τ or

dΞ ; [τ] ⊢ t ≡ u : κ or a sub/typing derivation or such), the algorithm delays its veri-

fication until all existential variables are solved (at the end of a focusing stage using

the process described in the previous sub-bullet point). Subtyping and expression

typechecking constraints are similarly delayed.

Syntactically, objects in the algorithmic system are not much different from correspond-

ing objects of the declarative system. We extend the grammar for index terms with a pro-

duction of existential variables, written as index variables with a hat â, b̂, or ĉ.

t ::= · · · | â

We use this (algorithmic) index grammar everywhere in the algorithmic grammar and sys-

tem, using the same declarative metavariables.

When a piece of syntax has no existential variables, we say that it is ground. The

judgment O ground is defined by FEV(O) = /0 where FEV(O) is defined by structural

recursion on O to collect every free evar of O in a set. If FV(ξ ) ⊆ dom(Θ̂) then we will

often get the algorithmic part of ξ by subtracting the logical part: ξ −∥Θ̂∥ (recall ∥−∥
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removes evars or gets the logical part).

Constraints are added to the algorithmic system. Figure 8.2 gives grammars for subtyp-

ing and typing constraints. In contrast to DML, the grammar does not include existential

constraints. The disjunction constraints are concerning but we need only consider certain

forms of it due to invariants of polarized subtyping. While we call all the W constraints

“subtyping constraints”, we call A <:± B literal subtyping constraints.

Subtyping constraints (∀)W ::= (⊃)W | ∀a d÷ τ . (∀)W
(⊃)W ::= W | ϕ ⊃ (⊃)W

W ::= ϕ | u≡τ t | u≡[τ] t |
∨−→

W
| R <:+ P | N <:− L
| (∀)W

V(∀)W

Typing constraints χ ::= · | (e⇐ N), χ | W , χ

Figure 8.2: Typing and subtyping constraints

Checking constraints boils down to checking propositional validity, Θ ⊢ ϕ true, which

is analogous to checking verification conditions in the tradition of imperative program

verification initiated by Floyd [1967] and Hoare [1969] (where programs annotated with

Floyd–Hoare assertions are analyzed, generating verification conditions whose validity im-

plies program correctness). These propositional validity constraints are the constraints that

can be automatically verified by a theorem prover such as an SMT solver. The (algorith-

mic) subtyping constraint verification judgment is written Θ |= (∀)W and means that (∀)W

algorithmically holds under Θ . Notice that the only context in the judgment is Θ , which

has no existential variables: this reflects the fact that we delay verifying (∀)W until (∀)W has

no existential variables (in which case we say (∀)W is ground). Similarly, Θ ;Γ ◁ χ is the

(algorithmic) typing constraint verification judgment, checking that all of the constraints in

χ algorithmically hold under Θ and Γ , and here χ is also ground (it is always possible to
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make it so at the end of a focusing stage).

8.1 Algorithmic Contexts and Substitution

An algorithmic context Θ̂ is a logical context Θ followed by a list of solved or unsolved

existential variables which may or may not marked as “solved later” with a ▶ prefix. An

algorithmic context is complete, and is written Ω , if all evars are solved. We often write an

algorithmic context with an empty logical context and only unsolved evars as ∆ , especially

for the output contexts of algorithmic typing (focusing stages).

Θ̂ ::= Θ | Θ̂ , â d÷κ | Θ̂ , â : τ=t | Θ̂ ,▶â d÷κ | Θ̂ ,▶â : τ=t

ˆdΘ ::= d
Θ | ˆdΘ , â d÷κ | ˆdΘ , â : τ=t | ˆdΘ ,▶â d÷κ | ˆdΘ ,▶â : τ=t

Ξ̂ ::= Ξ | Ξ̂ , â d÷κ | Ξ̂ , â : τ=t | Ξ̂ ,▶â d÷κ | Ξ̂ ,▶â : τ=t

ˆdΞ ::= d
Ξ | ˆdΞ , â d÷κ | ˆdΞ , â : τ=t | ˆdΞ ,▶â d÷κ | ˆdΞ ,▶â : τ=t

∆ ::= · | ∆ , â d÷κ | ∆ ,▶â d÷κ

Ω ::= Θ | Ω , â : τ=t | Ω ,▶â : τ=t

We require solutions t of later evars ▶â to be well-sorted under (input) logical contexts

Θ , which have no existential variables. But later evars may occur in solutions to non-

later evars. What makes this possible is the fact that algorithmic subtyping is polarized so

that evars never occur in positive subtypes/submeasures or negative supertypes (the ground

sides of subtyping); further, evars occur ephemerally in refinement algebras (that is, if an

evar is introduced to an algebra, it is immediately solved).

We will often treat algorithmic contexts Θ̂ as substitutions of index terms for existential
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variables â in index terms t (including propositions ϕ), types A, functors F , algebras α ,

constraints W and χ , and output logical contexts dΘ (whose propositions may have exis-

tential variables). The definition is similar to the definition of index substitution in Fig.

A.6. Since we allow solutions of non-later evars to have later evars, we often apply algo-

rithmic contexts as substitutions twice. If O only has existential variables from dom(Ω)

then [Ω ]2O is ground. By a Barendregtian distribution lemma [Ω ]2O = [[Ω ]Ω ]O where

[Θ̂ ]Θ̂ ′ applies Θ̂ as a substitution to solutions in Θ̂ ′.

8.2 Well-Formedness

Figure A.52 defines the algorithmic context well-formedness judgment Θ̂ algctx in such

a way that the order of later and non-later evars does not matter. It uses the operation

∥−∥ (defined in Fig. A.52) which extracts the underlying logical context of an algorithmic

context. We always begin with an algorithmic context Θ̂ in which no▶ occurs: this defines

the judgment Θ̂ present. We only mark evars as ▶ after collecting all the constraints χ of a

focusing stage, based on the (output) dependencies ξχ of χ well-formedness: the operation

[ξ ]− (defined in Fig. A.52) adds a ▶ prefix to an evar if it occurs in D for some ▶D ∈ ξ

(explained in the next paragraph). Finally, Θ̂ algctx also uses the ▶− operation (defined in

Fig. A.52) to get the later portion of an algorithmic context. Figure A.53 defines operations

sol(−) and unsol(−) on algorithmic contexts which gets the solved or unsolved portion

of an algorithmic context. The notation [▶]O stands for either ▶O or O . Similarly, the

notation O[=t] stands for either O=t or O .

Algorithmic index sorting (Fig. A.54 and Fig. A.55) is the same as declarative index

sorting except it presupposes a well-formed algorithmic context and it accommodates evars
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(the notation â[[[ ]]] for example stands for either â or a). The same goes for algorithmic type-

/functor/algebra/measurement well-formedness (Fig. A.56 and Fig. A.57). Figure A.58

defines algorithmic constraint well-formedness. The ξ(∀)W of a subtyping constraint (∀)W

is the union of the ξ of each top-level (that is, not under ⊃ or ∀) constraint that should

hold. A disjunction constraint is only well-formed under specific conditions obtained by

polarized subtyping (discussed later):

there exist t,τ , t,κ ,ξ such that t⇝ ξ and Ξ̂ ; [τ]▷ t : κ

and for all Wk ∈
−→
W (̸= ·) we have d÷Ξ̂ ⊢Wk wf[_]

and there exist uk,uk such that Wk = (uk ≡[τ] t

V

uk ≡κ t) and (uk,uk)ground

Ξ̂ ⊢
∨−→

W wf[ξ ]

where (we again locally redefine the⇝ symbol)

t is not an evar

t⇝ ·

t is an evar

t⇝▶{t}

The ξ of typing constraint list χ is the union of the ξ of each subtyping constraint in it. We

overload the ⌊−⌋ operation to translate a typing constraint to a subtyping constraint which

is nothing but the conjunction of all the typing constraint’s subtyping constraints (defined

in Fig. A.58).

8.3 Verifying Constraints and Solving Existentials

Figures A.59 and A.60 define the verification of algorithmic subtyping and typing con-

straints under a logical context Θ . Only ground constraints are ever verified.
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The judgment Θ̂ ;Γ ⊢ χ fixInstChk ⊣Ω (defined in Fig. A.61) is used on the constraints

χ collected at the end of a focusing stage to solve all the evars and check all the constraints.

It is defined mutually with program constraint verification and algorithmic program typ-

ing. (We have a similar judgment Θ̂ ; · ⊢W fixInstChk ⊣Ω also defined in Fig. A.61 which

is defined mutually with subtyping constraint verification and algorithmic subtyping; the

following discussion similarly appiles to the subtyping version of the judgment.) The con-

texts Θ̂ and Γ are inputs where Θ̂ may mention evars newly generated by unrolling and ▶

evars have already been introduced: Θ̂ = [ξχ ]Θ̂ . The output context Ω completes Θ̂ such

that [Ω ]2χ holds under Θ̂ and Γ that is ∥Θ̂∥;Γ ◁ [Ω ]2χ (or ∥Θ̂∥ |= [Ω ]2W in the case of

subtyping). The judgment Θ̂ ;Γ ⊢ χ fixInstChk ⊣ Ω first solves all the non-later evars via

Θ̂ ⊢ ⌊χ⌋ fixInst ⊣ Θ̂ ′ whose rules are self-explanatory. Next, an oracle selects constraints
−→
Wo from disjunction constraints involving later evars such that using their solutions makes

all the constraints hold: Θ̂ ′ ⊢

V−→
Wo Inst▶ ⊣ Ω and ∥Θ̂∥;Γ ◁ [Ω ]2χ . In practice, an oracle

would not be used, but backtracking would have to be implemented. In this thesis, we try

to keep the algorithm very abstract and simple in order to highlight the essentials.

Θ̂ ⊢ ⌊χ⌋ fixInst ⊣ Θ̂
′ select

−→
Wo from [Θ̂ ′]2⌊χ⌋

Θ̂
′ ⊢

V−→
Wo Inst▶ ⊣Ω ∥Θ̂∥;Γ ◁ [Ω ]2χ

Θ̂ ;Γ ⊢ χ fixInstChk ⊣Ω

8.4 Subtyping

Consider the rule(s) for verifying a literal subtyping constraint.
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Θ ⊢ A <:± B

Θ |= A <:± B

By the grammar for subtyping constraints, this should be read as two rules, one positive

and one negative.

Θ ⊢ R <:+ P

Θ |= R <:+ P

Θ ⊢ N <:− L

Θ |= N <:− L

The relations Θ ⊢ R <:+ P and Θ ⊢ N <:− L are defined mutually with Θ |= (∀)W

and Θ̂ ; · ⊢W fixInstChk ⊣ Ω and Θ̂ ⊢ R <:+ P / (∀)W and Θ̂ ⊢ N <:− L / (∀)W and Θ̂ ⊢

M ′(F ′)≥M (F) /W and Ξ ▷α;F <:τ β ;G.

Algorithmic subtyping Θ ⊢ A <:± B (Fig. A.62) says that, under logical context Θ , the

type A is algorithmically a subtype of B. Each polarity of it has basically one rule. The

positive one is

d
Ξ may be · Θ , d̂Ξ ⊢ R <:+ [d̂Ξ/dΞ ]Q /W

Θ , d̂Ξ ⊢W wf[ξW ] Θ , [ξW ]d̂Ξ ; · ⊢W fixInstChk ⊣Ω

Θ ⊢ R <:+ ∃dΞ . Q
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which can be read as two rules

Θ ⊢ R <:+ Q /W Θ ; · ⊢W fixInstChk ⊣Θ

Θ ⊢ R <:+ Q

d
Ξ ̸= · Θ , d̂Ξ ⊢ R <:+ [d̂Ξ/dΞ ]Q /W

Θ , d̂Ξ ⊢W wf[ξW ] Θ , [ξW ]d̂Ξ ; · ⊢W fixInstChk ⊣Ω

Θ ⊢ R <:+ ∃dΞ . Q

The operation −̂ (pronounced “enhat”) on value-determined index variable binding con-

texts adds a hat to each variable in the domain:

·̂= ·

̂dΞ ,a d÷ τ = d̂Ξ , â d÷ τ

The operation [ξ ]− was discussed in Sec. 8.2. Strictly speaking the former rule can simply

use Θ |= W as there are no evars to solve, but I prefer the more efficient economy of

presentation.

The judgments Θ̂ ⊢ R <:+ Q / (∀)W and Θ̂ ⊢ M <:− L / (∀)W are used by the top

level algorithmic subtyping judgments. Θ̂ ⊢ A <:± B / (∀)W says that, under algorithmic

context Θ̂ , the type A is algorithmically a subtype of B if and only if output constraint

W holds algorithmically (at suitable solutions for Θ̂ ), In subtyping, the delayed output

constraints W must remember their logical context via ⊃ and ∀. For example, in checking

that ∃a : N.Nat(a)∧ (a < 5) is a subtype of ∃a : N.Nat(a)∧ (a < 10), the output constraint

W is ∀a : N. (a < 5)⊃ (a < 10).

We don’t present all algorithmic subtyping rules here (see appendix Figs. A.62, A.63,
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and A.64), but only enough rules to discuss the key design issues.

In algorithmic subtyping, we maintain the invariant that positive subtypes/submeasures

and negative supertypes are ground. The rules

d
Ξ ̸= · Θ , d̂Ξ ⊢ R <:+ [d̂Ξ/dΞ ]Q /W

Θ , d̂Ξ ⊢W wf[ξW ] Θ , [ξW ]d̂Ξ ; · ⊢W fixInstChk ⊣Ω

Θ ⊢ R <:+ ∃dΞ . Q

d
Ξ ̸= · Θ , d̂Ξ ⊢ [d̂Ξ/dΞ ]N <:− L /W

Θ , d̂Ξ ⊢W wf[ξW ] Θ , [ξW ]d̂Ξ ; · ⊢W fixInstChk ⊣Ω

Θ ⊢ ∀dΞ . M <:− L

d
Ξ
′ ̸= ·

Ξ ,dΞ ,−→ϕ , d̂Ξ
′ ⊢ R <:+ [d̂Ξ

′
/dΞ

′
]Q′ / (∀)W

Ξ ,dΞ , d̂Ξ
′ ⊢ (∀)W wf[ξ ]

Ξ ,dΞ ,−→ϕ , [ξ ]d̂Ξ
′; · ⊢ (∀)W fixInstChk ⊣Ω

Ξ ,dΞ ▷q⇒ t; P̂ <:τ q′⇒ [Ω ]2[d̂Ξ
′
/dΞ

′
]t ′; P̂′

Ξ ▷ (pk(dΞ ,⊤),q)⇒ t;∃dΞ . R∧−→ϕ ⊗ P̂ <:τ (pk(dΞ
′
,⊤),q′)⇒ t ′;∃dΞ

′
. Q′⊗ P̂′

are the only subtyping/submeasuring rules which add existential variables (to the side not

necessarily ground) to be solved (whereas the declarative system conjures a solution). We

have essentially already explained them in the foregoing discussion. The last one is the

most subtle: we don’t use the top level subtyping judgment here, because we need access

to Ω to solve the evars packed in the superalgebra. Notice that once we apply all the

solutions we forget about them and move on (evars in dom(d̂Ξ
′
) are ephemeral).

We delay subtyping premises that may generate new evars until we can solve all the
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evars already at hand.

P1 = ∃dΞ 1. R1∧−→ϕ1 P2 = ∃dΞ 2. R2∧−→ϕ2

Θ̂ ⊢ P1 +P2 <:+ P′1 +P′2 / (∀dΞ 1.−→ϕ1 ⊃ R1 <:+ P′1)

V

(∀dΞ 2.−→ϕ2 ⊃ R2 <:+ P′2)

Θ̂ ⊢ ↓N <:+ ↓(∀dΞ .−→ϕ ⊃ L) / ∀dΞ .−→ϕ ⊃ N <:− L

Θ̂ ⊢ ↑(∃dΞ . R∧−→ϕ ) <:− ↑P / ∀dΞ .−→ϕ ⊃ R <:+ P

The grammar for subtyping constraints (positive subtypes and negative supertypes must be

simple) forces the eager extraction of index information. This works because it corresponds

to eagerly applying invertible rules.

The rule
Θ̂ ⊢M ′(F ′)≥M (F) /W

Θ̂ ⊢
{

ν : µF ′
∣∣ M ′(F ′)

}
<:+ {ν : µF |M (F)} /W



8.4. SUBTYPING 243

outputs the measurement coverage constraints, which are in turn generated as follows.

·▷ tt(F
′);F ′ <:B tt(F);F

Θ̂ ⊢M ′(F ′)≥ ·F / tt

Θ̂ ⊢M ′(F ′)≥M (F) /W

let
−→
W =

t′ ≡[τ] t

V

t ′ ≡κ t

∣∣∣∣∣∣∣∣∣ ·▷α
′;F ′ <:τ α;F and d÷Θ̂ ; [τ]▷ t′ : κ

for some (foldF ′ α
′)ν t′ =τ t ′ ∈M ′(F ′)


Θ̂ ⊢M ′(F ′)≥M (F),(foldF α)ν t=τ t /W

V(∨−→
W

)

For each measurement in the measurements being covered (M ), there must be at least one

measurement (in M ′) covering it. The issue is that the indices t and t may have evars, so we

collect all possibilities in a disjunction constraint and deal with these very last. (Note:
−→
W

implies an order, but the order doesn’t matter.) Any evars that can only be solved here will

be solvable later when every other evar is solved, though backtracking may be needed to

find a combination that works (we abstract away these details). That is because t ′ is ground

due to our groundness invariant: positive subtypes are always ground, so the measurements

of a refined ADT subtype are as well.

As can be seen in the measurement covering judgment, algorithmic submeasuring al-

ways begins under an empty context. Any evars generated in submeasuring (due to packed

supermeasures) are ephemeral because immediately solved away. In this way we maintain

the invariant that the context of algorithmic submeasuring is only ever logical. As such,

we can eagerly check the index equivalence of algebra bodies as there are no evars in the

indices.
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8.5 Typing

We now discuss issues specific to algorithmic program typing (Figs. A.66, A.67, A.68,

A.69, A.70 excluding the mutually defined typing constraint verification and evar solving

judgments already discussed). We take a similar approach as taken in algorithmic subtyp-

ing, except we do not delay all typing problems in the same stage and instead collect evars

newly generated by unrolling in an output context ∆ . Typing problems of a different stage

are delayed until all their evars are solved: Alg⇐↓.

Exploiting polarity, we can restrict the flow of index information to the right- and left-

focusing stages: Θ̂ ;Γ ⊢ v⇐ P / χ ⊣ ∆ ′ and Θ̂ ;Γ ; [M] ⊢ s⇒ ↑P / χ ⊣ ∆ are algorithmic

value and spine typing judgments, and have top level versions (similarly to subtyping)

Θ ;Γ ▷ v⇐ P and Θ ;Γ ; [N]▷ s⇒ ↑P. The input types of these non-top-level focusing

judgments can have existential variables, and synthesize constraints and newly generated

evars to be solved at the end of the focusing stage. However, the algorithmic versions

of the other typing judgments do not; we judgmentally distinguish the latter by replacing

the “⊢” in the declarative judgments with “▷” (for example, Θ ;Γ ▷ g⇒ ↑P). Delayed

constraints are verified only and immediately after completing a focusing stage, when all

their existential variables can be solved.

Consequently, the algorithmic typing judgments for heads, bound expressions, pattern

matching, and expressions are essentially the same as their declarative versions, but use

algorithmic judgments, in particular the top level algorithmic focusing judgments when

possible. To be complete, the rule Alg⇐let must be allowed to backtrack to any type

synthesized by the bound expression. For example,

if Γ is f : ↓∀a : N.Nat(a)→↑Nat(a),y : {v : Nat | ix v = 0, ix v = 1}

then under Γ the expression let x= f (y); returnx checks against any type ↑Nat(n) such
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that n is SMT-equivalent to 0 or 1. But the algorithm nondeterministically solves a as

either 0 or 1.

Alg⇐Var calls (non-top-level) algorithmic subtyping and outputs the subtyping con-

straint. Algorithmic subtyping beings with a ground positive subtype but the supertype

may not be ground. The positive subtype is always ground because types are only added to

program contexts in non-focusing stages (for example, Alg⇐λ ).
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Chapter 9

Algorithmic Decidability, Soundness, Completeness

We prove that the algorithmic system (Chapter 8) is decidable, as well as sound and com-

plete with respect to the declarative system (Chapter 6).

The concept of algorithmic context extension helps us prove algorithmic soundness and

completeness.

9.1 Context Extension and Well-Formedness

We say that Θ̂ and Θ̂ ′ agree on the sorts and later- or ▶-status of evars if dom(Θ̂) =

dom(Θ̂ ′) and for all â ∈ dom(Θ̂) we know â has sort κ in Θ̂ if and only if â has sort κ in

Θ̂ ′ and â has a ▶ prefix in Θ̂ if and only if â has a ▶ prefix in Θ̂ ′.

The algorithmic (context) extension judgment Θ̂
SMT−−−→ Θ̂ ′ presupposes Θ̂ ctx and Θ̂ ′ ctx

and says that Θ̂ and Θ̂ ′ have the same underlying logical context, that Θ̂ and Θ̂ ′ agree on

the sorts and ▶-status of evars, and that if an evar is solved in Θ̂ then it has exactly the
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same solution in Θ̂ ′. That is, it is defined by the rule:

∥Θ̂∥= ∥Θ̂ ′∥

Θ̂ and Θ̂
′ agree on the sorts and ▶-status of evars

if [▶]â : κ=t ∈ Θ̂ then [▶]â : κ=t ∈ Θ̂
′

Θ̂
SMT−−−→ Θ̂

′

The SMT or relaxed (algorithmic) extension judgment, used in proving algorithmic com-

pleteness (to express that the algorithm may solve different but SMT-equivalent existential

indices as compared to the given declarative ones), is defined similarly but it allows solu-

tions to be SMT-equivalent:

∥Θ̂∥= ∥Θ̂ ′∥

Θ̂ and Θ̂
′ agree on the sorts and ▶-status of evars

if [▶]â : κ=t ∈ Θ̂ then [▶]â : κ=t ∈ Θ̂
′ or ∃([▶]â : κ=t ′ ∈ Θ̂

′).∥Θ̂∥ ⊢ [Θ̂ ]t = [Θ̂ ′]t ′ true

Θ̂
SMT−−−→ Θ̂

′

Notice that only completed (hence ground) solutions are compared for SMT equivalence:

∥Θ̂∥ is the logical context underlying Θ̂ .

If Θ̂
SMT−−−→Ω (or Θ̂

SMT−−−→Ω ) then Ω is said to complete Θ̂ : it has the solutions of Θ̂ (or

SMT-equivalent ones if relaxed), and also solutions to the unsolved evars of Θ̂ .

It is straightforward to prove that extension is sound, reflexive, and transitive: Lemma

F.4 (Extension Sound), Lemma F.5 (Ext. Reflexive), and Lemma F.6 (Ext. Transitive).

Transitivity involving relaxed extension relies on the fact that SMT equivalence Θ ⊢−=− true

is an equivalence relation (hence transitive).



9.1. CONTEXT EXTENSION AND WELL-FORMEDNESS 248

As discussed in the previous chapter, algorithmic sorting and formation rules (and un-

rolling) are set up as nothing but the corresponding declarative ones but accommodating

evars and their solutions.

Just as declarative unrolling generates well-formed declarative types, algorithmic un-

rolling generates well-formed algorithmic types: Lemma F.3 (Alg. Unrolling Output WF).

We must check that all the algorithmic judgments output appropriately well-formed ob-

jects, but this is straightforward and we will leave it implicit, not even bothering to write

down all the statements. We give one of the most subtle examples (due to the output ∆ ′): if

Θ̂ ;Γ ⊢ v⇐ P / χ ⊣ ∆ ′ then Θ̂ ,∆ ′ ⊢ χ Wf[ξχ ] for some unique ξχ . We often do not write

the formation judgment and simply write ξχ for the (unique) “ξ of χ” (which by the way

is always the same as ξ⌊χ⌋: removing the program constraints from a well-formed χ yields

a well-formed W having the same ξ ).

A solved evar can still be used to derive the sorting for that solved evar. But we can also

apply an input algorithmic context as a substitution to the subject(s) of formation or sorting

judgment, or one manipulating such judgments: unrolling. These are called “right-hand

substitution” lemmas, as in applying the algorithmic context as a substitution to the in-

puts on the right-hand side of the turnstile: Lemma F.1 (Right-hand Subst) and Lemma F.2

(Right-hand Subst. (Unroll)). The input context of algorithmic sorting or formation or un-

rolling can be extended: Lemma F.7 (Ext. Weakening (Ixs.)), Lemma F.9 (Ext. Weakening

(Types)), and Lemma F.10 (Ext. Weaken (Unroll)). These are the “extension weakening”

lemmas. The proof uses the fact that a plain extension or relaxed extension without propo-

sitions can be restricted to its value-determined part: Lemma F.8 (Extension Restriction).

The instantiation judgments output a well-formed algorithmic context that extends the

input algorithmic context (presupposed well-formed): Lemma F.11 (Inst. Extends). We call
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them “extending judgments”. The proof uses the reflexivity and transitivity of extension.

Right-hand substitution, extension weakening, and instantiation extension together im-

ply that the last premise in the following rule satisfies its needed presuppositions:

Θ̂ ⊢W Inst ⊣ Θ̂
′′

Θ̂
′′ ̸= Θ̂ Θ̂

′′ ⊢ [Θ̂ ′′]2W fixInst ⊣ Θ̂
′

Θ̂ ⊢W fixInst ⊣ Θ̂
′

Right-hand substitution and extension weakening can be used to complete algorith-

mic sorting, well-formedness, and unrolling derivations into declarative ones: Lemma F.12

(Alg. to Decl. WF) and Lemma F.13 (Complete Unroll).

An extension is said to be present if its contexts are present (if one context is present,

then both are by definition of extension). If a declarative unrolling is obtained by a complete

present extension then we can undo the completion to obtain the corresponding algorithmic

unrolling which outputs objects completing to the declarative ones: Lemma F.14 (Uncom-

plete Unrolling). This lemma is helpful in proving the inductive value case of algorithmic

completeness.

Finally, if the context of algorithmic unrolling is already applied then applying the

context to the outputs has no effect: Lemma F.15 (Unroll Applied).

9.2 Decidability

We have proved that all algorithmic judgments are decidable (appendix Sec. F.3). Algo-

rithmic constraint verification Θ |=W and Θ ;Γ ◁ χ boils down to verifying propositional

validity Θ ⊢ ϕ true, which is known to be decidable [Barrett et al., 2009]. Besides that,

our decidability proofs rely on fairly simple metrics for the various algorithmic judgments:
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most of the time it is simply the structure of the (derivation of the) judgment. We show

that, for each algorithmic rule, every premise is smaller than the conclusion, according to

the metrics.

Previously [Economou et al., 2023], in order to prove decidability of typing, we used

a simple size function and counted the number of subtyping constraints W in typing con-

straint lists χ . We had to prove lemmas stating that the constraints output by algorithmic

judgments decrease in size according to the function. Now the proof is even simpler: the

metric is simply the structure of the algorithmic derivation. What led to the simplification

is the unification of constraint checking and typing (which are defined by mutual recursion)

in the metatheory.

The non-checking instantiation judgments output unique contexts: Lemma F.20 (Inst.

Succeeds). By contrast, the checking instantiation judgment fixInstChk solves the later

evars nondeterministically.

9.3 Algorithmic Soundness

We show that the algorithmic system is sound with respect to the declarative system. Since

the algorithmic system is designed to mimic the judgmental structure of the declarative sys-

tem, soundness of the algorithmic system is largely straightforward to prove. Completeness

is significantly harder.

Soundness of algorithmic subtyping says that algorithmic subtyping/submeasuring im-

plies declarative subtyping/submeasuring. We decompose it into five mutually recursive

parts: there are two parts for positive subtyping, one for submeasuring, and two for nega-

tive subtyping. The positive and negative parts are dual as usual so proofs of one are similar

to proofs of the other. The top level parts are self-explanatory. The more complicated parts
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say that if a subtyping algorithm solves indexes under which its own verification conditions

hold, then subtyping holds declaratively under the same solutions. We begin with a (pre-

supposed) present context which extends to Ω so it is not necessary to apply Ω twice for

completion. It is convenient to assume that the context is already applied to inputs (positive

subtypes and negative supertypes are presupposed ground).

Theorem 9.1 (Soundness of Algorithmic Subtyping). (Thm. F.3)

(1) If Θ̂ ⊢ R <:+ Q / (∀)W and Θ̂
SMT−−−→Ω and ∥Θ̂∥ |= [Ω ](∀)W

and Rground and Θ̂ ▷Q type[ξ ] and [Θ̂ ]Q = Q and Θ̂ present

then ∥Θ̂∥ ⊢ R≤+ [Ω ]Q.

(2) If Θ ⊢ R <:+ P then Θ ⊢ R≤+ P.

(3) If Θ̂ ⊢M <:− L / (∀)W and Θ̂
SMT−−−→Ω and ∥Θ̂∥ |= [Ω ](∀)W

and Θ̂ ▷L type[Ξ ] and Lground and [Θ̂ ]M = M and Θ̂ present

then ∥Θ̂∥ ⊢ [Ω ]M ≤− L.

(4) If Θ ⊢ N <:− L then Θ ⊢ N ≤− L.

(5) If Ξ ▷α;F <:τ β ;G then Ξ ⊢ α;F ≤τ β ;G.

Previously [Economou et al., 2023] we proved the soundness of algorithmic subtyping

by way of two intermediate (sound) subtyping systems: a declarative system that eagerly

extracts under shifts, and a semideclarative system that also eagerly extracts under shifts,

but outputs constraints W in the same way as algorithmic subtyping, to be checked by the

semideclarative judgment Θ |̃= W (that we prove sound with respect to the algorithmic

Θ |=W ). We no longer use an intermediate system to prove algorithmic soundness, but we

do use a similar one to prove algorithmic completeness, discussed in the next section. But
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since eager extraction is now baked into the refinement type syntax and subtyping rules,

we only use one intermediate system (for algorithmic completeness).

The statement of algorithmic typing soundness is similar to that of algorithmic subtyp-

ing soundness. As a consequence of focusing, the soundness of head, bound expression,

expression, and match typing can be stated relatively simply (without needing to mention

evar solutions). The typing soundness of values and spines (which are dual) says that if

Ω completes the algorithm’s solutions such that the algorithm’s constraints hold, then the

typing of the value or spine holds declaratively with Ω ’s solutions.

Theorem 9.2 (Alg. Typing Sound). (Thm. F.4 in appendix)

(1) If Θ ;Γ ▷h⇒ P then Θ ;Γ ⊢ h⇒ P.

(2) If Θ ;Γ ▷g⇒↑P then Θ ;Γ ⊢ g⇒↑P.

(3) If Θ̂ ;Γ ⊢ v⇐ P / χ ⊣ ∆ and Θ̂ ,∆ SMT−−−→Ω and ∥Θ̂∥;Γ ◁ [Ω ]χ

and Θ̂ ▷P type[ξ ] and [Θ̂ ]P = P and Θ̂ present

then ∥Θ̂∥;Γ ⊢ [Ω ]v⇐ [Ω ]P.

(4) If Θ ;Γ ▷ v⇐ P then Θ ;Γ ⊢ v⇐ P.

(5) If Θ ;Γ ▷ e⇐ N then Θ ;Γ ⊢ e⇐ N.

(6) If Θ ;Γ ; [P]▷{ri⇒ ei}i∈I ⇐ N then Θ ;Γ ; [P] ⊢ {ri⇒ ei}i∈I ⇐ N.

(7) If Θ̂ ;Γ ; [M] ⊢ s⇒↑P / χ ⊣ ∆ and Θ̂ ,∆ SMT−−−→Ω and ∥Θ̂∥;Γ ◁ [Ω ]χ

and Θ̂ ▷M type[ξ ] and [Θ̂ ]M = M and Θ̂ present

then ∥Θ̂∥;Γ ; [[Ω ]M] ⊢ [Ω ]s⇒ [Ω ]↑P.

(8) If Θ ;Γ ; [N]▷ s⇒↑P then Θ ;Γ ; [N] ⊢ s⇒↑P.
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9.4 Algorithmic Completeness

We show that the algorithmic system is complete with respect to the declarative system.

It is significantly more challenging to prove algorithmic completeness. The main chal-

lenge is to prove the algorithm solves every existential variable to an index SMT-equivalent

to the declaratively given (conjured) index.

The declarative system can conjure index solutions that are different from the algo-

rithm’s solutions, but they must be equal according to the logical context ∥Θ̂∥ = Θ . We

capture this with relaxed context extension Θ̂
SMT−−−→ Θ̂ ′ similar to (non-relaxed) context ex-

tension Θ̂
SMT−−−→ Θ̂ ′ but solutions in Θ̂ may change to SMT-equal (under Θ ) solutions in Θ̂ ′.

We discussed relaxed extension in Sec. 9.1.

We basically take the same approach in proving algorithmic subtyping completeness

and algorithmic typing completeness (the only difference is handling the fact that type-

checking rolled values into(v) generates new existentials ∆ ). In the statement of complete-

ness, given declarative existential solutions (a given complete context Ω ) presuppose their

algorithmic value-determinedness (based on dependencies involving only evars, no uvars,

usually obtained by subtracting the logical part of the algorithmic context: ξ −∥Θ̂∥). We

transport the corresponding algorithmic value-determined dependencies over to those of

the output constraints in such a way that we can use this information (together with the

given (semi)declarative constraint verification) to prove running fixInstChk succeeds in a

way SMT-compatible with the declarative solutions (it outputs algorithmic solutions Ω re-

laxedly extending to the given declarative solutions Ω ). Applying the algorithmic solutions

instead of the declarative ones does not change the structure or height of typing or subtyp-

ing derivations or the structure of types or output constraints that judgmental equivalence

cares about. We exploit this fact in the proofs: the induction metric is on the sum of the
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height of the given (sub)typing derivation and the height of its output constraint check-

ing derivation (if such exists), and we sometimes need to use the induction hypothesis at

SMT-transported (sub)typing or constraint verification derivations.

9.4.1 Semideclarative System

We need to SMT-transport typing derivations but logically we shouldn’t have to simul-

taneously think about the algorithm. It would make more sense to transport declarative

derivations instead. But we also need to transport the output constraints of algorithmic

typing, so we use a so-called semideclarative system, intermediate between the declara-

tive and algorithmic systems. The semideclarative systems are the same as the algorithmic

ones except the only difference is they conjure indices just like the declarative systems

(why call it semideclarative rather than semialgorithmic? happenstance). We summa-

rize the semideclarative judgments and their presuppositions in Fig. 9.1. As per usual,

in (roughly the bottom half of) the figure, we also include judgments used in the inter-

mediate/semideclarative metatheory: namely, judgmental equivalence and semideclarative

fixInstChk.

It is straightforward to prove semideclarative (sub)typing is equivalent to declarative

(sub)typing.

Lemma 9.1 (Semidecl. Sub. Sound). (Lemma G.3)

(1) If Θ ⊢̃ R <:+ P / (∀)W and Θ |̃= (∀)W then Θ ⊢ R≤+ P.

(2) If Θ ⊢̃ N <:− L / (∀)W and Θ |̃= (∀)W then Θ ⊢ N ≤− L.

(3) If Ξ ⊢̃ α;F <:τ α ′;F ′ then Ξ ⊢ α;F ≤τ α ′;F ′.

(4) If Θ ⊢̃M (F)≥M ′(F ′) /W and Θ |̃=W then Θ ⊢M (F)≥M ′(F ′).
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Θ |̃= (∀)W (Fig. A.80) pre. Θ ⊢ (∀)W wf[ξ ] and Θ ctx

Θ ;Γ ◁̃ χ (Fig. A.80) pre. Θ ⊢ χ Wf[ξ ] and Θ ⊢ Γ ctx and Θ ctx

Θ ⊢̃ A <:± B / (∀)W (Fig. A.74) pre. Θ ⊢ A type[ξA] and Θ ⊢ B type[ξB] and Θ ctx

Θ ⊢̃M ′(F ′)≥M (F) /W (Fig. A.73) pre. Θ ⊢M ′(F ′)msmts[ξ ′] and Θ ⊢M (F)msmts[ξ ] and Θ ctx

Ξ ⊢̃ α;F <:τ β ;G (Fig. A.75) pre. Ξ ⊢ α : F(τ)⇒ τ and Ξ ⊢ β : G(τ)⇒ τ

Θ ;Γ ⊢̃ h⇒ P (Fig. A.76) pre. Θ ctx and Θ ⊢ Γ ctx

Θ ;Γ ⊢̃ g⇒↑P (Fig. A.76) pre. Θ ctx and Θ ⊢ Γ ctx

Θ ;Γ ⊢̃ v⇐ P / χ (Fig. A.77) pre. Θ ctx and Θ ⊢ Γ ctx and Θ ⊢ P type[ξP]

Θ ;Γ ⊢̃ e⇐ N (Fig. A.78) pre. Θ ctx and Θ ⊢ Γ ctx and Θ ⊢ N type[ξN ]

Θ ;Γ ; [P] ⊢̃ {ri⇒ ei}i∈I ⇐ N (Fig. A.79) pre. Θ ctx and Θ ⊢ Γ ctx and Θ ⊢ P type[ξP] and Θ ⊢ N type[ξN ]

Θ ;Γ ; [N] ⊢̃ s⇒↑P / χ (Fig. A.79) pre. Θ ctx and Θ ⊢ Γ ctx and Θ ⊢ N type[ξN ]

Θ ⊢M ′(F)≡M (F) (Fig. A.81) pre. Θ ⊢M ′(F)msmts[ξ ] and Θ ⊢M (F)msmts[ξ ′] and Θ ctx

Θ ⊢ A≡± B (Fig. A.81) pre. Θ ⊢ A type[ξA] and Θ ⊢ B type[ξB] and Θ ctx

Ξ ⊢ α;F ≡τ β ;G (Fig. A.82) pre. Ξ ⊢ α : F(τ)⇒ τ and Ξ ⊢ β : G(τ)⇒ τ

Θ |̃= (∀)W ↔ (∀)W ′ (Fig. A.83) pre. Θ ⊢ (∀)W wf[ξ ] and Θ ⊢ (∀)W ′ wf[ξ ′] and Θ ctx

Θ ◁̃ χ ↔ χ ′ (Fig. A.84) pre. Θ ⊢ χ Wf[ξ ] and Θ ⊢ χ ′Wf[ξ ′] and Θ ctx

Θ̂ ; · ⊢̃W fixInstChk ⊣Ω (Fig. A.85) pre. Θ̂ ⊢W wf[ξ ] and Θ̂ algctx

Θ̂ ;Γ ⊢̃ χ fixInstChk ⊣Ω (Fig. A.85) pre. Θ̂ ⊢ χ Wf[ξ ] and ∥Θ̂∥ ⊢ Γ ctx and Θ̂ algctx

The presupposition judgments can be found in Fig. 6.1 and Fig. 8.1.

Figure 9.1: Semideclarative judgments and their presuppositions

Lemma 9.2 (Semidecl. Sub. Complete). (Lemma G.4)

(1) If Θ ⊢ R≤+ P then Θ ⊢̃ R <:+ P / (∀)W and Θ |̃= (∀)W.

(2) If Θ ⊢ N ≤− L then Θ ⊢̃ N <:− L / (∀)W and Θ |̃= (∀)W.

(3) If Ξ ⊢ α;F ≤τ β ;G then Ξ ⊢̃ α;F <:τ β ;G.
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(4) If Θ ⊢M ′(F ′)≥M (F) then Θ ⊢̃M ′(F ′)≥M (F) /W and Θ |̃=W.

Lemma 9.3 (Semidecl. Typing Sound). (Lemma G.6)

(1) If Θ ;Γ ⊢̃ h⇒ P then Θ ;Γ ⊢ h⇒ P.

(2) If Θ ;Γ ⊢̃ g⇒↑P then Θ ;Γ ⊢ g⇒↑P.

(3) If Θ ;Γ ⊢̃ v⇐ P / χ and Θ ;Γ ◁̃ χ then Θ ;Γ ⊢ v⇐ P.

(4) If Θ ;Γ ⊢̃ e⇐ N then Θ ;Γ ⊢ e⇐ N.

(5) If Θ ;Γ ; [P] ⊢̃ {ri⇒ ei}i∈I ⇐ N then Θ ;Γ ; [P] ⊢ {ri⇒ ei}i∈I ⇐ N.

(6) If Θ ;Γ ; [N] ⊢̃ s⇒↑P / χ and Θ ;Γ ◁̃ χ then Θ ;Γ ; [N] ⊢ s⇒↑P.

Lemma 9.4 (Semidecl. Typing Complete). (Lemma G.7)

(1) If Θ ;Γ ⊢ h⇒ P then Θ ;Γ ⊢̃ h⇒ P.

(2) If Θ ;Γ ⊢ g⇒↑P then Θ ;Γ ⊢̃ g⇒↑P.

(3) If Θ ;Γ ⊢ v⇐ P then there exists χ such that Θ ;Γ ⊢̃ v⇐ P / χ and Θ ;Γ ◁̃ χ .

(4) If Θ ;Γ ⊢ e⇐ N then Θ ;Γ ⊢̃ e⇐ N.

(5) If Θ ;Γ ; [P] ⊢ {ri⇒ ei}i∈I ⇐ N then Θ ;Γ ; [P] ⊢̃ {ri⇒ ei}i∈I ⇐ N.

(6) If Θ ;Γ ; [N] ⊢ s⇒↑P

then there exists χ such that Θ ;Γ ; [N] ⊢̃ s⇒↑P / χ and Θ ;Γ ◁̃ χ .

When combined with the soundness of algorithmic (sub)typing we get the soundness

of algorithmic constraint checking and fixInstChk. We state the typing version.
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Lemma 9.5 (Alg. to Semidecl. Chk.). (Lemma G.8)

(1) If Θ ;Γ ◁χ then Θ ;Γ ◁̃ χ .

(2) If Θ̂ ;Γ ⊢ χ fixInstChk ⊣Ω ′ then Θ̂ ;Γ ⊢̃ χ fixInstChk ⊣Ω ′.

This algorithmic soundness proof allows us to prove the SMT-transport lemmas purely

within the semideclarative setting. (I tried doing it in the algorithmic setting, and it seemed

not to work.) The main one is stated as follows. Note the tilde over the turnstile indicating

it is a semideclarative derivation. The context Θ̂ ′ has algorithmic solutions (none where the

lemma is used) of the initial Θ̂ but also some given declarative ones. Since the algorithm

does not use declarative solutions, we need to prove the solutions it does use are SMT-

equivalent.

Lemma 9.6 (fixInstChk Unapply). (Lemma G.31)

If Θ̂ present and [Θ̂ ]χ = χ

and Θ̂ ⊢ χ Wf[ξ ] and cl(ξ −∥[ξ ]Θ̂∥)( /0) = unsol([ξ ]Θ̂)

and Θ̂
SMT−−−→ Θ̂ ′ and [ξ ]Θ̂ ′;Γ ⊢̃ [Θ̂ ′]χ fixInstChk ⊣Ω ′

then there exists a derivation [ξ ]Θ̂ ;Γ ⊢̃ χ fixInstChk ⊣Ω such that Ω
SMT−−−→Ω ′.

We discuss a sketch of the proof which uses several lemmas. First, the initial run of

fixInst (the first thing fixInstChk does) solves everything but the evars already known to be

solvable later (those marked ▶ in context).

Lemma 9.7 (Only Evars Solved Later Remain Unsolved). (Lemma G.29)

If Θ̂ ⊢W wf[ξ ] and [Θ̂ ]2W =W

and cl(ξ −∥[ξ ]Θ̂∥)( /0) = unsol([ξ ]Θ̂) and [ξ ]Θ̂ ⊢W fixInst ⊣ Θ̂ ′

then unsol(Θ̂ ′) =▶unsol([ξ ]Θ̂).
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Then we make a selection of later evar solutions (with their accompanying index spine

equivalence constraints) that is SMT-compatible with the given solutions. We can then

prove that all the solutions are SMT-equivalent: If W holds at Ω ′ and running fixInst on

W solves all but the later evars and the later evar solutions of Ω are SMT-compatible with

those of Ω ′ then all the evar solutions of Ω must be SMT-compatible with those of Ω ′.

The point is that fixInst only instantiates by simple matching on equalites that should hold,

and SMT-equal solutions can be freely swapped (allowing us to deal with the later evars

being SMT-equal) using part (1) of Lemma 9.10 (Equiv. Solutions), discussed a bit later.

The main part of the following is part (2). In proving part (2) we use part (1).

Lemma 9.8 (True Inst. Preserves Relaxed Ext.). (Lemma G.30)

Assume ∥Ω∥,▶Ω ,Θ̂ −∥Ω∥−▶Ω
SMT−−−→Ω ′.

(1) If ∥Θ̂∥ |̃= [Ω ′]2((∀)W ) and Θ̂ ⊢ (∀)W Inst ⊣ Θ̂ ′′

and Θ̂ ′′
SMT−−−→Ω and [Θ̂ ]((∀)W ) = (∀)W

then ∥Θ̂ ′′∥,▶Ω ,Θ̂ ′′−∥Θ̂ ′′∥−▶Θ̂ ′′
SMT−−−→Ω ′.

(2) If ∥Θ̂∥ |̃= [Ω ′]2W and Θ̂ ⊢W fixInst ⊣ Θ̂0

and Θ̂0
SMT−−−→Ω and unsol(Θ̂0) =▶unsol(Θ̂) and [Θ̂ ]2W =W

then Ω
SMT−−−→Ω ′.

We then take this resulting SMT-compatibility Ω
SMT−−−→Ω ′ and transport the given con-

straint equivalence of Lemma 9.5 (Alg. to Semidecl. Chk) along it. This is a so-called

sandwich lemma (we sandwich the new Ω between the old Ω ′ and the constraint) which

uses judgmental equivalence so let’s talk about that.
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9.4.2 Judgmental Equivalence

Basically, two types/functors/algebras/measurements/constraints are judgmentally equiva-

lent if their respective, structural subparts are equivalent and the other (index) parts are

SMT-equivalent. Refined inductive types are equivalent only if they use syntactically the

same algebras and functors (up to alpha renaming).

All equivalence judgments satisfy weakening, reflexivity (Lemmas G.11, G.14, and

G.17), symmetry (Lemmas G.12, G.15, and G.18), and transitivity (Lemmas G.13, G.16,

and G.19).

Judgmental equivalence is stable under substitution: Lemma G.10 (Tp./Meas. Equiv.

Syn. Subs). We only checked this for types/functors/measures as we only needed it there,

but constraint equivalence is probably also stable under substitution.

We define a straightforward subtyping constraint equivalence judgment Θ |̃=W ↔W ′,

which uses the declarative index equivalence introduced in Chapter 6, as well as judgmental

type equivalence, to transport semideclarative constraint verification derivations: if Θ |̃=W

and Θ |̃= W ↔W ′, then Θ |̃= W ′ by a derivation of equal structure/height (see appendix

Lemma G.22). To simplify1 the proof of this, we prove that type equivalence implies

subtyping (Lemma G.20). To prove that, we use the fact that if Θ1 is logically equivalent

to Θ2 under their prefix context Θ (judgment Θ ⊢Θ1 ≡ Θ2) then we can replace Θ1 with

Θ2 (and vice versa) in derivations (Lemma C.71). Conversely, mutual subtyping does not

imply type equivalence: ⊢ 1∧ tt≤ 1 and ⊢ 1≤ 1∧ tt but ̸⊢ 1≡ 1∧ tt because the unit type

is structurally (at the level of types) distinct from an asserting type.

We define a similar typing constraint equivalence judgment Θ ◁̃ χ ↔ χ ′ which uses

subtyping constraint equivalence. We prove a similar transport lemma for typing.

1However, this doesn’t save us much work because we still need to prove Lemma G.23 (Subtyping Re-
spects Equiv).
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Lemma 9.9 (Typing Respects Equiv.). (Lemma G.26)

Assume Θ ⊢ Γ ≡+ Γ ′.

(1) If Θ ;Γ ◁̃ χ and Θ ◁̃ χ ↔ χ ′

then Θ ;Γ ′ ◁̃ χ ′ by a derivation of equal height and structure.

(2) If Θ ;Γ ⊢̃ h⇒ P then there exists P′ such that Θ ⊢ P≡+ P′

and Θ ;Γ ′ ⊢̃ h⇒ P′ by a derivation of equal height and structure.

(3) If Θ ;Γ ⊢̃ g⇒↑P then there exists P′ such that Θ ⊢ ↑P≡− ↑P′

and Θ ;Γ ′ ⊢̃ g⇒↑P′ by a derivation of equal height and structure.

(4) If Θ ;Γ ⊢̃ v⇐ P / χ and Θ ⊢ P≡+ P′ then there exists χ ′ such that Θ ◁̃ χ ↔ χ ′

and Θ ;Γ ′ ⊢̃ v⇐ P′ / χ ′ by a derivation of equal height and structure.

(5) If Θ ;Γ ⊢̃ e⇐ N and Θ ⊢ N ≡− N′

then Θ ;Γ ′ ⊢̃ e⇐M by a derivation of equal height and structure.

(6) If Θ ;Γ ; [P] ⊢̃ {ri⇒ ei}i∈I ⇐ N and Θ ⊢ P≡+ P′ and Θ ⊢ N ≡− N′

then Θ ;Γ ′; [P′] ⊢̃ {ri⇒ ei}i∈I ⇐ N′

by a derivation of equal height and structure.

(7) If Θ ;Γ ; [N] ⊢̃ s⇒↑P / χ and Θ ⊢ N ≡− N′

then there exist P′ and χ ′ such that Θ ⊢ ↑P≡− ↑P′ and Θ ◁̃ χ ↔ χ ′

and Θ ;Γ ′; [N′] ⊢̃ s⇒↑P′ / χ ′ by a derivation of equal height and structure.

The statement of the subtyping version would look similar to this one if we don’t use

the “equivalence implies subtyping” simplification.

Anyway, we can swap SMT-equal indices without affecting any structure registered by

judgmental equivalence (or SMT equality).
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Lemma 9.10 (Equiv. Solutions). (Lemma G.27)

Assume Θ̂
SMT−−−→Ω .

(1) If Θ̂ ▷ t : κ then ∥Θ̂∥ ⊢ [Ω ]2t = [Ω ]2[Θ̂ ]2t true.

(2) If Θ̂ ▷u : τ then ∥Θ̂∥ ⊢ [Ω ]2u≡ [Ω ]2[Θ̂ ]2u : τ .

(3) If Θ̂ ; [τ]▷ t : κ then ∥Θ̂∥; [τ] ⊢ [Ω ]2t≡ [Ω ]2[Θ̂ ]2t : κ .

(4) If Θ̂ ▷A type[_] then ∥Θ̂∥ ⊢ [Ω ]2A≡± [Ω ]2[Θ̂ ]2A.

(5) If Θ̂ ▷M (F)msmts[_] then ∥Θ̂∥ ⊢ [Ω ]2M ([Ω ]2F)≡ [Ω ]2[Θ̂ ]2M ([Ω ]2[Θ̂ ]2F).

(6) If Θ̂ ▷α : F(τ)⇒ τ then ∥Θ̂∥ ⊢ [Ω ]2α; [Ω ]2F ≡τ [Ω ]2[Θ̂ ]2α; [Ω ]2[Θ̂ ]2F.

(7) If Θ̂ ⊢ (∀)W wf then ∥Θ̂∥ |̃= [Ω ]2((∀)W )↔ [Ω ]2[Θ̂ ]2((∀)W ).

(8) If Θ̂ ⊢ χ Wf then ∥Θ̂∥ ◁̃ [Ω ]2χ ↔ [Ω ]2[Θ̂ ]2χ .

Combined with the fact that (sub)typing respects judgmental equivalence, we get the

so-called sandwich lemma for constraint checking.

Lemma 9.11 (Constraint Checking Sandwich). (Lemma G.28)

(1) If Θ̂
SMT−−−→Ω and ∥Θ̂∥ |̃= [Ω ]2((∀)W ) and Θ̂ ⊢ (∀)W wf

then ∥Θ̂∥ |̃= [Ω ]2[Θ̂ ]2((∀)W ) by a derivation of equal height and structure.

(2) If Θ̂
SMT−−−→Ω and ∥Θ̂∥;Γ ◁̃ [Ω ]2χ and Θ̂ ⊢ χ Wf

then ∥Θ̂∥;Γ ◁̃ [Ω ]2[Θ̂ ]2χ by a derivation of equal height and structure.

When Θ̂ is complete Ω ′ we get say ∥Θ̂∥;Γ ◁̃ [Ω ]2[Ω ′]2χ which is nothing but ∥Θ̂∥;Γ ◁̃

[Ω ′]2χ since FEV([Ω ′]2χ) = /0 where FEV(−) gets the set of free evars.
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9.4.3 Dependency Mediation

Dependency mediation (Fig. G.1) is an abstraction describing how algorithmic2 input type

dependencies transform into algorithmic output constraint dependencies. The dependency

mediation judgment ∆ ⊢ ξ ′∠ξ presupposes that only evars occur in ξ ′ and ξ , and that no

evar from ∆ occurs in ξ ′, and makes an assertion as defined by exactly one rule:

dom(∆)⊆ cl(ξ )(FV(ξ )−∆)

for all D̃�ĉ ∈ ξ
′ there exists B̃�ĉ ∈ ξ such that B̃⊆ D̃∪∆ and B̃∩∆ ⊆ cl(ξ )(D̃)

∆ ⊢ ξ
′∠ξ

The first premise, a condition on all of ∆ , says all the newly generated evars ∆ are value-

determined, assuming everything except ∆ is. The second premise says that for every

dependency in the input type there is a similar dependency in the output constraint except

it may depend on part of ∆ , but that part of ∆ is value-determined, assuming the original

dependencies are. The judgment ∆ ⊢ ξ ′∠ξ can be read “∆ mediates ξ ′ in ξ ”.

A basic consequence of dependency mediation is that whatever is value-determined ac-

cording to ξ ′ (of input type) is also value-determined according to ξ (of output constraints).

Lemma 9.12 (Admissible Premise). (Lemma G.32)

If ∆ ⊢ ξ ′∠ξ then cl(ξ ′)( /0)⊆ cl(ξ )( /0).

Dependency mediation is also reflexive (under empty ∆ ) and composable: Lemma G.33

(No ∆ Mediates Reflexive) and Lemma G.34 (Compose Mediates). Composability is useful

in the product typechecking case, for example. Not only composability of dependency

2A dependency is algorithmic if it only mentions evars.
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mediation but also fixInstChk: Lemma G.2 (Inst. Compose).

We state the lemma relating the dependencies of input types and output constraints

of algorithmic (sub)typing as follows. The newly generated evars mediate the input type

dependencies in the output constraint dependencies.

Lemma 9.13 (Main Complete). (Lemma G.35)

(1) If Θ̂ ⊢ R′ <:+ Q /W and R′ ground and Θ̂ ⊢ Q type[ξQ] and [Θ̂ ]Q = Q

then Θ̂ ⊢W wf[ξW ] and · ⊢ ξQ−∥Θ̂∥∠ξW −∥Θ̂∥;

moreover, if Q = R then ▶(pos(ξQ−∥Θ̂∥))⊆ ξW −∥Θ̂∥.

(2) If Θ̂ ▷M (F) type[ξ ′] and ∄x. v =
−−−→iinjki

(−−−−→j⟨_ j,−⟩ x
)

and d÷Θ̂ ▷ H
−→
β ;G;M (F)I⊜ dΘ ;R and Θ̂ ;Γ ⊢ v⇐∃dΘ . R∧ dΘ / χ ⊣ ∆

and [Θ̂ ](F ,M ,G,
−→
β ) = (F ,M ,G,β )

then Θ̂ ,∆ ⊢ ⌊χ⌋ wf[ξχ ] and ∆ ⊢ ξ ′−∥Θ̂∥∠ξχ −∥Θ̂∥.

(3) If Θ̂ ;Γ ⊢ v⇐ Q / χ ⊣ ∆ and Θ̂ ▷Q type[ξQ] and [Θ̂ ]Q = Q

then Θ̂ ,∆ ⊢ ⌊χ⌋ wf[ξχ ] and ∆ ⊢ ξQ−∥Θ̂∥∠ξχ −∥Θ̂∥.

(4) If Θ̂ ;Γ ; [M] ⊢ s⇒↑P / χ ⊣ ∆

and Θ̂ ▷M type[ξM] and [Θ̂ ]M = M

then Θ̂ ,∆ ⊢ ⌊χ⌋ wf[ξχ ] and ∆ ⊢ ξM−∥Θ̂∥∠ξχ −∥Θ̂∥.

At the start of focusing stages (the “top level” judgments) we know all the existentials

FV(ξ ′) in dependencies are value-determined, we know newly generated evars ∆ mediate

input type dependencies in output constraint dependencies, and we know output constraints

can only mention evars from the input type and ∆ . As a consequence, we know that ac-

cording to the output constraint dependencies all the original existentials FV(ξ ′) as well as

the new ones ∆ are value-determined.
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Lemma 9.14 (Det. to Mediated Det.). (Lemma G.37)

If ξ ′ ⊢ FV(ξ ′) det and ∆ ⊢ ξ ′∠ξ and FV(ξ )⊆ FV(ξ ′)∪dom(∆)

then ξ ⊢ FV(ξ ′),∆ det.

9.4.4 Proving Completeness

Algorithmic completeness says our subtyping algorithm verifies any declarative subtyping.

We state the main lemma of which algorithmic subtyping completeness is a corollary (if

one only cared about subtyping). This main lemma is used to prove algorithmic typing

completeness which is the main result we care about.

Lemma 9.15 (Aux. Alg. Sub. Complete). (Lemma G.38)

(1) If Θ |̃=W then Θ |=W.

(2) If Θ̂
SMT−−−→Ω and ∥Θ̂∥ ⊢̃ R <:+ [Ω ]Q /W and ∥Θ̂∥ |̃=W

and Θ̂ present and [Θ̂ ]Q = Q and Rground and Θ̂ ▷Q type[ξ ]

then there exists W ′ such that Θ̂ ⊢ R <:+ Q /W ′

and ∥Θ̂∥; · ⊢ [Ω ]W ′ fixInstChk ⊣ ∥Θ̂∥ and ∥Θ̂∥ |̃=W ↔ [Ω ]W ′.

(3) If Θ̂
SMT−−−→Ω and ∥Θ̂∥ ⊢̃ [Ω ]M <:− L /W and ∥Θ̂∥ |̃=W

and Θ̂ present and [Θ̂ ]M = M and Lground and Θ̂ ▷M type[ξ ]

then there exists W ′ such that Θ̂ ⊢ L <:− M /W ′

and ∥Θ̂∥; · ⊢ [Ω ]W ′ fixInstChk ⊣ ∥Θ̂∥ and ∥Θ̂∥ |̃=W ↔ [Ω ]W ′.

(4) If Ξ ⊢̃ α;F <:τ α ′;F ′ then Ξ ▷α;F <:τ α ′;F ′.

(5) If Θ ⊢̃ R <:+ P /W and Θ |̃=W then Θ ⊢ R <:+ P.

(6) If Θ ⊢̃ N <:− L /W and Θ |̃=W then Θ ⊢ N <:− L.



9.4. ALGORITHMIC COMPLETENESS 265

(7) If Θ̂
SMT−−−→Ω and ∥Θ̂∥ ⊢̃M ′(F ′)≥ [Ω ](M (F)) /W and ∥Θ̂∥ |̃=W

and Θ̂ present and [Θ̂ ](M (F))=M (F) and M ′(F ′)ground and Θ̂▷M (F)msmts[ξ ]

then there exists W ′ such that Θ̂ ⊢M ′(F ′)≥M (F) /W ′

and ∥Θ̂∥; · ⊢ [Ω ]W ′ fixInstChk ⊣ ∥Θ̂∥ and ∥Θ̂∥ |̃=W ↔ [Ω ]W ′.

Finally, we prove the completeness of algorithmic typing. Like algorithmic typing

soundness, again due to focusing, the head, bound expression, expression, and pattern

matching parts are straightforward to state (and prove). But, because algorithmic func-

tion application may instantiate indexes different but logically equal to those conjured

(semi)declaratively, bound expressions may algorithmically synthesize a type (judgmen-

tally) equivalent to the type it synthesizes declaratively.

We introduced logical context equivalence in Sec. 9.4.2. Other than in proving that

type equivalence implies subtyping, logical context equivalence is used in proving the com-

pleteness of algorithmic typing (in particular, we effectively use appendix Lemma C.71 to

swap logically equivalent logical contexts in (semi)declarative typing derivations). The

type [Ω ,Ω ′]2P′ in the output of the algorithm in part (8) below can have different index

solutions (from output Ω ′) that are logically equal (under Θ ) to the solutions which ap-

pear in the declaratively synthesized P. However, P and P′ necessarily have the same

structure, so Θ ⊢ P ≡+ [Ω ,Ω ′]2P′. Therefore, a bound expression (of a let-binding) may

(semi)declaratively synthesize a type that is judgmentally equivalent to the type synthe-

sized algorithmically: see part (3). We then extract different but logically equivalent log-

ical contexts from the (equivalent) types synthesized by a bound expression. We replace

(Lemma 9.9 (Typing Respects Equiv)) the given semideclarative subderivation of the body

of the let-binding with an equivalent typing but at the algorithmic solutions, obtained by

the induction hypothesis on the bound expression in the proof of the let-binding case of
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part (6), before applying the induction hypothesis on the body, which is legal because the

structure/height of the original does not change.

As such, the main algorithmic typing completeness lemma is stated as follows:

Lemma 9.16 (Aux. Alg. Typing Complete). (Lemma G.39)

(1) If Θ ;Γ ◁̃ χ then Θ ;Γ ◁χ .

(2) If Θ ;Γ ⊢̃ h⇒ P then Θ ;Γ ▷h⇒ P.

(3) If Θ ;Γ ⊢̃ g⇒↑P

then there exists P′ such that Θ ;Γ ▷g⇒↑P′ and Θ ⊢ P≡+ P′.

(4) If Θ̂
SMT−−−→Ω and ∥Θ̂∥;Γ ⊢̃ v⇐ [Ω ]P / χ and ∥Θ̂∥;Γ ◁̃ χ

and Θ̂ present and [Θ̂ ]P = P and Θ̂ ▷P type[ξ ]

then there exist χ ′, ∆ ′, and Ω ′ such that Θ̂ ;Γ ⊢ v⇐ P / χ ′ ⊣ ∆ ′

and Θ̂ ,∆ ′ ⊢ χ ′Wf[ξ ′] and ∥Θ̂∥, [ξ ′]∆ ′;Γ ⊢ [Ω ]χ ′ fixInstChk ⊣ ∥Θ̂∥,Ω ′

and ∥Θ̂∥ ◁̃ χ ↔ [Ω ,Ω ′]2χ ′.

(5) If Θ ;Γ ⊢̃ v⇐ P / χ and Θ ;Γ ◁̃ χ then Θ ;Γ ▷ v⇐ P.

(6) If Θ ;Γ ⊢̃ e⇐ N then Θ ;Γ ▷ e⇐ N.

(7) If Θ ;Γ ; [P] ⊢̃ {ri⇒ ei}i∈I ⇐ N then Θ ;Γ ; [P]▷{ri⇒ ei}i∈I ⇐ N.

(8) If Θ̂
SMT−−−→Ω and ∥Θ̂∥;Γ ; [[Ω ]M] ⊢̃ s⇒↑P / χ and ∥Θ̂∥;Γ ◁̃ χ

and Θ̂ present and Θ̂ ▷M type[ξ ] and [Θ̂ ]M = M

then there exist P′, χ ′, ∆ ′, and Ω ′ such that Θ̂ ;Γ ; [M] ⊢ s⇒↑P′ / χ ′ ⊣ ∆ ′

and Θ̂ ,∆ ′ ⊢ χ ′Wf[ξ ′] and ∥Θ̂∥, [ξ ′]∆ ′;Γ ⊢ [Ω ]χ ′ fixInstChk ⊣ ∥Θ̂∥,Ω ′

and ∥Θ̂∥ ◁̃ χ ↔ [Ω ,Ω ′]2χ ′ and ∥Θ̂∥ ⊢ P≡+ [Ω ,Ω ′]2P′.
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(9) If Θ ;Γ ; [N] ⊢̃ s⇒↑P / χ and Θ ;Γ ◁̃ χ

then there exists P′ such that Θ ;Γ ; [N]▷ s⇒↑P′ and Θ ⊢ P≡+ P′.

Algorithmic typing completeness follows:

Theorem 9.3 (Algorithmic Typing Completeness). (Thm. G.1)

(1) If Θ ;Γ ⊢ h⇒ P then Θ ;Γ ▷h⇒ P.

(2) If Θ ;Γ ⊢ g⇒↑P then Θ ;Γ ▷g⇒↑P′ and Θ ⊢ P≡+ P′ for some P′.

(3) If Θ ;Γ ⊢ v⇐ P then Θ ;Γ ▷ v⇐ P.

(4) If Θ ;Γ ⊢ e⇐ N then Θ ;Γ ▷ e⇐ N.

(5) If Θ ;Γ ; [P] ⊢ {ri⇒ ei}i∈I ⇐ N then Θ ;Γ ; [P]▷{ri⇒ ei}i∈I ⇐ N.

(6) If Θ̂ ;Γ ; [N] ⊢ s⇒↑P then Θ ;Γ ; [N]▷ s⇒↑P′ and Θ ⊢ P≡+ P′ for some P′.
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Chapter 10

Conclusion

“The petty done, the undone vast.”

—Robert Browning

10.1 Summary

We have presented a declarative system for modular recursive index refinement typing that

is semantically sound and logically designed with basic principles. We proved our declara-

tive system is sound for a domain-theoretic denotational semantics and an equivalent oper-

ational semantics, implying our system is logically consistent and totally correct. We have

also presented an implementable algorithmic system and proved it is decidable, as well

as sound and complete for the declarative system. Focusing yields CBPV, which already

has clear denotational semantics, and refining it by an index domain (paying attention to

value-determinedness) facilitates a semantics in line with the perspective of Melliès and

Zeilberger [2015]. But focusing (in combination with value-determinedness) also allows

for a relatively easy proof of the completeness of a decidable typing algorithm. The relative

ease with which we demonstrate both the semantic and algorithmic correctness of a rich

typing system essentially flowed from a single, proof-theoretic technique: focusing.
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10.2 Future Work

Researchers of liquid typing have laid out an impressive and extensive research program

providing many useful features which would be very interesting to study in our setting.

But the most glaring absence in this thesis is polymorphism. We plan to add type poly-

morphism in future work, along the lines of previous work [Dunfield and Krishnaswami,

2013], which would go well with refinement abstraction [Vazou et al., 2013] or refinement

polymorphism. We expect a form of predicative polymorphism would be straightforward

to add, at least moreso than impredicative polymorphism, and there are many interesting

questions to explore in the relation between the two (predicative and impredicative) and

refinements in our setting. It would also be interesting to study other features of liquid

typing in our setting, like extending refinement inference with templates and refinement

reflection, though arguably the latter is more closely related to dependent typing.

In this thesis we only consider value-determined refinements. For simplicity we also

minimize the coupling of the type system to the SMT logic. In future work it would be

interesting to increase this coupling and to study carefully the semantic (in)completeness

of value-determined indices in syntactic well-formedness rules. (Relatedly, it could be in-

teresting to study the completeness of subtyping but in this thesis we wanted to keep it

very simple but with huge expressive benefit.) It would also be desirable to add refine-

ments which are not value-determined, that is, invaluable refinements [Dunfield, 2007b]. It

may make sense to add invaluable refinements along with polymorphism and abstract re-

finements as semantically invaluable refinements seem to involve parametricity [Kennedy,

2010].

In future work, we hope to apply our type refinement system (or future extensions of

it) to various domains, from static time complexity analysis [Wang et al., 2017] to resource
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analysis [Handley et al., 2019]. Eventually, we hope to be able to express, for example,

that a program terminates within a worst-case amount of time and space. Our system is

parametric in the index domain, provided it satisfies some basic properties. Different index

domains may be suitable for different applications. We also hope to add more effects, such

as input/output and mutable reference cells. CBPV is built for effects, but our refinement

layer may result in interesting interactions between effects and indexes.

Objects (in the sense of object-oriented programming) or coinductive types are dual

to inductive types in that, semantically, they are final coalgebras of endofunctors [Cook,

2009]. A consideration of categorical duality leads us to a natural (perhaps naïve) question:

if we can build a well-behaved system that refines algebraic data types by algebras, could

it mean anything to refine objects by coalgebras? We would expect the most direct model

of coinductive types would be via negative types, but working out the details is potential

future work.

Our system may at first seem complicated, but its metatheoretic proofs are largely

straightforward, if lengthy (at least as presented) and tedious. A source of this complexity

is the proliferation of judgments. However, having various judgments helps us organize

different forms of knowledge [Martin-Löf, 1996] or (from a Curry–Howard perspective)

stages or parts of an implementation (such as pattern-matching, processing an argument

list, and so on). We are always on the lookout for simplifying proofs which takes us closer

to the essence of our systems. It would be especially good if we could simplify the proof

of algorithmic completeness, for example, which has tedious and long but intuitively cor-

rect technical lemmas. We would also like to simplify (and expand on) unrolling identity

functors and its associated metatheory, such as its interaction with subtyping.
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Adding more expressive features and computational effects tends to significantly af-

fect the metatheory and the techniques used to prove it. We hope to reflect on the de-

velopment of our proofs (including those for systems with polymorphism [Dunfield and

Krishnaswami, 2013, 2019]) in search of abstractions which may help designers of prac-

tical, general-purpose functional languages to establish crucial metatheoretic properties.

In this respect, synthetic semantics might be a helpful tool to avoid having to (re)prove

hard technical details such as those involved with domain models, especially for things

like computational adequacy [Niu et al., 2024]. To borrow a metaphor from Grothendieck

[McLarty, 2003], in this thesis I have relied too much on the chisel; the problem that is the

metatheory of modular refinement typing could use more soaking in some liquid.

Mechanizing our metatheory would improve our understanding of and confidence in

our system but then one has to deal with limitations of proof assistants, which can be

especially problematic when the system and its metatheory is a work in progress. There

are more extensions and simplifications to be made; hopefully by then proof assistants

will have even more convenient frameworks in which we can prove and maintain both our

semantic and algorithmic results more easily. Regardless, it is convenient to be able to

reason about the metatheory of the language just within the ambient mathematical milieu.

This was basically the approach of this thesis: apply logical principles and use standard

mathematical tools, and things seem to work out quite alright. Sure, there is much more

work to be done, and the difficulty might escalate rapidly, but I hope this is a decent start

that will make it easier to understand and overcome difficulties as they inevitably arise.
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Appendix A.1 Syntax

Program variables x,y,z
Expressions e ::= returnv | λx.e | rec x : N. e | unreachable

| let x=g; e | match h {ri⇒ ei}i∈I
Values v ::= x | ⟨⟩ | ⟨v,v⟩ | inj1 v | inj2 v | into(v) | {e}
Heads h ::= x | (v : P)
Bound expressions g ::= h(s) | (e : ↑P)
Spines s ::= · | v,s
Patterns r ::= into(x) | ⟨⟩ | ⟨x,y⟩ | inj1 x | inj2 x
Types A,B,C ::= P | N
Positive types P ::= Q | ∃a : κ . P

Q ::= R | Q∧ϕ

R ::= 1 | R×R | 0 | P+P | ↓N | {ν : µF |M (F)}
Negative types N ::= M | ∀a : κ . N

M ::= L | ϕ ⊃M
L ::= R→ L | ↑P

Measurements on ν : µF M (F) ::= ·F |M (F),(foldF α)ν u=τ t
Functors F ,G,H ::= P̂ | F⊕F F ,G ,H ::= F | B̂

P̂ ::= Î | P⊗ P̂
Î ::= I | Id⊗ Î B̂ ::= P | Id

Ix. vars. and sets a,b,c,d, ǎa(u) A,B,C,D
Index terms t,u,ϕ ,ψ ::= a | n | t + t | t− t | (t, t) | λa. t | a(t)

| t = t | t ≤ t | ϕ ∧ϕ | ϕ ∨ϕ | ¬ϕ | tt | ff
Index spines t,u,a,b,c ::= · | t,t | .1,t | .2,t
Algebras α ,β ,γ ::= · | (p⇒ t |||||α)
Sum algebra patterns p ::= q | inj1 p | inj2 p
Product algebra patterns q ::= () | (o,q)
Base algebra patterns o ::= ⊤ | a | pk(a,o)
Sorts τ ,ω ::= B | N | Z | τ× τ | κ ⇒ τ

First-order sorts κ ::= B | N | Z | κ×κ

Figure A.1: Syntax
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Program contexts Γ ::= · | Γ ,x : R
Logical contexts Θ ::= · | Θ ,a÷ τ | Θ ,a d÷ τ | Θ ,a Id | Θ ,ϕ

dΘ ::= · | dΘ ,a d÷ τ | dΘ ,a Id | dΘ ,ϕ
Ξ ::= · | Ξ ,a÷ τ | Ξ ,a d÷ τ | Ξ ,a Id

dΞ ::= · | Ξ ,a d÷ τ | Ξ ,a Id
Value-det. dependencies ξ ::= · | ξ ,B�a | ξ ,▶D
Algorithmic contexts Θ̂ , ˆdΘ , Ξ̂ , ˆdΞ ::= Θ | Θ̂ , â d÷κ | Θ̂ , â : κ=t

| Θ̂ ,▶â d÷κ | Θ̂ ,▶â : κ=t
∆ ::= · | ∆ , â d÷κ | ∆ ,▶â d÷κ

Complete algo. contexts Ω ::= Θ | Ω , â : κ=t | Ω ,▶â : κ=t
Typing constraints χ ::= · | (e⇐ N), χ | W , χ

Subtyping constraints (∀)W ::= (⊃)W | ∀a d÷ τ . (∀)W
(⊃)W ::= W | ϕ ⊃ (⊃)W

W ::= ϕ | u≡τ t | u≡[τ] t |
∨−→

W
| R <:+ P | N <:− L | (∀)W

V(∀)W

Figure A.2: Syntax continued
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Appendix A.2 Judgments and Their Presuppositions

ξ ⊢D det (Fig. A.5) pre. no judgment
Θ ctx (Fig. A.8) pre. no judgment
Θ ⊆Θ ′ (Fig. A.9) pre. Θ ctx and Θ ′ ctx
Ξ ⊢ t : τ [ξt ] (Fig. A.11) pre. Ξ ctx
Ξ ; [τ] ⊢ t : κ (Fig. A.12) pre. Ξ ctx
α ◦ injk ⊜ αk (Fig. A.13) pre. no judgment
Ξ ⊢ A type[ξA] (Fig. A.15) pre. Ξ ctx
Ξ ⊢M (F)msmts[ξ ] (Fig. A.15) pre. Ξ ctx
Ξ ⊢F functor[ξF ] (Fig. A.16) pre. Ξ ctx
Ξ ⊢ α : F(τ)⇒ τ (Fig. A.16) pre. Ξ ⊢ F functor[ξF ]
Ξ ⊢ Γ ctx (Fig. A.17) pre. Ξ ctx
Θ0;Γ0 ⊢ σ : Θ ;Γ (Fig. A.19) pre. Θ0 ctx and Θ ctx and Θ0 ⊢ Γ0 ctx and Θ ⊢ Γ ctx
Θ ⊢ ϕ true (Fig. A.20) pre. Θ ⊢ ϕ : B and Θ ctx
Θ ⊢ u≡ t : τ (Fig. A.21) pre. Θ ⊢ u : τ and Θ ⊢ t : τ and Θ ctx
Θ ; [τ] ⊢ u≡ t : κ (Fig. A.22) pre. Θ ; [τ] ⊢ u : κ and Θ ; [τ] ⊢ t : κ and Θ ctx
Θ ⊢Θ1 ≡Θ2 ctx (Fig. A.23) pre. (Θ ,Θ1) ctx and (Θ ,Θ2) ctx
Θ ⊢ A≡± B (Fig. A.81) pre. Θ ⊢ A type[ξA] and Θ ⊢ B type[ξB]

Θ ⊢M ′(F)≡M (F) (Fig. A.81) pre. Θ ⊢M ′(F)msmts[ξ ] and Θ ⊢M (F)msmts[ξ ′]
Ξ ⊢ α;F ≡τ β ;G (Fig. A.82) pre. Ξ ⊢ α : F(τ)⇒ τ and Ξ ⊢ β : G(τ)⇒ τ

Θ ⊢ A≤± B (Fig. A.24) pre. Θ ⊢ A type[ξA] and Θ ⊢ B type[ξB] and Θ ctx
Θ ⊢M ′(F ′)≥M (F) (Fig. A.25) pre. Θ ⊢M ′(F ′)msmts[ξ ′] and Θ ⊢M (F)msmts[ξ ] and Θ ctx
Ξ ⊢ α;F ≤τ β ;G (Fig. A.25) pre. Ξ ⊢ α : F(τ)⇒ τ and Ξ ⊢ β : G(τ)⇒ τ

Ξ ⊢ H
−→
β ;G;M (F)I⊜ dΘ ;R (Fig. A.26) pre. Ξ ⊢M (F)msmts[ξ ] and Ξ ⊢

−→
β : G(M (F))⇒M (F)

Θ ;Γ ⊢ h⇒ P (Fig. A.28) pre. Θ ctx and Θ ⊢ Γ ctx
Θ ;Γ ⊢ g⇒↑P (Fig. A.28) pre. Θ ctx and Θ ⊢ Γ ctx
Θ ;Γ ⊢ v⇐ P (Fig. A.29) pre. Θ ctx and Θ ⊢ Γ ctx and Θ ⊢ P type[ξP]

Θ ;Γ ⊢ e⇐ N (Fig. A.30) pre. Θ ctx and Θ ⊢ Γ ctx and Θ ⊢ N type[ξN ]

Θ ;Γ ; [P] ⊢ {ri⇒ ei}i∈I ⇐ N (Fig. A.31) pre. Θ ctx and Θ ⊢ Γ ctx and Θ ⊢ P type[ξP] and Θ ⊢ N type[ξN ]

Θ ;Γ ; [N] ⊢ s⇒↑P (Fig. A.32) pre. Θ ctx and Θ ⊢ Γ ctx and Θ ⊢ N type[ξN ]

⊢ δ : Θ ;Γ (Fig. A.46) pre. Θ ⊢ Γ ctx

Θ̂ algctx (Fig. A.52) pre. no judgment
Ξ̂ ▷ t : τ [ξt ] (Fig. A.54) pre. Ξ̂ algctx
Ξ̂ ; [τ]▷ t : κ (Fig. A.55) pre. Ξ̂ algctx
Ξ̂ ▷A type[ξ ] (Fig. A.56) pre. Ξ̂ algctx
Ξ̂ ▷M (F)msmts[ξ ] (Fig. A.15) pre. Ξ̂ algctx
Ξ̂ ▷F functor[ξ ] (Fig. A.57) pre. Ξ̂ algctx
Ξ̂ ▷α : F(τ)⇒ τ (Fig. A.57) pre. Ξ̂ ▷F functor[ξF ]

Ξ̂ ⊢ (∀)W wf[ξ ] (Fig. A.58) pre. Ξ̂ algctx
Ξ̂ ⊢ χ Wf[ξ ] (Fig. A.58) pre. Ξ̂ algctx

Θ |= (∀)W (Fig. A.59) pre. Θ ⊢ (∀)W wf[ξ ] and Θ ctx
Θ ;Γ ◁χ (Fig. A.60) pre. Θ ⊢ χ Wf[ξ ] and Θ ⊢ Γ ctx and Θ ctx

Θ̂ ⊢W Inst▶ ⊣ Θ̂ ′ (Fig. A.61) pre. Θ̂ ⊢W wf and Θ̂ algctx

Θ̂ ⊢ (∀)W Inst ⊣ Θ̂ ′ (Fig. A.61) pre. Θ̂ ⊢ (∀)W wf and Θ̂ algctx

Θ̂ ⊢W fixInst ⊣ Θ̂ ′ (Fig. A.61) pre. Θ̂ ⊢W wf[ξ ] and Θ̂ algctx

Θ̂ ;Γ ⊢ χ fixInstChk ⊣Ω (Fig. A.61) pre. Θ̂ ⊢ χ Wf[ξ ] and Θ̂ ctx and ∥Θ̂∥ ⊢ Γ ctx

Θ̂ ⊢ R <:+ P / (∀)W (Fig. A.62) pre. ∥Θ̂∥ ⊢ R type[ξR] and Θ̂ ▷P type[ξP] and Θ̂ present

Θ̂ ⊢ N <:− L / (∀)W (Fig. A.62) pre. Θ̂ ▷N type[ξN ] and ∥Θ̂∥ ⊢ L type[ξL] and Θ̂ present
Ξ ▷α;F <:τ β ;G (Fig. A.64) pre. Ξ ⊢ α : F(τ)⇒ τ and Ξ ⊢ β : G(τ)⇒ τ

Ξ̂ ▷ H
−→
β ;G;M (F)I⊜ dΘ ;R (Fig. A.65) pre. Ξ̂ ▷M (F)msmts[ξ ] and Ξ̂ ▷

−→
β : G(M (F))⇒M (F) and Ξ̂ present

(algorithmic typing judgment presuppositions similar to above)

Θ̂
SMT−−−→ Θ̂ ′ (Fig. A.71) pre. Θ̂ algctx and Θ̂ ′ algctx

Θ̂
SMT−−−→ Θ̂ ′ (Fig. A.72) pre. Θ̂ algctx and Θ̂ ′ algctx

(intermediate judgment presuppositions in Sec. A.8 similar to declarative/algorithmic versions)

Figure A.3: Judgments and their (judgmental) presuppositions (“pre.” for “presupposes”)
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Every judgment except submeasuring, unrolling, and algebra well-formedness presup-

poses that no a Id hypothesis occurs in its input context.

Appendix A.3 Declarative System

Definition A.1 (Get Value-Determined Indices (“Get Det.”)).
For any Θ ctx, define d÷(Θ) by:

d÷·= ·
d÷(Θ ,a÷ τ) = d÷Θ

d÷(Θ ,a d÷ τ) = d÷Θ ,a d÷ τ

d÷(Θ ,a d÷ τ ,a Id) = d÷Θ ,a d÷ τ ,a Id
d÷(Θ ,ϕ) = d÷Θ

Definition A.2 (Remove Propositions). For any Θ ctx, define Θ by:
·= ·

Θ ,a÷ τ =Θ ,a÷ τ

Θ ,a d÷ τ =Θ ,a d÷ τ

Θ ,a d÷ τ ,a Id=Θ ,a d÷ τ ,a Id
Θ ,ϕ =Θ

Definition A.3 (Remove Id Variables). For any Θ ctx, define Θ − Id by:
·− Id= ·

(Θ ,a÷ τ)− Id= (Θ − Id),a÷ τ

(Θ ,a d÷ τ)− Id= (Θ − Id),a d÷ τ

(Θ ,a d÷ τ ,a Id)− Id=Θ − Id

(Θ ,ϕ)− Id= (Θ − Id),ϕ

Definition A.4 (Remove Program Entries). For any substitution σ , define ⌊σ⌋ by:
⌊·⌋= ·

⌊σ , t/a⌋= ⌊σ⌋, t/a
⌊σ ,v : R/x⌋= ⌊σ⌋

Figure A.4: Miscellaneous operations
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ξ ⊢ a det Under (input) ξ , (input) index variable a is value-determined

/0�a ∈ ξ

ξ ⊢ a det
DetUnit

ξ ⊢ c det ξ ∪C�b ⊢ a det

ξ ,(C,c)�b ⊢ a det
DetCut

ξ ⊢ A det iff ξ ⊢ a det for all a ∈ A

ξ ⊢ d
Θ det iff ξ ⊢ dom(dΘ) det

/0�D≜ ∪a∈D /0�a

·−a≜ ·

(ξ ,D�c)−a≜

{
ξ −a if c = a
(ξ −a)∪ ((D−a)�c) else

units(ξ )≜ {a | ( /0�a) ∈ ξ}
pos(ξ )≜ ∪(D�a)∈ξ {a}
neg(ξ )≜ ∪(D�a)∈ξ D

FV(ξ )≜ ∪(D�a)∈ξ D∪{a}

The definitions in this figure extend in the obvious way
to permit evars â and to treat ▶D as /0�D.

Figure A.5: A judgment, definitions, and operations pertaining to ξ
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⟨t | ·⟩= t
⟨b | u⟩= b(u) if u ̸= ·

⟨λb. t | u0,u⟩= ⟨[u0/b]t | u⟩
⟨(t1, t2) | .k,u⟩= ⟨tk | u⟩ if k ∈ {1,2}
⟨a(t) | u⟩= ⟨a | t,u⟩
⟨t | u⟩ is undefined for inputs t and u not matching the above patterns
(⟨t | u⟩ is defined if Ξ ⊢ t : τ and Ξ ; [τ] ⊢ u : κ by Lemma C.17)

[σ ](a(u)) =

{
u if ⟨σ(a) | [σ ]u⟩= u
a([σ ]u) if a /∈ dom(σ)

[σ ](a(u)) is undefined if a ∈ dom(σ) and ⟨σ(a) | [σ ]u⟩ is undefined
([σ ](a(u)) is def. if a ∈ dom(σ), Ξ0 ⊢ σ : Ξ , Ξ ; [τ] ⊢ u : κ by Lemma C.17)

[σ ]a =

{
σ(a) if a ∈ dom(σ)

a else

[σ ](t1 + t2) = [σ ]t1 +[σ ]t2
...

[σ ]tt= tt

[σ ](¬ϕ) = ¬([σ ]ϕ)

...
[σ ]{ν : µF |M (F)}= {ν : µ[σ ]F | [σ ]M ([σ ]F)}

[σ ](R→ L) = [σ ]R→ [σ ]L
...

[σ ](F1⊕F2) = [σ ]F1⊕ [σ ]F2

...
[σ ]·= ·

[σ ](p⇒u|||||α) = p⇒ [σ ]u||||| [σ ]α

...
[σ ](·F) = ·[σ ]F

[σ ](M (F),(foldG β )ν u=ω u) = [σ ](M (F)),(fold[σ ]G [σ ]β )ν [σ ]u=ω [σ ]u

[σ ]·= ·
[σ ](Ξ̌ , ǎa(u) d÷κ) = [σ ]Ξ̌ , ǎa([σ ]u) d÷κ

Figure A.6: Index substitution and hereditary reduction
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[σ ]hx =

{
x if x /∈ dom(σ) or σ(x) = (x : P)
σ(x) else

[σ ]h(v : P) = ([σ ]v : [⌊σ⌋]P)

[σ ](h(s)) = ([σ ]hh)([σ ]s)
[σ ](e : ↑P) = ([σ ]e : [⌊σ⌋](↑P))

[σ ]x =

{
x if x /∈ dom(σ)

v if σ(x) = (v : P)

[σ ]⟨v1,v2⟩= ⟨[σ ]v1, [σ ]v2⟩
...

[σ ](match h {ri⇒ ei}i∈I) = match
(
[σ ]hh

)
([σ ]{ri⇒ ei}i∈I)

...
[σ ](λx.e) = λx. [σ ]e

[σ ](rec x : (∀a : N. N). e) = rec x : [⌊σ⌋](∀a : N. N). [σ ]e
...

Figure A.7: Definition of syntactic substitution on program terms

Θ ctx Input logical context Θ is well-formed

· ctx
LogCtxEmpty

Θ ctx a /∈ dom(Θ)

(Θ ,a÷ τ) ctx
(Θ ,a d÷ τ) ctx

(Θ ,a d÷ τ ,a Id) ctx

LogCtxVar

Θ ctx Θ ⊢ ϕ : B
(Θ ,ϕ) ctx

LogCtxProp

Figure A.8: Declarative logical context well-formedness
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Θ ⊆Θ ′ Input logical context Θ is a subcontext of input Θ ′

· ⊆ ·
Θ ⊆Θ

′

Θ ⊆Θ
′,a : τ

Θ ⊆Θ
′

Θ ⊆Θ
′,ϕ

Θ ⊆Θ
′

Θ ,a÷ τ ⊆Θ
′,a÷ τ

Θ ,a d÷ τ ⊆Θ
′,a d÷ τ

Θ ,a d÷ τ ,a Id⊆Θ
′,a d÷ τ ,a Id

Θ ⊆Θ
′

Θ ,ϕ ⊆Θ
′,ϕ

Figure A.9: Logical subcontext

For each base sort κ , we define the set Kκ of constant terms of sort κ:

K : {B,N,Z}→ Set
KB = {tt,ff}
KN = {0,1,2, . . .}
KZ = {. . . ,−2,−1,0,1,2, . . .}

Figure A.10: Constant index terms
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Ξ ⊢ t : τ [ξt ]

Under input Ξ , input index t has input sort τ

and output value-determined dependencies ξt
Note that Ξ ⊢ t : τ abbreviates Ξ ⊢ t : τ [_] where “_” means “don’t care”

(a : τ) ∈ Ξ

Ξ ⊢ a : τ [·]
IxVar

Ξ ⊢ t : τ [ξ ′] ξ ⊊ ξ
′

Ξ ⊢ t : τ [ξ ]
IxSub

t ∈Kκ

Ξ ⊢ t : κ [·]
IxConst

κ ∈ {N,Z} Ξ ⊢ t1 : κ [ξ1] Ξ ⊢ t2 : κ [ξ2]

Ξ ⊢ t1 + t2 : κ [·]
Ix+

κ ∈ {N,Z} Ξ ⊢ t1 : κ [ξ1] Ξ ⊢ t2 : κ [ξ2]

Ξ ⊢ t1− t2 : κ [·]
Ix−

Ξ ⊢ t1 : τ1 [ξ1] Ξ ⊢ t2 : τ2 [ξ2]

Ξ ⊢ (t1, t2) : τ1× τ2 [·]
Ix×

Ξ ,a÷κ ⊢ t : τ [ξt ]

Ξ ⊢ λa. t : κ ⇒ τ [·]
Ixλ

(a : τ) ∈ Ξ Ξ ; [τ] ⊢ t : κ

Ξ ⊢ a(t) : κ [·]
IxApp

(a d÷κ) ∈ Ξ (t d÷κ) /∈ Ξ d÷Ξ ⊢ t : κ [ξt ]

Ξ ⊢ a = t : B [FV(t)�a]
Ix=L

(a d÷κ) ∈ Ξ (t d÷κ) /∈ Ξ d÷Ξ ⊢ t : κ [ξt ]

Ξ ⊢ t = a : B [FV(t)�a]
Ix=R

(a d÷κ) ∈ Ξ (b d÷κ) ∈ Ξ

Ξ ⊢ a = b : B [a�b,b�a]
Ix=LR

Ξ ⊢ u1 = t1 : B [ξ1] Ξ ⊢ u2 = t2 : B [ξ2]

Ξ ⊢ (u1,u2) = (t1, t2) : B [ξ1∪ξ2]
Ix=×

no other rule applies Ξ ⊢ t1 : κ [ξ1] Ξ ⊢ t2 : κ [ξ2]

Ξ ⊢ t1 = t2 : B [·]
Ix=

Ξ ⊢ ϕ1 : B [ξ1] Ξ ⊢ ϕ2 : B [ξ2]

Ξ ⊢ ϕ1∧ϕ2 : B [ξ1∪ξ2]
Ix∧

Ξ ⊢ ϕ1 : B [ξ1] Ξ ⊢ ϕ2 : B [ξ2]

Ξ ⊢ ϕ1∨ϕ2 : B [·]
Ix∨

Ξ ⊢ ϕ : B [ξϕ ]

Ξ ⊢ ¬ϕ : B [·]
Ix¬

κ ∈ {N,Z} Ξ ⊢ t1 : κ [ξ1] Ξ ⊢ t2 : κ [ξ2]

Ξ ⊢ t1 ≤ t2 : B [·]
Ix≤

Figure A.11: Declarative index sorting
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Ξ ; [τ] ⊢ t : κ
Under input Ξ , fully applying an index of sort τ to t (inputs)
yields an index of sort κ (output)

Ξ ; [κ] ⊢ · : κ
IxSpineNil

Ξ ⊢ t0 : κ0 Ξ ; [τ] ⊢ t : κ

Ξ ; [κ0⇒ τ] ⊢ t0,t : κ
IxSpineEntry

k ∈ {1,2} Ξ ; [τk] ⊢ t : κ

Ξ ; [τ1× τ2] ⊢ .k,t : κ
IxSpineProjk

Figure A.12: Declarative index spine sorting

α ◦ inj1 ⊜ α1
α ◦ inj2 ⊜ α2

The left pattern of algebra α (input) is α1 (output)
The right pattern of algebra α (input) is α2 (output)

· ◦ inj1 ⊜ ·
DeclPatNil1

α ◦ inj1 ⊜ β

(inj2 p⇒ t |||||α)◦ inj1 ⊜ β
DeclPatThere1

α ◦ inj1 ⊜ β

(inj1 p⇒ t |||||α)◦ inj1 ⊜ (p⇒ t |||||β )
DeclPatHere1

· ◦ inj2 ⊜ ·
DeclPatNil2

α ◦ inj2 ⊜ β

(inj1 p⇒ t |||||α)◦ inj2 ⊜ β
DeclPatThere2

α ◦ inj2 ⊜ β

(inj2 p⇒ t |||||α)◦ inj2 ⊜ (p⇒ t |||||β )
DeclPatHere2

Figure A.13: Algebra pattern selection

∃·. P = P
∃(Θ ,a÷κ). P = ∃Θ . P
∃(Θ ,a d÷κ). P = ∃Θ . (∃a d÷κ . P)
∃(Θ ,ϕ). P = ∃Θ . P

Q∧·= Q
Q∧ (Θ ,a : κ) = Q∧Θ

Q∧ (Θ ,ϕ) = (Q∧ϕ)∧Θ

∀·. N = N
∀(Θ ,a÷κ). N = ∀Θ . N
∀(Θ ,a d÷κ). N = ∀Θ . (∀a d÷κ . N)

∀(Θ ,ϕ). N = ∀Θ . N

· ⊃M = M
(Θ ,a : κ)⊃M =Θ ⊃M

(Θ ,ϕ)⊃M =Θ ⊃ (ϕ ⊃M)

Figure A.14: Metaoperations for forming types over logical contexts
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Ξ ⊢M (F)msmts[ξM (F)]
Under input Ξ , input measurements M (F) are well-formed,
with output value-determined dependencies ξM (F)

· ⊢ F functor[_]
Ξ ⊢ ·F msmts[·]

Ξ ⊢M (F)msmts[ξ ] · ⊢ α : F(τ)⇒ τ d÷Ξ ; [τ] ⊢ t : κ (t d÷κ) ∈ Ξ

Ξ ⊢M (F),(foldF α)ν t=τ t msmts[ξ ∪FV(t)�t]

Ξ ⊢M (F)msmts[ξ ]
· ⊢ α : F(τ)⇒ τ d÷Ξ ; [τ] ⊢ t : κ (t d÷κ) /∈ Ξ d÷Ξ ⊢ t : κ

Ξ ⊢M (F),(foldF α)ν t=τ t msmts[ξ ]

Ξ ⊢ A type[ξA]
Under Ξ (input), type A (input) is well-formed,
with (output) value-determined dependencies ξA

Ξ ,dΞ ⊢ Q type[ξQ] ξQ− d÷Ξ ⊢ d
Ξ det

Ξ ⊢ ∃dΞ . Q type[ξQ− d
Ξ ]

DeclTp∃

Ξ ⊢ R type[ξR] Ξ ⊢ −→ϕ : B [ξ−→
ϕ
]

Ξ ⊢ R∧−→ϕ type[ξR∪ξ−→
ϕ
]

DeclTp∧

Ξ ⊢M (F)msmts[ξ ]

Ξ ⊢ {ν : µF |M (F)} type[ξ ]
DeclTpµ

Ξ ⊢ P1 type[ξ1] Ξ ⊢ P2 type[ξ2]

Ξ ⊢ P1 +P2 type[·]
DeclTp+

Ξ ⊢ R1 type[ξ1] Ξ ⊢ R2 type[ξ2]

Ξ ⊢ R1×R2 type[ξ1∪ξ2]
DeclTp×

Ξ ⊢ 0 type[·]
DeclTp0

Ξ ⊢ 1 type[·]
DeclTp1

Ξ ⊢ N type[ξN ]

Ξ ⊢ ↓N type[·]
DeclTp↓

Ξ ⊢ P type[ξP]

Ξ ⊢ ↑P type[·]
DeclTp↑

Ξ ⊢ R type[ξR] Ξ ⊢ L type[ξL]

Ξ ⊢ R→ L type[ξR∪ξL]
DeclTp→

Ξ ⊢ L type[ξL] Ξ ⊢ −→ϕ : B [ξ−→
ϕ
]

Ξ ⊢ −→ϕ ⊃ L type[ξL∪ξ−→
ϕ
]

DeclTp⊃

Ξ ,dΞ ⊢M type[ξM] ξM− d÷Ξ ⊢ d
Ξ det

Ξ ⊢ ∀dΞ . M type[ξM− d
Ξ ]

DeclTp∀

Figure A.15: Declarative well-formedness of types (and measurements)
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Ξ ⊢F functor[ξF ]
Under Ξ (input), functor F (input) is well-formed,
with (output) value-determined dependencies ξF

Ξ ⊢ P type[ξ ]

Ξ ⊢ P functor[ξ ]
DeclFuncConst

Ξ ⊢ Id functor[·]
DeclFuncId

Ξ ⊢ I functor[·]
DeclFuncI

Ξ ⊢ B̂ functor[ξ1] Ξ ⊢ P̂ functor[ξ2]

Ξ ⊢ B̂⊗ P̂ functor[ξ1∪ξ2]
DeclFunc⊗

Ξ ⊢ F1 functor[ξ1] Ξ ⊢ F2 functor[ξ2]

Ξ ⊢ F1⊕F2 functor[·]
DeclFunc⊕

Ξ ⊢ α : F(τ)⇒ τ
Under Ξ (input), α (input) is a well-formed algebra of kind F(τ)⇒ τ

(inputs: F and τ)

α ◦ inj1 ⊜ α1
α ◦ inj2 ⊜ α2

Ξ ⊢ α1 : F1(τ)⇒ τ

Ξ ⊢ α2 : F2(τ)⇒ τ

Ξ ⊢ α : (F1⊕F2)(τ)⇒ τ
DeclAlg⊕

Ξ ⊢ Q type[ξQ] Ξ ⊢ q⇒ t : P̂(τ)⇒ τ

Ξ ⊢ (⊤,q)⇒ t : (Q⊗ P̂)(τ)⇒ τ
DeclAlgConst

Ξ ,dΞ
′ ⊢ (⊤,q)⇒ t : (Q⊗ P̂)(τ)⇒ τ

Ξ ⊢ (pk(dΞ
′
,⊤),q)⇒ t : (∃dΞ

′
. Q⊗ P̂)(τ)⇒ τ

DeclAlg∃

Ξ ,a d÷ τ ,a Id ⊢ q⇒ t : Î(τ)⇒ τ

Ξ ⊢ (a,q)⇒ t : (Id⊗ Î)(τ)⇒ τ
DeclAlgId

d÷Ξ ⊢ t : τ

Ξ ⊢ ()⇒ t : I(τ)⇒ τ
DeclAlgI

Ξ ⊢ α : (F)B⇒ B= _ 7→ tt
α : F(B)⇒ B is constantly true, often writing α as tt(F)

(inputs: α and F)

Ξ ⊢ α1 : (F1)B⇒ B= _ 7→ tt Ξ ⊢ α2 : (F2)B⇒ B= _ 7→ tt

Ξ ⊢ inj1 α1||||| inj2 α2 : (F1⊕F2)B⇒ B= _ 7→ tt

Ξ ⊢ q⇒ t : (P̂)B⇒ B= _ 7→ tt

Ξ ⊢ (pk(dΞ ,⊤),q)⇒ t : (∃dΞ . Q⊗ P̂)B⇒ B= _ 7→ tt

Ξ ⊢ q⇒ t : (Î)B⇒ B= _ 7→ tt

Ξ ⊢ (a,q)⇒ t : (Id⊗ Î)B⇒ B= _ 7→ tt Ξ ⊢ ()⇒ tt : (I)B⇒ B= _ 7→ tt

Figure A.16: Declarative well-formedness of functors and algebras
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Ξ ⊢ Γ ctx Under logical context Ξ (input), program context Γ (input) is well-formed

Ξ ⊢ · ctx
ProgCtxEmpty

Ξ ⊢ Γ ctx Ξ ⊢ R type[ξ ] x /∈ dom(Γ )

Ξ ⊢ Γ ,x : R ctx
ProgCtxVar

Figure A.17: Program context well-formedness

Syntactic substitutions σ ::= · | σ , t/a | σ ,v : R/x

Figure A.18: Syntactic substitution

Θ0;Γ0 ⊢ σ : Θ ;Γ
Under Θ0 and Γ0, σ is a syntactic substitution for variables in Θ and Γ

(Inputs: Θ0,Γ0,σ ,Θ ,Γ )

Θ0;Γ0 ⊢ · : ·; ·
SubstEmpty

Θ0;Γ0 ⊢ σ : Θ ;Γ Θ0 ⊢ t : τ a /∈ dom(Θ)

Θ0;Γ0 ⊢ σ , t/a : Θ ,a÷ τ;Γ
SubstIx

Θ0;Γ0 ⊢ σ : Θ ;Γ d÷Θ0 ⊢ t : τ a /∈ dom(Θ)

Θ0;Γ0 ⊢ σ , t/a : Θ ,a d÷ τ[,a Id];Γ
SubstIxDet

Θ0;Γ0 ⊢ σ : Θ ;Γ Θ0 ⊢ [⌊σ⌋]ϕ true

Θ0;Γ0 ⊢ σ : Θ ,ϕ;Γ
SubstProp

Θ0;Γ0 ⊢ σ : Θ ;Γ Θ0;Γ0 ⊢ v⇐ [⌊σ⌋]R x /∈ dom(Γ )

Θ0;Γ0 ⊢ σ ,v : [⌊σ⌋]R/x : Θ ;Γ ,x : R
SubstVal

Figure A.19: Syntactic substitution

Θ ⊢ ϕ true Under input Θ , input index ϕ is true

JϕK
δ
= {•} for all δ ∈ JΘK

Θ ⊢ ϕ true
PropTrue

Figure A.20: Index (of boolean sort) validity or truth
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Θ ⊢ u≡ t : τ Under Θ , index terms u and t are equivalent and have sort τ (inputs: Θ , u, t, τ)

Θ − Id ⊢ u = t true
Θ ⊢ u≡ t : κ

Ix≡SMT
(a : τ) ∈Θ

Θ ⊢ a≡ a : τ
Ix≡Var

κ ∈ {N,Z}
FV(t1, t2, t ′1, t ′2)⊈ dom(Θ − Id) Θ ⊢ t1 ≡ t ′1 : κ Θ ⊢ t2 ≡ t ′2 : κ

Θ ⊢ t1 + t2 ≡ t ′1 + t ′2 : κ
Ix≡Plus

κ ∈ {N,Z}
FV(t1, t2, t ′1, t ′2)⊈ dom(Θ − Id) Θ ⊢ t1 ≡ t ′1 : κ Θ ⊢ t2 ≡ t ′2 : κ

Θ ⊢ t1− t2 ≡ t ′1− t ′2 : κ
Ix≡Minus

FV(u1,u2, t1, t2)⊈ dom(Θ − Id) or τ1× τ2 ̸= κ

Θ ⊢ u1 ≡ t1 : τ1 Θ ⊢ u2 ≡ t2 : τ2

Θ ⊢ (u1,u2)≡ (t1, t2) : τ1× τ2
Ix≡Prod

FV(u, t)⊈ dom((Θ ,a÷κ)− Id) Θ ,a÷κ ⊢ u≡ t : τ

Θ ⊢ λa.u≡ λa. t : κ ⇒ τ
Ix≡λ

FV(a,t,t′)⊈ dom(Θ − Id) (a d÷ τ) ∈Θ Θ ; [τ] ⊢ t≡ t′ : κ

Θ ⊢ a(t)≡ a(t′) : κ
Ix≡App

FV(t1, t2, t ′1, t ′2)⊈ dom(Θ − Id)
Θ ⊢ t1 : κ Θ ⊢ t ′1 : κ Θ ⊢ t1 ≡ t ′1 : κ Θ ⊢ t2 ≡ t ′2 : κ

Θ ⊢ t1 = t2 ≡ t ′1 = t ′2 : B
Ix≡=

FV(ϕ1,ϕ2,ψ1,ψ2)⊈ dom(Θ − Id) Θ ⊢ ϕ1 ≡ ψ1 : B Θ ⊢ ϕ2 ≡ ψ2 : B
Θ ⊢ ϕ1∧ϕ2 ≡ ψ1∧ψ2 : B

Ix≡∧

FV(ϕ1,ϕ2,ψ1,ψ2)⊈ dom(Θ − Id) Θ ⊢ ϕ1 ≡ ψ1 : B Θ ⊢ ϕ2 ≡ ψ2 : B
Θ ⊢ ϕ1∨ϕ2 ≡ ψ1∨ψ2 : B

Ix≡∨

FV(ϕ ,ψ)⊈ dom(Θ − Id) Θ ⊢ ϕ ≡ ψ : B
Θ ⊢ ¬ϕ ≡ ¬ψ : B

Ix≡¬

FV(t1, t2, t ′1, t ′2)⊈ dom(Θ − Id)
κ ∈ {N,Z} Θ ⊢ t1 ≡ t ′1 : κ Θ ⊢ t2 ≡ t ′2 : κ

Θ ⊢ t1 ≤ t2 ≡ t ′1 ≤ t ′2 : B
Ix≡≤

Figure A.21: Declarative index equivalence
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Θ ; [τ] ⊢ t≡ t′ : κ
Under Θ , index spines t and t′ are equivalent and have sort τ returning κ

(Inputs: Θ ,τ ,t,t′; outputs: κ)

Θ ; [κ] ⊢ · ≡ · : κ
IxSpine≡Nil

Θ ⊢ t0 ≡ t ′0 : κ0 Θ ; [τ] ⊢ t≡ t′ : κ

Θ ; [κ0⇒ τ] ⊢ t0,t≡ t ′0,t′ : κ
IxSpine≡Entry

k ∈ {1,2} Θ ; [τk] ⊢ t≡ t′ : κ

Θ ; [τ1× τ2] ⊢ .k,t≡ .k,t′ : κ
IxSpine≡Projk

Figure A.22: Declarative index spine equivalence

Θ ⊢Θ1 ≡Θ2 ctx Under input Θ , input logical contexts Θ1 and Θ2 are equivalent

Θ ⊢ · ≡ · ctx
Ctx≡Empty

Θ ⊢Θ1 ≡Θ2 ctx

Θ ⊢Θ1,a÷ τ ≡Θ2,a÷ τ ctx
Θ ⊢Θ1,a d÷ τ ≡Θ2,a d÷ τ ctx

Ctx≡Var

Θ ⊢Θ1 ≡Θ2 ctx Θ ,Θ1 ⊢ ϕ1 ≡ ϕ2 : B
Θ ⊢Θ1,ϕ1 ≡Θ2,ϕ2 ctx

Ctx≡Prop

Figure A.23: Declarative logical context equivalence
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Θ ⊢ A≤± B Under input Θ , input type A is a subtype of input B

Θ ⊢ 1≤+ 1
≤+1

Θ ⊢ 0≤+ 0
≤+0

Θ ⊢ R1 ≤+ R′1 Θ ⊢ R2 ≤+ R′2
Θ ⊢ R1×R2 ≤+ R′1×R′2

≤+×
Θ ⊢ P1 ≤+ P′1 Θ ⊢ P2 ≤+ P′2

Θ ⊢ P1 +P2 ≤+ P′1 +P′2
≤++

Θ ,−→ϕ ⊢ R≤+ P

Θ ⊢ R∧−→ϕ ≤+ P
≤+∧L

Θ ,dΞ ⊢ Q≤+ P

Θ ⊢ ∃dΞ . Q≤+ P
≤+∃L

Θ ⊢ R≤+ R′ Θ ⊢ −→ϕ true

Θ ⊢ R≤+ R′∧−→ϕ
≤+∧R

d÷Θ ⊢ σ : dΞ Θ ⊢ R≤+ [σ ]Q

Θ ⊢ R≤+ ∃dΞ . Q
≤+∃R

Θ ⊢M ′(F ′)≥M (F)

Θ ⊢
{

ν : µF ′
∣∣ M ′(F ′)

}
≤+ {ν : µF |M (F)}

≤+µ

Θ ⊢ N ≤− N′

Θ ⊢ ↓N ≤+ ↓N′
≤+↓

Θ ⊢ P≤+ P′

Θ ⊢ ↑P≤− ↑P′
≤–↑

Θ ⊢ L′ ≤− L Θ ⊢ −→ϕ true

Θ ⊢ −→ϕ ⊃ L′ ≤− L
≤–⊃L

d÷Θ ⊢ σ : dΞ Θ ⊢ [σ ]M ≤− L

Θ ⊢ ∀dΞ . M ≤− L
≤–∀L

Θ ,−→ϕ ⊢ N ≤− L

Θ ⊢ N ≤− −→ϕ ⊃ L
≤–⊃R

Θ ,dΞ ⊢ N ≤− M

Θ ⊢ N ≤− ∀dΞ . M
≤–∀R

Θ ⊢ R′ ≤+ R Θ ⊢ L≤− L′

Θ ⊢ R→ L≤− R′→ L′
≤–→

Figure A.24: Declarative subtyping
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Θ ⊢M ′(F ′)≥M (F) Under Θ , measurement list M ′(F ′) covers M (F) (all inputs)

· ⊢ tt(F
′);F ′ ≤B tt(F);F

Θ ⊢M ′(F ′)≥ ·F

Θ ⊢M ′(F ′)≥M (F) (foldF ′ α
′)ν t′ =τ t ′ ∈M ′(F ′)

· ⊢ α
′;F ′ ≤τ α;F d÷Θ ; [τ] ⊢ t′ ≡ t : κ d÷Θ ⊢ t ′ = t true

Θ ⊢M ′(F ′)≥M (F),(foldF α)ν t=τ t

Ξ ⊢ α;F ≤τ β ;G
Under Ξ , algebra α : F(τ)⇒ τ is a submeasure of β : G(τ)⇒ τ

(inputs: Ξ ,α ,F ,τ ,β ,G)

α ◦ inj1 ⊜ α1
α ◦ inj2 ⊜ α2

β ◦ inj1 ⊜ β1
β ◦ inj2 ⊜ β2

Ξ ⊢ α1;F1 ≤τ β1;G1
Ξ ⊢ α2;F2 ≤τ β2;G2

Ξ ⊢ α;F1⊕F2 ≤τ β ;G1⊕G2
Meas≤⊕

Ξ ,dΞ
′ ⊢ (⊤,q)⇒ t;Q⊗ P̂≤τ (o′,q′)⇒ t ′;P⊗ P̂′

Ξ ⊢ (pk(dΞ
′
,⊤),q)⇒ t;∃dΞ

′
. Q⊗ P̂≤τ (o′,q′)⇒ t ′;P⊗ P̂′

Meas≤∃L

d÷Ξ ⊢ σ : dΞ
′

Ξ ⊢ (⊤,q)⇒ t;Q⊗ P̂≤τ (⊤,q′)⇒ [σ ]t ′; [σ ]Q′⊗ P̂′

Ξ ⊢ (⊤,q)⇒ t;Q⊗ P̂≤τ (pk(dΞ
′
,⊤),q′)⇒ t ′;∃dΞ

′
. Q′⊗ P̂′

Meas≤∃R

Ξ ⊢ Q≤+ Q′ Ξ ⊢ q⇒ t; P̂≤τ q′⇒ t ′; P̂′

Ξ ⊢ (⊤,q)⇒ t;Q⊗ P̂≤τ (⊤,q′)⇒ t ′;Q′⊗ P̂′
Meas≤Const

Ξ ,a d÷ τ ,a Id ⊢ q⇒ t; Î ≤τ q′⇒ t ′; Î

Ξ ⊢ (a,q)⇒ t; Id⊗ Î ≤τ (a,q′)⇒ t ′; Id⊗ Î
Meas≤Id

d÷Ξ ⊢ u≡ t : τ

Ξ ⊢ ()⇒u; I ≤τ ()⇒ t; I
Meas≤I

Θ ⊢M ′(F)≥≡M (F)
Θ ⊢M ′(F)≥M (F) and #M ′ = #M and M ′, M are in same order
(Inputs: Θ ,M ′(F),M (F))

· ⊢ tt(F
′);F ′ ≡B tt(F);F

Θ ⊢ ·F ′ ≥≡ ·F

Θ ⊢M ′(F ′)≥≡M (F)
· ⊢ α

′;F ′ ≤τ α;F d÷Θ ; [τ] ⊢ t′ ≡ t : κ d÷Θ ⊢ t ′ = t true
Θ ⊢M ′(F ′),(foldF ′ α

′)ν t′ =τ t ′ ≥≡M (F),(foldF α)ν t=τ t

Figure A.25: Declarative submeasuring
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Ξ ⊢ H
−→
β ;G;M (F)I⊜ dΘ ;R The “

−→
β ;G” part of unrolling {ν : µF |M (F)} (ins.: Ξ ,

−→
β ,G,M (F))

corresponds to the (from outputs dΘ and R) type ∃dΘ . (R∧ dΘ)
−→
β ◦ inj1 ⊜

−→
β1−→

β ◦ inj2 ⊜
−→
β2

Ξ ⊢ H
−→
β1;G1;M (F)I⊜ d

Θ 1;R1

Ξ ⊢ H
−→
β2;G2;M (F)I⊜ d

Θ 2;R2

Ξ ⊢ H
−→
β ;G1⊕G2;M (F)I⊜ ·;(∃dΘ 1. (R1∧ d

Θ 1))+(∃dΘ 2. (R2∧ d
Θ 2))

H⊕I

(dΞ
′
may be · and −→ϕ may be ·)

−→
β ⇝

−→
β
′

Ξ ,dΞ
′ ⊢ H
−→
β
′; P̂;M (F)I⊜ d

Θ 0;R0

Ξ ⊢ H
−→
β ;∃dΞ

′
. R′∧−→ϕ ⊗ P̂;M (F)I⊜ d

Ξ
′
,dΘ 0,−→ϕ ;R′×R0

HConstI

−−−→
a d÷ τ =−→a d÷M (F)

Ξ ,
−−−−−−→
a d÷ τ ,a Id ⊢ H

−−−→
q⇒ t ′; Î;M (F)I⊜ Ξ

′′,
−−→
ψ
′′;R′′

Ξ ;Ξ
′′;zip(−→a )(M (F)) ⊢

−−→
ψ
′′ ⇝ Ξ̌1;M1(F);

−→
ψ
′

Ξ ;Ξ
′′;zip(−→a )(M (F)) ⊢ R′′⇝ Ξ̌2;M2(F);R′

Ξ̌ = Ξ̌1∪ Ξ̌2 M ′(F) = M1(F)∪M2(F)

dom(Ξ ′)∩dom(Ξ ,
−−−→
a d÷ τ ,Ξ ′′, Ξ̌) = /0 ρ = Ξ

′/Ξ̌ is a variable renaming

Ξ ⊢ H
−−−−−−→
(a,q)⇒ t ′; Id⊗ Î;M (F)I⊜ Ξ

′,Ξ ′′, [ρ]
−→
ψ
′;
{

ν : µF
∣∣ [ρ]M ′(F)

}
× [ρ]R′

HIdI

−→
t ′ @M (F)⊜−→ϕ

Ξ ⊢ H
−−−−→
()⇒ t ′; I;M (F)I⊜−→ϕ ;1

HII

where

· ◦ injk ⊜ ·

−→
β ◦ injk ⊜

−→
β
′

βn ◦ injk ⊜ βnk
−→
β ,βn ◦ injk ⊜

−→
β
′ ,βnk

·⇝ ·

−→
β ⇝

−→
β
′

−→
β ,(pk(dΞ

′
,⊤),q)⇒ t ′⇝

−→
β
′ ,q⇒ t ′

−→
β ,(⊤,q)⇒ t ′⇝

−→
β
′ ,q⇒ t ′

·@ ·⊜ ·

−→u @M (F)⊜−→ϕ
(−→u , t ′)@ (M (F),(foldF α)ν t=τ t)⊜−→ϕ ,(t = ⟨t ′ | t⟩)

· d÷·F = ·
(−→a ,ak)

d÷ (M (F),(foldF αk)ν tk =τk tk) = (−→a d÷M (F)) ,ak
d÷ τk

Ξ ;Ξ
′;
−−−−−−−−−−−−−−−→
(a,(foldF α)ν _ =τ _) ⊢ O ⇝ Ξ̌ ;M ′(F);O ′ is defined in Figure A.27.

Figure A.26: Unrolling
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Ξ ;Ξ ′;
−−−−−−−−−−−−→
(a,LαMF ν _ =τ _) ⊢ O ⇝ Ξ̌ ;M ′(F);O ′

Presupposes Fk = F and FV(Fk,αk) = /0 for all
(ak,LαkMFk ν _ =τk _) ∈

−−−−−−−−−−−−→
(a,LαMF ν _ =τ _);

and O is well-formed under Ξ ,Ξ ′,
−−−−−−→
a d÷ τ ,a Id

(Inputs: left of⇝; outputs: right of⇝)
ak /∈ FV(t) for all (ak,_) ∈

−−−−−−−−−−−−→
(a,LαMF ν _ =τ _)

Ξ ;Ξ
′;
−−−−−−−−−−−−→
(a,LαMF ν _ =τ _) ⊢ t⇝ ·; ·F ; t

(ak,LαkMF ν _ =τk _) ∈
−−−−−−−−−−−−→
(a,LαMF ν _ =τ _)

Ξ ;Ξ
′;
−−−−−−−−−−−−→
(a,LαMF ν _ =τ _) ⊢ ak⇝ ǎak(·)

k
d÷ τk;LαkMF ν ·=τk ǎak(·)

k ; ǎak(·)
k

(ak,LαkMF ν _ =τk _) ∈
−−−−−−−−−−−−→
(a,LαMF ν _ =τ _)

Ξ ;Ξ
′;(ak,LαkMF ν _ =τk _) ⊢ u⇝ Ξ̌ ;M ′(F);u′ d÷(Ξ ,Ξ ′, Ξ̌); [τk] ⊢ u′ : κ

Ξ ;Ξ
′;
−−−−−−−−−−−−→
(a,LαMF ν _ =τ _) ⊢ ak(u)⇝ Ξ̌ , ǎak(u

′)
k

d÷κ;M ′,LαkMF ν u′ =τk ǎak(u
′)

k ; ǎak(u
′)

k

ak ̸= b for all (ak,_) ∈
−−−−−−−−−−−−→
(a,LαMF ν _ =τ _)

Ξ ;Ξ
′;
−−−−−−−−−−−−→
(a,LαMF ν _ =τ _) ⊢ u⇝ Ξ̌ ;M ′;u′

Ξ ;Ξ
′;
−−−−−−−−−−−−→
(a,LαMF ν _ =τ _) ⊢ b(u)⇝ Ξ̌ ;M ′;b(u′)

op ∈ {¬−} Ξ ;Ξ
′;
−−−−−−−−−−−−→
(a,LαMF ν _ =τ _) ⊢ t⇝ Ξ̌ ;M ′; t ′

Ξ ;Ξ
′;
−−−−−−−−−−−−→
(a,LαMF ν _ =τ _) ⊢ op t⇝ Ξ̌ ;M ′;op t ′

op∈ {−+−,−−−,−=−,−≤−,−∧−,−∨−,(−,−)}
Ξ ;Ξ

′;
−−−−−−−−−−−−→
(a,LαMF ν _ =τ _) ⊢ t1⇝ Ξ̌1;M1; t ′1

Ξ ;Ξ
′;
−−−−−−−−−−−−→
(a,LαMF ν _ =τ _) ⊢ t2⇝ Ξ̌2;M2; t ′2

Ξ ;Ξ
′;
−−−−−−−−−−−−→
(a,LαMF ν _ =τ _) ⊢ t1 op t2⇝ Ξ̌1∪ Ξ̌2;M1∪M2; t ′1 op t ′2

Ξ ;Ξ
′;
−−−−−−−−−−−−→
(a,LαMF ν _ =τ _) ⊢ ·⇝ ·; ·F ; ·

Ξ ;Ξ
′;
−−−−−−−−−−−−→
(a,LαMF ν _ =τ _) ⊢ t⇝ Ξ̌ ;M ; t ′ Ξ ;Ξ

′;
−−−−−−−−−−−−→
(a,LαMF ν _ =τ _) ⊢ t⇝ Ξ̌

′;M ′;t′

Ξ ;Ξ
′;
−−−−−−−−−−−−→
(a,LαMF ν _ =τ _) ⊢ t,t⇝ Ξ̌ ∪ Ξ̌

′;M ∪M ′; t ′,t′

Ξ ;Ξ
′;
−−−−−−−−−−−−→
(a,LαMF ν _ =τ _) ⊢ t⇝ Ξ̌ ;M ′;t′

Ξ ;Ξ
′;
−−−−−−−−−−−−→
(a,LαMF ν _ =τ _) ⊢ .k,t⇝ Ξ̌ ;M ′; .k,t′

Ξ ;Ξ
′;
−−−−−−−−−−−−→
(a,LαMF ν _ =τ _) ⊢M0⇝ Ξ̌ ;M ;M ′

0

Ξ ;Ξ
′;
−−−−−−−−−−−−→
(a,LαMF ν _ =τ _) ⊢ R⇝ Ξ̌

′;M ′;R′

Ξ ;Ξ
′;
−−−−−−−−−−−−→
(a,LαMF ν _ =τ _) ⊢ {ν : µF |M0}×R⇝ Ξ̌ ∪ Ξ̌

′;M ∪M ′;
{

ν : µF
∣∣ M ′

0
}
×R′

Ξ ;Ξ
′;
−−−−−−−−−−−−→
(a,LαMF ν _ =τ _) ⊢ 1⇝ ·; ·F ;1 Ξ ;Ξ

′;
−−−−−−−−−−−−→
(a,LαMF ν _ =τ _) ⊢ ·F ⇝ ·; ·F ; ·F

Ξ ;Ξ
′;
−−−−−−−−−−−−→
(a,LαMF ν _ =τ _) ⊢M0⇝ Ξ̌ ;M ;M ′

0

Ξ ;Ξ
′;
−−−−−−−−−−−−→
(a,LαMF ν _ =τ _) ⊢ t⇝ Ξ̌

′;M ′;t′

Ξ ;Ξ
′;
−−−−−−−−−−−−→
(a,LαMF ν _ =τ _) ⊢M0,(foldF α)ν t=τ t⇝ Ξ̌ ∪ Ξ̌

′;M ∪M ′;M ′
0,(foldF α)ν t′ =τ t

Figure A.27: A judgment (called “liftapps”) used for HIdI
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Θ ;Γ ⊢ h⇒ P Under inputs Θ and Γ , input head h synthesizes (output) type P

(x : R) ∈ Γ

Θ ;Γ ⊢ x⇒ R
Decl⇒Var

Θ ⊢ P type[ξP] Θ ;Γ ⊢ v⇐ P
Θ ;Γ ⊢ (v : P)⇒ P

Decl⇒ValAnnot

Θ ;Γ ⊢ g⇒↑P Under inputs Θ and Γ , input bound expression g synthesizes (output) type ↑P

Θ ;Γ ⊢ h⇒↓N Θ ;Γ ; [N] ⊢ s⇒↑P
Θ ;Γ ⊢ h(s)⇒↑P

Decl⇒App

Θ ⊢ P type[ξP] Θ ;Γ ⊢ e⇐↑P
Θ ;Γ ⊢ (e : ↑P)⇒↑P

Decl⇒ExpAnnot

Figure A.28: Declarative head and bound expression type synthesis
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Θ ;Γ ⊢ v⇐ P Under inputs Θ and Γ , input value v checks against input type P

(x : R′) ∈ Γ Θ ⊢ R′ ≤+ R
Θ ;Γ ⊢ x⇐ R

Decl⇐Var
Θ ;Γ ⊢ ⟨⟩ ⇐ 1

Decl⇐1

Θ ;Γ ⊢ v1⇐ R1 Θ ;Γ ⊢ v2⇐ R2

Θ ;Γ ⊢ ⟨v1,v2⟩ ⇐ R1×R2
Decl⇐×

Θ ;Γ ⊢ v⇐ Pk

Θ ;Γ ⊢ injk v⇐ P1 +P2
Decl⇐+k

d÷Θ ⊢ σ : dΞ Θ ;Γ ⊢ v⇐ [σ ]Q

Θ ;Γ ⊢ v⇐ (∃dΞ . Q)
Decl⇐∃

Θ ⊢ −→ϕ true Θ ;Γ ⊢ v⇐ R

Θ ;Γ ⊢ v⇐ R∧−→ϕ
Decl⇐∧

∄x. v =
−−−→iinjki

(−−−−→j⟨_ j,−⟩ x
)

M (F)⇝−→α ;−→τ
d÷Θ ⊢ H−→α ;F ;M (F)I⊜ d

Θ ;R Θ ;Γ ⊢ v⇐∃dΘ . (R∧ d
Θ)

Θ ;Γ ⊢ into(v)⇐{ν : µF |M (F)}
Decl⇐µ

Θ ;Γ ⊢ e⇐ N
Θ ;Γ ⊢ {e}⇐ ↓N

Decl⇐↓

where

·F ⇝ ·; ·
M (F)⇝−→α ;−→τ

M (F),(foldF αn)ν _ =τn _⇝−→α ,αn;−→τ ,τn

Figure A.29: Declarative value type checking
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Θ ;Γ ⊢ e⇐ N Under inputs Θ and Γ , input expression e checks against input type N

Θ ;Γ ⊢ v⇐ P
Θ ;Γ ⊢ returnv⇐↑P

Decl⇐↑

Θ ;Γ ⊢ g⇒↑(∃dΞ . R∧−→ψ ) Θ ,dΞ ,−→ψ ;Γ ,x : R ⊢ e⇐ L
Θ ;Γ ⊢ let x=g; e⇐ L

Decl⇐let

Θ ;Γ ⊢ h⇒ P Θ ;Γ ; [P] ⊢ {ri⇒ ei}i∈I ⇐ L
Θ ;Γ ⊢match h {ri⇒ ei}i∈I ⇐ L

Decl⇐match

Θ ;Γ ,x : R ⊢ e⇐ L
Θ ;Γ ⊢ λx.e⇐ R→ L

Decl⇐λ
Θ ⊢ ff true

Θ ;Γ ⊢ unreachable⇐ L
Decl⇐Unreachable

Θ ⊢ ∀a d÷N,dΞ . M ≤− L
Θ ,a÷N;Γ ,x : ↓∀a′ d÷N,dΞ . a′ < a⊃ [a′/a]M ⊢ e⇐∀dΞ . M

Θ ;Γ ⊢ rec x : (∀a d÷N,dΞ . M). e⇐ L
Decl⇐rec

Θ ,dΞ ;Γ ⊢ e⇐M

Θ ;Γ ⊢ e⇐∀dΞ . M
Decl⇐∀

Θ ,−→ϕ ;Γ ⊢ e⇐ L

Θ ;Γ ⊢ e⇐−→ϕ ⊃ L
Decl⇐⊃

Figure A.30: Declarative expression type checking
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Θ ;Γ ; [P] ⊢ {ri⇒ ei}i∈I ⇐ N
Under Θ and Γ , patterns ri match against type P
and branch expressions ei check against type N (all inputs)

Θ ,dΞ ;Γ ; [Q] ⊢ {ri⇒ ei}i∈I ⇐ N

Θ ;Γ ; [∃dΞ . Q] ⊢ {ri⇒ ei}i∈I ⇐ N
DeclMatch∃

Θ ,−→ϕ ;Γ ; [R] ⊢ {ri⇒ ei}i∈I ⇐ N

Θ ;Γ ; [R∧−→ϕ ] ⊢ {ri⇒ ei}i∈I ⇐ N
DeclMatch∧

Θ ;Γ ⊢ e⇐ N
Θ ;Γ ; [1] ⊢ {⟨⟩⇒ e}⇐ N

DeclMatch1

Θ ;Γ ,x1 : R1,x2 : R2 ⊢ e⇐ N
Θ ;Γ ; [R1×R2] ⊢ {⟨x1,x2⟩⇒ e}⇐ N

DeclMatch×

Θ ,dΞ 1,−→ψ 1;Γ ,x1 : R1 ⊢ e1⇐ N Θ ,dΞ 2,−→ψ 2;Γ ,x2 : R2 ⊢ e2⇐ N

Θ ;Γ ; [(∃dΞ 1. R1∧−→ψ 1)+(∃dΞ 2. R2∧−→ψ 2)] ⊢ {inj1 x1⇒ e1 | inj2 x2⇒ e2}⇐ N
DeclMatch+

Θ ;Γ ; [0] ⊢ {}⇐ N
DeclMatch0

M (F)⇝−→α ;−→τ
d÷Θ ⊢ H−→α ;F ;M (F)I⊜ d

Θ ;R Θ ,dΘ ;Γ ,x : R ⊢ e⇐ N
Θ ;Γ ; [{ν : µF |M (F)}] ⊢ {into(x)⇒ e}⇐ N

DeclMatchµ

where

·F ⇝ ·; ·
M (F)⇝−→α ;−→τ

M (F),(foldF αn)ν _ =τn _⇝−→α ,αn;−→τ ,τn

Figure A.31: Declarative pattern matching
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Θ ;Γ ; [N] ⊢ s⇒↑P
Under inputs Θ and Γ ,
if a head of type ↓N (input: N) is applied to the spine s (input),
then it will return a result of type ↑P (output)

d÷Θ ⊢ σ : dΞ Θ ;Γ ; [[σ ]M] ⊢ s⇒↑P

Θ ;Γ ; [∀dΞ . M] ⊢ s⇒↑P
DeclSpine∀

Θ ⊢ −→ϕ true Θ ;Γ ; [L] ⊢ s⇒↑P

Θ ;Γ ; [−→ϕ ⊃ L] ⊢ s⇒↑P
DeclSpine⊃

Θ ;Γ ⊢ v⇐ R Θ ;Γ ; [L] ⊢ s⇒↑P
Θ ;Γ ; [R→ L] ⊢ v,s⇒↑P

DeclSpineApp

Θ ;Γ ; [↑P] ⊢ · ⇒ ↑P
DeclSpineNil

Figure A.32: Declarative spine typing
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Appendix A.4 Unrefined System and Its Denotational Semantics

Program variables x,y,z
Expressions e ::= returnv | let x=g; e | match h {ri⇒ ei}i∈I | λx.e

| rec x. e
Values v ::= x | ⟨⟩ | ⟨v,v⟩ | inj1 v | inj2 v | into(v) | {e}
Heads h ::= x | (v : P)
Bound expressions g ::= h(s) | (e : ↑P)
Spines s ::= · | v,s
Patterns r ::= into(x) | ⟨⟩ | ⟨x,y⟩ | inj1 x | inj2 x

Unrefined positive types P,Q,R ::= 1 | P×Q | 0 | P+Q | ↓N | µF
Unrefined negative types N,M,L ::= P→ N | ↑P
Types A,B,C ::= P | N

Unrefined functors F ,G,H ::= P̂ | F⊕F
P̂ ::= Î | P⊗ P̂
Î ::= I | Id⊗ Î
B̂ ::= P | Id

F ::= F | B̂

Figure A.33: Unrefined syntax
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⊢ G[µF ]⊜ P
Functor G applied to “type” µF corresponds to the (output) type P
(inputs: G and F)

⊢ G[µF ]⊜ P ⊢ H[µF ]⊜ Q
⊢ (G⊕H)[µF ]⊜ P+Q

UnrefUnroll⊕

⊢ P̂[µF ]⊜ P

⊢ (Q⊗ P̂)[µF ]⊜ Q×P
UnrefUnrollConst

⊢ Î[µF ]⊜ P

⊢ (Id⊗ Î)[µF ]⊜ µF×P
UnrefUnrollId

⊢ I[µF ]⊜ 1
UnrefUnrollI

Figure A.34: Unrefined unrolling
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Γ ⊢ h⇒ P Under input Γ , head h synthesizes (output) type P

(x : P) ∈ Γ

Γ ⊢ x⇒ P
Unref⇒Var

Γ ⊢ v⇐ P
Γ ⊢ (v : P)⇒ P

Unref⇒ValAnnot

Γ ⊢ g⇒↑P Under input Γ , input bound expression g synthesizes type ↑P (output)

Γ ⊢ h⇒↓N Γ ; [N] ⊢ s⇒↑P
Γ ⊢ h(s)⇒↑P

Unref⇒App
Γ ⊢ e⇐↑P

Γ ⊢ (e : ↑P)⇒↑P
Unref⇒ExpAnnot

Γ ⊢ v⇐ P Under input Γ , input value v checks against input type P

(x : P) ∈ Γ

Γ ⊢ x⇐ P
Unref⇐Var

Γ ⊢ ⟨⟩ ⇐ 1
Unref⇐1

Γ ⊢ v1⇐ P1 Γ ⊢ v2⇐ P2

Γ ⊢ ⟨v1,v2⟩ ⇐ P1×P2
Unref⇐×

Γ ⊢ v⇐ Pk

Γ ⊢ injk v⇐ P1 +P2
Unref⇐+k

⊢ F [µF ]⊜ P Γ ⊢ v⇐ P
Γ ⊢ into(v)⇐ µF

Unref⇐µ
Γ ⊢ e⇐ N

Γ ⊢ {e}⇐ ↓N
Unref⇐↓

Γ ⊢ e⇐ N Under input Γ , input expression e checks against input type N

Γ ⊢ v⇐ P
Γ ⊢ returnv⇐↑P

Unref⇐↑
Γ ⊢ g⇒↑P Γ ,x : P ⊢ e⇐ N

Γ ⊢ let x=g; e⇐ N
Unref⇐let

Γ ⊢ h⇒ P Γ ; [P] ⊢ {ri⇒ ei}i∈I ⇐ N
Γ ⊢match h {ri⇒ ei}i∈I ⇐ N

Unref⇐match

Γ ,x : P ⊢ e⇐ N
Γ ⊢ λx.e⇐ P→ N

Unref⇐λ
Γ ,x : ↓N ⊢ e⇐ N
Γ ⊢ rec x. e⇐ N

Unref⇐rec

Figure A.35: Unrefined declarative typing
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Γ ; [P] ⊢ {ri⇒ ei}i∈I ⇐ N
Under Γ , patterns ri match against type P
and branch expressions ei check against type N (all inputs)

Γ ⊢ e⇐ N
Γ ; [1] ⊢ {⟨⟩⇒ e}⇐ N

UnrefMatch1
Γ ,x1 : P1,x2 : P2 ⊢ e⇐ N

Γ ; [P1×P2] ⊢ {⟨x1,x2⟩⇒ e}⇐ N
UnrefMatch×

Γ ,x1 : P1 ⊢ e1⇐ N Γ ,x2 : P2 ⊢ e2⇐ N
Γ ; [P1 +P2] ⊢ {inj1 x1⇒ e1 | inj2 x2⇒ e2}⇐ N

UnrefMatch+

Γ ; [0] ⊢ {}⇐ N
UnrefMatch0

⊢ F [µF ]⊜ P Γ ,x : P ⊢ e⇐ N
Γ ; [µF ] ⊢ {into(x)⇒ e}⇐ N

UnrefMatchµ

Γ ; [N] ⊢ s⇒↑P
Under input Γ , if input spine s is applied to a head of type ↓N (input: N),
then it will produce a result of type ↑P (output)

Γ ⊢ v⇐ Q Γ ; [N] ⊢ s⇒↑P
Γ ; [Q→ N] ⊢ v,s⇒↑P

UnrefSpineApp
Γ ; [↑P] ⊢ · ⇒ ↑P

UnrefSpineNil

Figure A.36: Unrefined matching and spines

Unrefined syntactic substitutions σ ::= · | σ ,v : P/x

Γ0 ⊢ σ : Γ Under input Γ0, we know input σ is a syntactic substitution for variables in input Γ

Γ0 ⊢ · : ·
UnrefEmptyσ

Γ0 ⊢ σ : Γ Γ0 ⊢ v⇐ P x /∈ dom(Γ )

Γ0 ⊢ σ ,v : P/x : Γ ,x : P
UnrefValσ

Figure A.37: Unrefined syntactic substitution
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Semantic substitutions δ ::= · | δ ,V/x

⊢ δ : Γ We know that input δ is a semantic substitution for variables in input Γ

⊢ · : ·
UnrefEmptyδ

⊢ δ : Γ V ∈ JPK x /∈ dom(Γ )

⊢ δ ,V/x : Γ ,x : P
UnrefValδ

JΓ K = {δ | ⊢ δ : Γ }

Figure A.38: Unrefined semantic substitution
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JPK : Cpo
J1K = ({•},⊑{•})

JP×QK = (JPK× JQK ,⊑JPK×JQK)

where (V11,V12)⊑D1×D2 (V21,V22) iff V11 ⊑D1 V12 and V21 ⊑D2 V22

J0K = ( /0,⊑ /0)

JP+QK = (JPK⊎ JQK ,⊑JPK⊎JQK)

where ( j,V1 j)⊑D1⊎D2 ( j,V2 j) iff V1 j ⊑D j V2 j

J↓NK = (JNK ,⊑JNK)

JµFK = (∪k∈N JFKk /0,⊑µJFK)

where V1 ⊑µJFK V2 iff there exists k ∈ N such that V1 ⊑JFKk+1 /0 V2

and ⊑JF1⊕F2KX =⊑JF1KX⊎JF2KX

and ⊑JB̂⊗P̂KX =⊑JB̂KX×JP̂KX

and ⊑JIdKX =⊑X

and ⊑JIKX =⊑{•}
and ⊑JQKX =⊑JQK

JNK : Cppo
JP→ NK = ({ f : JPK→ JNK | f is continuous} ,⊑JPK⇒JNK ,d 7→ ⊥JNK)

where f ⊑D⇒E g iff f (d)⊑E g(d) for all d ∈ D

J↑PK = (JPK⊎{⊥↑},
{
((1,d),(1,d′))

∣∣∣ d ⊑JPK d′
}
∪
{
((2,⊥↑),d)

∣∣ d ∈ J↑PK
}

,(2,⊥↑))

JF K : Cpo→ Cpo
JF⊕GK = X 7→ JFK X ⊎ JGK X

JIK = X 7→ {•}
q

B̂⊗ P̂
y
= X 7→

q
B̂
y

X×
q

P̂
y

X

JPK = X 7→ JPK
JIdK = X 7→ X

fmap JF1⊕F2K f = d 7→

{
(1,(fmap JF1K f ) d′) if d = (1,d′)
(2,(fmap JF2K f ) d′) if d = (2,d′)

fmap JIK f = id{•}
fmap

q
B̂⊗ P̂

y
f = (d1,d2) 7→

(
(fmap

q
B̂
y

f ) d1,(fmap
q

P̂
y

f ) d2
)

fmap JPK f = idJPK

fmap JIdK f = f

Figure A.39: Denotational Semantics of Unrefined Types and Functors
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JΓ ⊢ h⇒ PK : JΓ K→ JPK
JxK

δ
= δ (x)

J(v : P)K
δ
= JvK

δ

JΓ ⊢ g⇒↑PK : JΓ K→ J↑PK
Jh(s)K

δ
= JsK

δ
JhK

δ

J(e : ↑P)K
δ
= JeK

δ

Figure A.40: Denotational semantics of unrefined heads h and bound expressions g

JΓ ⊢ v⇐ PK : JΓ K→ JPK
JxK

δ
= δ (x)

J⟨⟩K
δ
= •

J⟨v1,v2⟩Kδ
= (Jv1Kδ

,Jv2Kδ
)

Jinjk vK
δ
= (k,JvK

δ
)

Jinto(v)K
δ
= JvK

δ

J{e}K
δ
= JeK

δ

JΓ ⊢ e⇐ NK : JΓ K→ JNK
JreturnvK

δ
= (1,JvK

δ
)

JΓ ⊢ let x=g; e⇐ NK
δ
=

{
JeK(δ ,V/x) if JgK

δ
= (1,V )

⊥JNK if JgK
δ
= (2,⊥↑)

Jλx.eK
δ
=V 7→ JeK(δ ,V/x)

JΓ ⊢ rec x. e⇐ NK
δ
=

⊔
k∈N

(
V 7→ JΓ ,x : ↓N ⊢ e⇐ NK

δ ,V/x

)k
⊥JNK

Jmatch h {ri⇒ ei}i∈IKδ
= J{ri⇒ ei}i∈IKδ

JhK
δ

Figure A.41: Denotational semantics of unrefined values v and expressions e
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JΓ ; [P] ⊢ {ri⇒ ei}i∈I ⇐ NK : JΓ K→ JPK→ JNK
J{⟨⟩⇒ e}K

δ
=V 7→ JeK

δ

J{⟨x1,x2⟩⇒ e}K
δ
= (V1,V2) 7→ JeK(δ ,V1/x1,V2/x2)

J{inj1 x1⇒ e1 | inj2 x2⇒ e2}Kδ
=V 7→

{
Je1Kδ ,V1/x1

if V = (1,V1)

Je2Kδ ,V2/x2
if V = (2,V2)

J{}K
δ
= empty function

J{into(x)⇒ e}K
δ
=V 7→ JeK

δ ,V/x

JΓ ; [N] ⊢ s⇒MK : JΓ K→ JNK→ JMK
Jv,sK

δ
= f 7→ JsK

δ
( f (JvK

δ
))

J·K
δ
=V 7→V

Figure A.42: Denotational semantics of unrefined match expressions and spines
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Appendix A.5 Index erasure

|1|= 1
|R×R′|= |R|× |R′|

|0|= 0
|P+P′|= |P|+ |P′|
|↓N|= ↓|N|

|{ν : µF |M (F)}|= µ|F |
|∃a : κ . P|= |P|
|Q∧ϕ|= |Q|
|R→ L|= |R| → |L|
|↑P|= ↑|P|

|∀a : κ . N|= |N|
|ϕ ⊃M|= |M|

|F⊕G|= |F |⊕ |G|
|I|= I

|B̂⊗ P̂|= |B̂|⊗ |P̂|
|P|= |P|
|Id|= Id

Figure A.43: Index erasure of refined types and functors to unrefined types and functors
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|x|= x
|(v : P)|= (|v| : |P|)
|h(s)|= |h|(|s|)

|(e : N)|= (|e| : |N|)
|·|= ·
|v,s|= |v|, |s|
|⟨⟩|= ⟨⟩

|⟨v1,v2⟩|= ⟨|v1|, |v2|⟩
|inj1 v|= inj1 |v|
|inj2 v|= inj2 |v|
|into(v)|= into(|v|)
|{e}|= {|e|}

|returnv|= return |v|
|let x=g; e|= let x= |g|; |e|

|match h {ri⇒ ei}i∈I|= match |h| |{ri⇒ ei}i∈I|
|λx.e|= λx. |e|

|rec x : (∀a : N. N). e|= rec x. |e|
|Θ ;Γ ⊢ unreachable⇐ L|= diverge|L|

|{ri⇒ ei}i∈I|= {ri⇒|ei|}i∈I

Figure A.44: Index erasure of refined program terms

|·|= ·
|σ , t/a|= |σ |

|σ ,v : R/x|= |σ |, |v| : |R|/x

|·|= ·
|δ ,d/a|= |δ |
|δ ,V/x|= |δ |,V/x

Figure A.45: Index erasure of substitution
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Appendix A.6 Denotational Semantics (Refined System)

Semantic substitutions δ ::= · | δ ,d/a | δ ,V/x

⊢ δ : Θ ;Γ We know that δ is a semantic substitution for variables in Θ and Γ (all inputs)

⊢ · : ·; ·
Emptyδ

⊢ δ : Θ ;Γ d ∈ JτK a /∈ dom(Θ)

⊢ δ ,d/a : Θ ,a : τ[,a Id];Γ
Ixδ Id

⊢ δ : Θ ;Γ JϕK⌊δ⌋ = {•}
⊢ δ : Θ ,ϕ;Γ

Propδ

⊢ δ : Θ ;Γ V ∈ JRK⌊δ⌋ x /∈ dom(Γ )

⊢ δ ,V/x : Θ ;Γ ,x : R
Valδ

JΘ ;Γ K = {δ | ⊢ δ : Θ ;Γ }
JΘK = JΘ ; ·K
JΓ K = J·;Γ K

⌊δ⌋ Filter out program variable entries

⌊·⌋= ·
⌊δ ,d/a⌋= ⌊δ⌋,d/a
⌊δ ,V/x⌋= ⌊δ⌋

Figure A.46: Semantic substitutions and their operations and judgments
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JΞ ; [τ] ⊢ t : κK : JΞK→ JτK→ JκK
J·K

δ
= d 7→ d

Jt,uK
δ
= f 7→ JuK

δ
( f (JtK

δ
))

J.k,uK
δ
= (d1,d2) 7→ JuK

δ
(dk)

JΞ ⊢ t : τ [_]K : JΞK→ JτK
JaK

δ
= δ (a)

JnK
δ
= n

Jt1 + t2Kδ
= Jt1Kδ

+ Jt2Kδ

Jt1− t2Kδ
= Jt1Kδ

− Jt2Kδ

J(t1, t2)Kδ
= (Jt1Kδ

,Jt2Kδ
)

Jλa. tK
δ
= d 7→ JtK

δ ,d/a

Ja(t)K
δ
= JtK

δ
δ (a)

q
t = t ′

y
δ
=

{
{•} if JtK

δ
= Jt ′K

δ

/0 else

Jϕ1∧ϕ2Kδ
= Jϕ1Kδ

∩ Jϕ2Kδ

Jϕ1∨ϕ2Kδ
= Jϕ1Kδ

∪ Jϕ2Kδ

J¬ϕK
δ
= {•}\ JϕK

δ

JttK
δ
= {•}

JffK
δ
= /0

Figure A.47: Denotational semantics of (well-formed) indexes t and index spines t
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δ↾Θ Semantic substitution restriction

·↾Θ = ·

(δ ,d/a)↾Θ =

{
δ↾Θ ,d/a if a ∈ dom(Θ)

δ↾Θ else

(δ ,V/x)↾Θ = δ↾Θ

δ1↾ξ = δ2↾ξ δ1 and δ2 agree at ξ , that is, for all D�a ∈ ξ , if δ1↾D = δ2↾D then δ1(a) = δ2(a)

δ1↾· = δ2↾·

δ1↾ξ = δ2↾ξ if δ1↾D = δ2↾D then δ1(a) = δ2(a)

δ1↾ξ ,D�a = δ2↾ξ ,D�a

q
Ξ̌

yfix
δ

Semantics for liftapps output contexts

Define
q

Ξ̌
yfix

δ
to be the fixed point of applying

q
Ξ̌

y
δ ,− initially to

q
Ξ̌

y
δ

where

J·K
δ
= ·

r
Ξ̌ , ǎa(u)

z

δ
=

q
Ξ̌

y
δ

,(JuK
δ

δ (a))/ǎa(u)

Figure A.48: Operations and judgments for semantic substitutions
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Given Ξ ⊢ F functor[_] and ⊢ δ : Ξ , define

µ JFK
δ
=

∞⋃
k=0

JFKk
δ

/0

Given Ξ ⊢ F functor[_] and Ξ ⊢ α : F(τ)⇒ τ and ⊢ δ : Ξ , define

foldJFK
δ
JαK

δ
= JαK

δ
◦
(
JFK

δ
(foldJFK

δ
JαK

δ
)
)

Ob(rCpo) = {(D,R) | D ∈ Cpo and R⊆ D}
HomrCpo((D1,R1),(D2,R2)) =

{
f ∈ HomCpo(D1,D2)

∣∣ f (R1)⊆ R2
}

(rCppo defined similarly)

JΞ ⊢ P type[_]K : JΞK→ rCpo
J1K

δ
= {•}

JR1×R2Kδ
= JR1Kδ

× JR2Kδ

J0K
δ
= /0

JP1 +P2Kδ
= JP1Kδ

⊎ JP2Kδ

J{ν : µF |M (F)}K
δ
= {V ∈ µ J|F |K |V ∈ µ JFK

δ
and JM (F)K

δ
V = {•}}

where JM (F)K
δ

V is true ({•}) if
JtK

δ
((foldJFK

δ
JαK

δ
)V ) = JtK

δ

for all (foldF α)ν t=τ t ∈M (F)

and is false ( /0) otherwise
r
∃dΞ . Q

z

δ
=
{

V ∈ J|Q|K
∣∣∣ ∃δ ′ ∈ r

d
Ξ

z
.V ∈ JQK

δ ,δ ′

}
q

R∧−→ϕ
y

δ
=
{

V ∈ J|R|K
∣∣V ∈ JRK

δ
and JϕK

δ
= {•} for all ϕ ∈ −→ϕ

}
J↓NK

δ
= JNK

δ

JΞ ⊢ N type[_]K : JΞK→ rCppo
r
∀dΞ . M

z

δ
=
{

f ∈ J|M|K
∣∣∣ ∀δ ′ ∈ r

d
Ξ

z
. f ∈ JMK

δ ,δ ′

}
JR→ LK

δ
= { f ∈ J|R→ L|K | ∀V ∈ JRK

δ
. f (V ) ∈ JLK

δ
}

q−→
ϕ ⊃ L

y
δ
=
{

f ∈ J|L|K
∣∣ if JϕK

δ
= {•} for all ϕ ∈ −→ϕ then f ∈ JLK

δ

}
J↑PK

δ
= {(1,V ) |V ∈ JPK

δ
}

Figure A.49: Denotational semantics of (well-formed) refined types (specifying the second
component, i.e. the refined set; the first component is denotation of erasure)
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(This figure is part of a mutually recursive definition that includes Fig. A.49.)

JΞ ⊢F functor[_]K : JΞK→ rCpo→ rCpo
JF K

δ
(D,R) = (J|F |K D,JF K

δ
R)

JF1⊕F2Kδ
R = JF1Kδ

R⊎ JF2Kδ
R

JIK
δ

R = {•}
q

B̂⊗ P̂
y

δ
R =

q
B̂
y

δ
R×

q
P̂
y

δ
R

JPK
δ

R = JPK
δ

JIdK
δ

R = R
fmap JF K

δ
f = fmap J|F |K f

JΞ ⊢ α : F(τ)⇒ τK : ∏
δ∈JΞK

JFK
δ
JτK→ JτK

JΞ ⊢ α : (F1⊕F2)(τ)⇒ τK
δ

V =

{
JΞ ⊢ α1 : F1(τ)⇒ τK

δ
V ′ if V = (1,V ′)

JΞ ⊢ α2 : F2(τ)⇒ τK
δ

V ′ if V = (2,V ′)

where α ◦ inj1 ⊜ α1 and α ◦ inj2 ⊜ α2
q

Ξ ⊢ (⊤,q)⇒ t : (P⊗ P̂)(τ)⇒ τ
y

δ
(_,V ) =

q
Ξ ⊢ q⇒ t : P̂(τ)⇒ τ

y
δ

V
r

Ξ ⊢ (pk(dΞ
′
,⊤),q)⇒ t : (∃dΞ

′
. Q⊗ P̂)(τ)⇒ τ

z

δ
(V1,V2) =

r
Ξ ,dΞ

′ ⊢ (⊤,q)⇒ t : (Q⊗ P̂)(τ)⇒ τ

z

(δ ,δ ′)
(V1,V2)

where δ
′ ∈

r
d
Ξ
′z

satisfies V1 ∈ JQK
δ ,δ ′

q
Ξ ⊢ (a,q)⇒ t : (Id⊗ Î)(τ)⇒ τ

y
δ
( f ,V ) =

q
Ξ ,a d÷ τ ,a Id ⊢ q⇒ t : Î(τ)⇒ τ

y
(δ , f/a)V

JΞ ⊢ ()⇒ t : I(τ)⇒ τK
δ
•= Jd÷Ξ ⊢ t : τK

δ↾d÷Ξ

Figure A.50: Denotational semantics of (well-formed) refined functors and algebras
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JΘ ;Γ ⊢ h⇒ PK = (δ ∈ JΘ ;Γ K) 7→ J|Γ | ⊢ |h| ⇒ |P|K|δ |
JΘ ;Γ ⊢ g⇒↑PK = (δ ∈ JΘ ;Γ K) 7→ J|Γ | ⊢ |g| ⇒ |↑P|K|δ |
JΘ ;Γ ⊢ v⇐ PK = (δ ∈ JΘ ;Γ K) 7→ J|Γ | ⊢ |v| ⇐ |P|K|δ |
JΘ ;Γ ⊢ e⇐ NK = (δ ∈ JΘ ;Γ K) 7→ J|Γ | ⊢ |e| ⇐ |N|K|δ |
JΘ ;Γ ; [P] ⊢ {ri⇒ ei}i∈I ⇐ NK = (δ ∈ JΘ ;Γ K) 7→ J|Γ |; [|P|] ⊢ |{ri⇒ ei}i∈I| ⇐ |N|K|δ |
JΘ ;Γ ; [N] ⊢ s⇒MK = (δ ∈ JΘ ;Γ K) 7→ J|Γ |; [|N|] ⊢ |s| ⇒ |M|K|δ |

Figure A.51: Denotational semantics of refined program terms
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Appendix A.7 Algorithmic System

Θ̂ algctx Algorithmic context Θ̂ (input) is well-formed

∥Θ̂∥ ctx
d÷∥Θ̂∥ ⊢ t : κ for all ▶â : κ=t ∈ Θ̂ d÷∥Θ̂∥,▶Θ̂ ⊢ t : κ for all â : κ=t ∈ Θ̂

Θ̂ algctx

∥Θ∥=Θ

∥Θ̂ , [▶]â d÷κ[=t]∥= ∥Θ̂∥

[ξ ]Θ =Θ

[ξ ](Θ̂ , â d÷κ) =

{
[ξ ]Θ̂ ,▶â d÷κ if â ∈D for some ▶D ∈ ξ

[ξ ]Θ̂ , â d÷κ else

[ξ ](Θ̂ , â : κ=t) =

{
[ξ ]Θ̂ ,▶â : κ=t if â ∈D for some ▶D ∈ ξ

[ξ ]Θ̂ , â : κ=t else

▶Θ = ·
▶(Θ̂ ,▶â d÷κ) =▶Θ̂ ,▶â d÷κ

▶(Θ̂ ,▶â : κ=t) =▶Θ̂ ,▶â : κ=t
▶(Θ̂ , â d÷κ[=t]) =▶Θ̂

Figure A.52: Algorithmic context well-formedness and related definitions, operations,
judgments
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sol(Θ) = ·
sol(Θ̂ , [▶]â d÷κ) = sol(Θ̂)

sol(Θ̂ , â : κ=t) = sol(Θ̂), â : κ=t
sol(Θ̂ ,▶â : κ=t) = sol(Θ̂),▶â : κ=t

unsol(Θ) = ·
unsol(Θ̂ , â d÷κ) = unsol(Θ̂), â d÷κ

unsol(Θ̂ ,▶â d÷κ) = unsol(Θ̂),▶â d÷κ

unsol(Θ̂ , [▶]â : κ=t) = unsol(Θ̂)

Θ̂ present iff ▶ does not occur in Θ̂

[Θ̂ ]Θ =Θ

[Θ̂ ](Θ̂ ′, â d÷κ) = [Θ̂ ]Θ̂ ′, â d÷κ

[Θ̂ ](Θ̂ ′,▶â d÷κ) = [Θ̂ ]Θ̂ ′,▶â d÷κ

[Θ̂ ](Θ̂ ′, â : κ=t) = [Θ̂ ]Θ̂ ′, â : κ=[Θ̂ ]t
[Θ̂ ](Θ̂ ′,▶â : κ=t) = [Θ̂ ]Θ̂ ′,▶â : κ=t

Figure A.53: Operations and judgments for algorithmic contexts
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Ξ̂ ▷ t : τ [ξt ]

Under Ξ̂ (input), index t (input) has sort τ (input)
and value-determined dependencies ξt (output)
Note that Ξ̂ ▷ t : τ abbreviates Ξ̂ ▷ t : τ [_]

(a : τ) ∈ Ξ̂

Ξ̂ ▷a : τ [·]
AlgIxVar

([▶]â d÷κ[=t]) ∈ Ξ̂

Ξ̂ ▷ â : κ [·]
AlgIxEVar[Solved][▶]

Ξ̂ ▷ t : τ [ξ ′] ξ ⊊ ξ
′

Ξ̂ ▷ t : τ [ξ ]
AlgIxSub

t ∈Kκ

Ξ̂ ▷ t : κ [·]
AlgIxConst

κ ∈ {N,Z} Ξ̂ ▷ t1 : κ [ξ1] Ξ̂ ▷ t2 : κ [ξ2]

Ξ̂ ▷ t1 + t2 : κ [·]
AlgIxPlus

κ ∈ {N,Z} Ξ̂ ▷ t1 : κ [ξ1] Ξ̂ ▷ t2 : κ [ξ2]

Ξ̂ ▷ t1− t2 : κ [·]
AlgIxMinus

Ξ̂ ▷ t1 : τ1 [ξ1] Ξ̂ ▷ t2 : τ2 [ξ2]

Ξ̂ ▷ (t1, t2) : τ1× τ2 [·]
AlgIxProd

a÷κ , Ξ̂ ▷ t : τ [ξ ]

Ξ̂ ▷λa. t : κ ⇒ τ [·]
AlgIxλ

(a : τ) ∈ Ξ̂ Ξ̂ ; [τ]▷ t : κ

Ξ̂ ▷a(t) : κ [·]
AlgIxApp

([▶]â[[[ ]]] d÷κ[=u]) ∈ Ξ̂ (t d÷κ[=u′]) /∈ Ξ̂ d÷Ξ̂ ▷ t : κ [ξt ]

Ξ̂ ▷ â[[[ ]]]
= t : B [FV(t)�â[[[ ]]]

]
AlgIx=L

([▶]â[[[ ]]] d÷κ[=u]) ∈ Ξ̂ (t d÷κ[=u′]) /∈ Ξ̂ d÷Ξ̂ ▷ t : κ [ξt ]

Ξ̂ ▷ t = â[[[ ]]] : B [FV(t)�â[[[ ]]]]
AlgIx=R

([▶]â[[[ ]]]

1
d÷κ[=u1]) ∈ Ξ̂ ([▶]â[[[ ]]]

2
d÷κ[=u2]) ∈ Ξ̂

Ξ̂ ▷ â[[[ ]]]

1 = â[[[ ]]]

2 : B [â[[[ ]]]

1�â[[[ ]]]

2, â[[[ ]]]

2�â[[[ ]]]

1]
AlgIx=LR

Ξ̂ ▷u1 = t1 : B [ξ1] Ξ̂ ▷u2 = t2 : B [ξ2]

Ξ̂ ▷ (u1,u2) = (t1, t2) : B [ξ1∪ξ2]
AlgIx=×

no other rule applies Ξ̂ ▷ t1 : κ [ξ1] Ξ̂ ▷ t2 : κ [ξ2]

Ξ̂ ▷ t1 = t2 : B [·]
AlgIx=

Ξ̂ ▷ϕ1 : B [ξ1] Ξ̂ ▷ϕ2 : B [ξ2]

Ξ̂ ▷ϕ1∧ϕ2 : B [ξ1∪ξ2]
AlgIx∧

Ξ̂ ▷ϕ1 : B [ξ1] Ξ̂ ▷ϕ2 : B [ξ2]

Ξ̂ ▷ϕ1∨ϕ2 : B [·]
AlgIx∨

Ξ̂ ▷ϕ : B [ξ ]

Ξ̂ ▷¬ϕ : B [·]
AlgIx¬

κ ∈ {N,Z} Ξ̂ ▷ t1 : κ [ξ1] Ξ̂ ▷ t2 : κ [ξ2]

Ξ̂ ▷ t1 ≤ t2 : B [·]
AlgIx≤

Figure A.54: Algorithmic index sorting
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Ξ̂ ; [τ]▷ t : κ
Under Ξ̂ (input), fully applying an index of sort τ (input) to t (input)
yields an index of sort κ (output)

Ξ̂ ; [κ]▷ · : κ
AlgIxSpineNil

Ξ̂ ▷ t0 : κ0 Ξ̂ ; [τ]▷ t : κ

Ξ̂ ; [κ0⇒ τ]▷ t0,t : κ
AlgIxSpineEntry

Ξ̂ ; [τk]▷ t : κ

Ξ̂ ; [τ1× τ2]▷ .k,t : κ
AlgIxSpineProjk

Figure A.55: Algorithmic index spine sorting
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Ξ̂ ▷M (F)msmts[ξM (F)]
Under Ξ̂ (input), measurement list M (F) (input) is well-formed,
with value-determined dependencies ξM (F) (output)

·▷F functor[_]

Ξ̂ ▷ ·F msmts[·]

Ξ̂ ▷M (F)msmts[ξ ] ·▷α : F(τ)⇒ τ d÷Ξ̂ ; [τ]▷ t : κ ([▶]b̂
[[[ ]]]

d÷κ) ∈ Ξ̂

Ξ̂ ▷M (F),(foldF α)ν t=τ b̂
[[[ ]]]

msmts[ξ ∪FV(t)�b̂
[[[ ]]]

]

Ξ̂ ▷M (F)msmts[ξ ]
·▷α : F(τ)⇒ τ d÷Ξ̂ ; [τ]▷ t : κ ([▶]t d÷κ) /∈ Ξ̂ d÷Ξ̂ ▷ t : κ

Ξ̂ ▷M (F),(foldF α)ν t=τ t msmts[ξ ]

Ξ̂ ▷A type[ξA]
Under Ξ̂ (input), type A (input) is well-formed,
with value-determined dependencies ξA (output)

d
Ξ , Ξ̂ ▷Q type[ξQ] ξQ− d÷Ξ̂ ⊢ d

Ξ det

Ξ̂ ▷∃dΞ . Q type[ξQ− d
Ξ ]

AlgTp∃

Ξ̂ ▷R type[ξR] Ξ̂ ▷−→ϕ : B [ξ−→
ϕ
]

Ξ̂ ▷R∧−→ϕ type[ξR∪ξ−→
ϕ
]

AlgTp∧
Ξ̂ ▷M (F)msmts[ξ ]

Ξ̂ ▷{ν : µF |M (F)} type[ξ ]
AlgTpµ

Ξ̂ ▷P1 type[ξ1] Ξ̂ ▷P2 type[ξ2]

Ξ̂ ▷P1 +P2 type[·]
AlgTp+

Ξ̂ ▷R1 type[ξ1] Ξ̂ ▷R2 type[ξ2]

Ξ̂ ▷R1×R2 type[ξ1∪ξ2]
AlgTp×

Ξ̂ ▷0 type[·]
AlgTp0

Ξ̂ ▷1 type[·]
AlgTp1

Ξ̂ ▷N type[ξN ]

Ξ̂ ▷↓N type[·]
AlgTp↓

Ξ̂ ▷P type[ξP]

Ξ̂ ▷↑P type[·]
AlgTp↑

Ξ̂ ▷R type[ξR] Ξ̂ ▷L type[ξL]

Ξ̂ ▷R→ L type[ξR∪ξL]
AlgTp→

Ξ̂ ▷L type[ξL] Ξ̂ ▷−→ϕ : B [ξ−→
ϕ
]

Ξ̂ ▷−→ϕ ⊃ L type[ξL∪ξ−→
ϕ
]

AlgTp⊃

d
Ξ , Ξ̂ ▷M type[ξM] ξM− d÷Ξ̂ ⊢ d

Ξ det

Ξ̂ ▷∀dΞ . M type[ξM− d
Ξ ]

AlgTp∀

Figure A.56: Algorithmic type well-formedness
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Ξ̂ ▷F functor[ξ ]
Under Ξ̂ (input), functor F (input) is well-formed,
with value-determined dependencies ξ (output)

Ξ̂ ▷P type[ξ ]

Ξ̂ ▷P functor[ξ ]
AlgFuncConst

Ξ̂ ▷ Id functor[·]
AlgFuncId

Ξ̂ ▷ I functor[·]
AlgFuncI

Ξ̂ ▷ B̂ functor[ξ1] Ξ̂ ▷ P̂ functor[ξ2]

Ξ̂ ▷ B̂⊗ P̂ functor[ξ1∪ξ2]
AlgFunc⊗

Ξ̂ ▷F1 functor[ξ1] Ξ̂ ▷F2 functor[ξ2]

Ξ̂ ▷F1⊕F2 functor[·]
AlgFunc⊕

Ξ̂ ▷α : F(τ)⇒ τ
Under Ξ̂ , we know α is a well-formed algebra of kind F(τ)⇒ τ

(inputs: Ξ̂ ,α ,F ,τ)

α ◦ inj1 ⊜ α1
α ◦ inj2 ⊜ α2

Ξ̂ ▷α1 : F1(τ)⇒ τ

Ξ̂ ▷α2 : F2(τ)⇒ τ

Ξ̂ ▷α : (F1⊕F2)(τ)⇒ τ
AlgAlg⊕

Ξ̂ ▷Q type[ξQ] Ξ̂ ▷q⇒ t : P̂(τ)⇒ τ

Ξ̂ ▷ (⊤,q)⇒ t : (Q⊗ P̂)(τ)⇒ τ
AlgAlgConst

d
Ξ
′
, Ξ̂ ▷ (⊤,q)⇒ t : (Q⊗ P̂)(τ)⇒ τ

Ξ̂ ▷ (pk(dΞ
′
,⊤),q)⇒ t : (∃dΞ

′
. Q⊗ P̂)(τ)⇒ τ

AlgAlg∃

a d÷ τ ,a Id, Ξ̂ ▷q⇒ t : Î(τ)⇒ τ

Ξ̂ ▷ (a,q)⇒ t : (Id⊗ Î)(τ)⇒ τ
AlgAlgId

d÷Ξ̂ ▷ t : τ

Ξ̂ ▷()⇒ t : I(τ)⇒ τ
AlgAlgI

Figure A.57: Algorithmic well-formedness of functors and algebras
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Ξ̂ ⊢ (∀)W wf[ξ ]
Ξ̂ ⊢ χ Wf[ξ ]

Under Ξ̂ constraint(s) (∀)W (χ) is (are) well-formed with det. dependencies ξ

Note Ξ̂ ⊢ (∀)W wf e.g. abbreviates Ξ̂ ⊢ (∀)W wf[_] (_ means “don’t care”)
(Inputs: Ξ̂ , (∀)W , χ; output: ξ )

Ξ̂ ▷ϕ : B [ξ ]

Ξ̂ ⊢ ϕ wf[ξ ]

d÷Ξ̂ ▷u : τ d÷Ξ̂ ▷ t : τ

Ξ̂ ⊢ u≡τ t wf[·]

d÷Ξ̂ ; [τ]▷u : κ d÷Ξ̂ ; [τ]▷ t : κ

Ξ̂ ⊢ u≡[τ] t wf[·]

Ξ̂ ⊢ (∀)W1 wf[ξ1] Ξ̂ ⊢ (∀)W2 wf[ξ2]

Ξ̂ ⊢ (∀)W1

V(∀)W2 wf[ξ1∪ξ2]

Ξ̂ ▷ϕ : B Ξ̂ ⊢ (⊃)W wf[ξ ]

Ξ̂ ⊢ ϕ ⊃ (⊃)W wf[·]

a d÷ τ , Ξ̂ ⊢ (∀)W wf[ξ ]

Ξ̂ ⊢ ∀a d÷ τ . (∀)W wf[·]
Ξ̂ ▷A type[_] Ξ̂ ▷B type[_]

Ξ̂ ⊢ A <:± B wf[·]

there exist t,τ , t,κ ,ξ such that t⇝ ξ and Ξ̂ ; [τ]▷ t : κ

and for all Wk ∈
−→
W (̸= ·) we have d÷Ξ̂ ⊢Wk wf[_]

and there exist uk,uk such that Wk = (uk ≡[τ] t

V
uk ≡κ t) and (uk,uk)ground

Ξ̂ ⊢
∨−→

W wf[ξ ]

Ξ̂ ⊢ ·Wf[·]
Ξ̂ ⊢W wf[ξW ] Ξ̂ ⊢ χ Wf[ξχ ]

Ξ̂ ⊢W , χ Wf[ξW ∪ξχ ]

eground Ξ̂ ▷N type[_] Ξ̂ ⊢ χ Wf[ξ ]

Ξ̂ ⊢ (e⇐ N), χ Wf[ξ ]

where

t is not an evar
t⇝ ·

t is an evar
t⇝▶{t}

We define an operation ⌊−⌋ that removes program constraints:

⌊·⌋= tt

⌊(e⇐ N), χ⌋= ⌊χ⌋
⌊W , χ⌋=W

V

⌊χ⌋

Figure A.58: Algorithmic constraint well-formedness
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Θ |= (∀)W Under Θ (input), constraint (∀)W (input) algorithmically holds

Θ ⊢ ϕ true

Θ |= ϕ
|=WPrp

d÷Θ ⊢ u≡ t : τ

Θ |= u≡τ t
|=W IxEq

d÷Θ ; [τ] ⊢ t≡ t′ : κ

Θ |= t≡[τ] t
′ |=W IxSpineEq

Θ |= (∀)W1 Θ |= (∀)W2

Θ |= (∀)W1

V(∀)W2
|=W

V Θ |=Wk for some Wk ∈
−→
W

Θ |=
∨−→

W
|=W

∨
Θ ,ϕ |= (⊃)W

Θ |= ϕ ⊃ (⊃)W
|=W⊃

Θ ,a d÷ τ |= (∀)W

Θ |= ∀a d÷ τ . (∀)W
|=W∀

Θ ⊢ A <:± B

Θ |= A <:± B
|=W<:±

Figure A.59: Subtyping constraint checking

Θ ;Γ ◁χ Under (ground) Θ and Γ (inputs), constraints χ (input) algorithmically hold

Θ ;Γ ◁ ·
◁Empty

Θ |=W Θ ;Γ ◁χ

Θ ;Γ ◁W , χ
◁W

Θ ;Γ ▷ e⇐ N Θ ;Γ ◁χ

Θ ;Γ ◁ (e⇐ N), χ
◁NegChk

Figure A.60: Constraint verification
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Θ̂ ⊢W Inst▶ ⊣ Θ̂ ′ Input W instantiates input Θ̂ to output Θ̂ ′

no other rule applies

Θ̂ ⊢W Inst▶ ⊣ Θ̂

Θ̂ ⊢W Inst▶ ⊣ Θ̂
′′

Θ̂
′′ ⊢W ′ Inst▶ ⊣ Θ̂

′

Θ̂ ⊢W

V

W ′ Inst▶ ⊣ Θ̂
′

d÷∥Θ̂1∥ ⊢ t : κ

Θ̂1,▶â d÷κ ,Θ̂2 ⊢ t ≡κ â Inst▶ ⊣ Θ̂1,▶â : κ=t,Θ̂2

Θ̂ ⊢ (∀)W Inst ⊣ Θ̂ ′ Input (∀)W instantiates input Θ̂ to output Θ̂ ′

no other rule applies

Θ̂ ⊢ (∀)W Inst ⊣ Θ̂

Θ̂ ⊢ (∀)W1 Inst ⊣ Θ̂
′′

Θ̂
′′ ⊢ (∀)W2 Inst ⊣ Θ̂

′

Θ̂ ⊢ (∀)W1

V(∀)W2 Inst ⊣ Θ̂
′

d÷∥Θ̂∥,▶Θ̂ ⊢ t : κ

Θ̂1, â d÷κ ,Θ̂2 ⊢ â = t Inst ⊣ Θ̂1, â : κ=t,Θ̂2
Θ̂1, â d÷κ ,Θ̂2︸ ︷︷ ︸

Θ̂

⊢ t = â Inst ⊣ Θ̂1, â : κ=t,Θ̂2

Θ̂ ⊢ u1 = t1 Inst ⊣ Θ̂
′′

Θ̂
′′ ⊢ u2 = t2 Inst ⊣ Θ̂

′

Θ̂ ⊢ (u1,u2) = (t1, t2) Inst ⊣ Θ̂
′

Θ̂ ⊢ ϕ1 Inst ⊣ Θ̂
′′

Θ̂
′′ ⊢ ϕ2 Inst ⊣ Θ̂

′

Θ̂ ⊢ ϕ1∧ϕ2 Inst ⊣ Θ̂
′

Θ̂ ⊢W fixInst ⊣ Θ̂ ′ The fixed point of input W instantiations starting at input Θ̂ is output Θ̂ ′

Θ̂ ⊢W Inst ⊣ Θ̂

Θ̂ ⊢W fixInst ⊣ Θ̂

Θ̂ ⊢W Inst ⊣ Θ̂
′′

Θ̂
′′ ̸= Θ̂ Θ̂

′′ ⊢ [Θ̂ ′′]2W fixInst ⊣ Θ̂
′

Θ̂ ⊢W fixInst ⊣ Θ̂
′

Θ̂ ; · ⊢W fixInstChk ⊣Ω

Θ̂ ;Γ ⊢ χ fixInstChk ⊣Ω

Under input(s) Θ̂ (and Γ )
the input constraints W (χ) algorithmically hold at output solutions Ω

Θ̂ ⊢W fixInst ⊣ Θ̂
′ select

−→
Wo from [Θ̂ ′]2W

Θ̂
′ ⊢

V−→
Wo Inst▶ ⊣Ω ∥Θ̂∥ |= [Ω ]2W

Θ̂ ; · ⊢W fixInstChk ⊣Ω

Θ̂ ⊢ ⌊χ⌋ fixInst ⊣ Θ̂
′ select

−→
Wo from [Θ̂ ′]2⌊χ⌋

Θ̂
′ ⊢

V−→
Wo Inst▶ ⊣Ω ∥Θ̂∥;Γ ◁ [Ω ]2χ

Θ̂ ;Γ ⊢ χ fixInstChk ⊣Ω
where

select
−→
W from (∀)W select

−→
W ′ from (∀)W ′

select
−→
W ,
−→
W ′ from (∀)W

V(∀)W ′
(_

V

t ≡κ â) ∈ −→W
select t ≡κ â from

∨−→
W

(∀)W ̸=−

V

− and (∀)W ̸=
∨−→

W with _

V

_≡_ â ∈ −→W

select · from (∀)W

Figure A.61: Constraint instantiation
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Θ̂ ⊢ R <:+ Q / (∀)W
Θ̂ ⊢M <:− L / (∀)W
Θ ⊢ A <:± B

Under Θ̂ , type R (M) is algorithmically a subtype of Q (L) (all inputs)
if output constraint (∀)W holds algorithmically for some solutions;
Under Θ type A is algorithmically a subtype of B (inputs: Θ , A, B)

Θ̂ ⊢ 0 <:+ 0 / tt
<:+0

Θ̂ ⊢ 1 <:+ 1 / tt
<:+1

Θ̂ ⊢ R1 <:+ R′1 /W1 Θ̂ ⊢ R2 <:+ R′2 /W2

Θ̂ ⊢ R1×R2 <:+ R′1×R′2 /W1

V

W2
<:+×

P1 = ∃dΞ 1. R1∧−→ϕ1 P2 = ∃dΞ 2. R2∧−→ϕ2

Θ̂ ⊢ P1 +P2 <:+ P′1 +P′2 / (∀dΞ 1.−→ϕ1 ⊃ R1 <:+ P′1)

V

(∀dΞ 2.−→ϕ2 ⊃ R2 <:+ P′2)
<:++

Θ̂ ⊢ R <:+ R′ /W

Θ̂ ⊢ R <:+ R′∧−→ϕ /W

V−→
ϕ

<:+∧R

Θ̂ ⊢M ′(F ′)≥M (F) /W

Θ̂ ⊢
{

ν : µF ′
∣∣ M ′(F ′)

}
<:+ {ν : µF |M (F)} /W

<:+µ

Θ̂ ⊢ ↓N <:+ ↓(∀dΞ .−→ϕ ⊃ L) / ∀dΞ .−→ϕ ⊃ N <:− L
<:+↓

d
Ξ may be · Θ , d̂Ξ ⊢ R <:+ [d̂Ξ/dΞ ]Q /W

Θ , d̂Ξ ⊢W wf[ξW ] Θ , [ξW ]d̂Ξ ; · ⊢W fixInstChk ⊣Ω

Θ ⊢ R <:+ ∃dΞ . Q
<:+[∃]

Θ̂ ⊢ ↑(∃dΞ . R∧−→ϕ ) <:− ↑P / ∀dΞ .−→ϕ ⊃ R <:+ P
<:–↑

Θ̂ ⊢ L′ <:− L /W

Θ̂ ⊢ −→ϕ ⊃ L′ <:− L /W

V−→
ϕ

<:–⊃L

Θ̂ ⊢ R′ <:+ R /W1 Θ̂ ⊢ L <:− L′ /W2

Θ̂ ⊢ R→ L <:− R′→ L′ /W1

V

W2
<:–→

d
Ξ may be · Θ , d̂Ξ ⊢ [d̂Ξ/dΞ ]N <:− L /W

Θ , d̂Ξ ⊢W wf[ξW ] Θ , [ξW ]d̂Ξ ; · ⊢W fixInstChk ⊣Ω

Θ ⊢ ∀dΞ . M <:− L
<:–[∀]

Figure A.62: Algorithmic subtyping
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Θ̂ ⊢M ′(F ′)≥M (F) /W
Under input Θ̂ , measurements M ′(F ′) cover M (F) (inputs)
if output W holds for some solutions

·▷ tt(F
′);F ′ <:B tt(F);F

Θ̂ ⊢M ′(F ′)≥ ·F / tt

Θ̂ ⊢M ′(F ′)≥M (F) /W

let
−→
W =

t′ ≡[τ] t

V

t ′ ≡κ t

∣∣∣∣∣∣ ·▷α
′;F ′ <:τ α;F and d÷Θ̂ ; [τ]▷ t′ : κ

for some (foldF ′ α
′)ν t′ =τ t ′ ∈M ′(F ′)


Θ̂ ⊢M ′(F ′)≥M (F),(foldF α)ν t=τ t /W

V(∨−→
W

)
Figure A.63: Algorithmic measurement covering
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Ξ ▷α;F <:τ β ;G
Under Ξ , algebra α : F(τ)⇒ τ

is algorithmically a submeasure of β : G(τ)⇒ τ

(Inputs: Ξ ,α ,F ,τ ,β ,G)

α ◦ inj1 ⊜ α1
α ◦ inj2 ⊜ α2

β ◦ inj1 ⊜ β1
β ◦ inj2 ⊜ β2

Ξ ▷α1;F1 <:τ β1;G1
Ξ ▷α2;F2 <:τ β2;G2

Ξ ▷α;F1⊕F2 <:τ β ;G1⊕G2
Meas▷<:/⊕

d
Ξ
′ ̸= ·

Ξ ,dΞ ,−→ϕ , d̂Ξ
′ ⊢ R <:+ [d̂Ξ

′
/dΞ

′
]Q′ / (∀)W

Ξ ,dΞ , d̂Ξ
′ ⊢ (∀)W wf[ξ ]

Ξ ,dΞ ,−→ϕ , [ξ ]d̂Ξ
′; · ⊢ (∀)W fixInstChk ⊣Ω

Ξ ,dΞ ▷q⇒ t; P̂ <:τ q′⇒ [Ω ]2[d̂Ξ
′
/dΞ

′
]t ′; P̂′

Ξ ▷ (pk(dΞ ,⊤),q)⇒ t;∃dΞ . R∧−→ϕ ⊗ P̂ <:τ (pk(dΞ
′
,⊤),q′)⇒ t ′;∃dΞ

′
. Q′⊗ P̂′

Meas▷<:/∃R

(dΞ may be · and −→ϕ may be ·)
Ξ ,dΞ ,−→ϕ ⊢ R <:+ Q′

Ξ ,dΞ ▷q⇒ t; P̂ <:τ q′⇒ t ′; P̂′

Ξ ▷ (pk(dΞ ,⊤),q)⇒ t;∃dΞ . R∧−→ϕ ⊗ P̂ <:τ (⊤,q′)⇒ t ′;Q′⊗ P̂′
Meas▷<:/Const

Ξ ,a d÷ τ ,a Id▷q⇒ t; Î <:τ q′⇒ t ′; Î

Ξ ▷ (a,q)⇒ t; Id⊗ Î <:τ (a,q′)⇒ t ′; Id⊗ Î
Meas▷<:/Id

d÷Ξ ⊢ u≡ t : τ

Ξ ▷()⇒u; I <:τ ()⇒ t; I
Meas▷<:/I

Figure A.64: Algorithmic submeasuring
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Ξ̂ ▷ H
−→
β ;G;M (F)I⊜ dΘ ;R

Unrolling yields type ∃dΘ . (R∧ dΘ)
(inputs: left of ⊜; outputs: right of ⊜)

−→
β ◦ inj1 ⊜

−→
β1−→

β ◦ inj2 ⊜
−→
β2

Ξ̂ ▷ H
−→
β1;G1;M (F)I⊜ d

Θ 1;R1

Ξ̂ ▷ H
−→
β2;G2;M (F)I⊜ d

Θ 2;R2

Ξ̂ ▷ H
−→
β ;G1⊕G2;M (F)I⊜ ·;(∃dΘ 1. (R1∧ d

Θ 1))+(∃dΘ 2. (R2∧ d
Θ 2))

AlgH⊕I

(dΞ
′
may be · and −→ϕ may be ·)

−→
β ⇝

−→
β
′ d

Ξ
′
, Ξ̂ ⊢ H

−→
β
′; P̂;M (F)I⊜ d

Θ ;R

Ξ̂ ▷ H
−→
β ;∃dΞ

′
. R′∧−→ϕ ⊗ P̂;M (F)I⊜ d

Ξ
′
,dΘ ,−→ϕ ;R′×R

AlgHConstI

−−−→
a d÷ τ =−→a d÷M (F)

−−−−−−→
a d÷ τ ,a Id, Ξ̂ ▷ H

−−−→
q⇒ t ′; Î;M (F)I⊜ Ξ

′′,
−−→
ψ
′′;R′′

Ξ̂ ;Ξ
′′;zip(−→a )(M (F)) ⊢

−−→
ψ
′′ ⇝ Ξ̌1;M1(F);

−→
ψ
′

Ξ̂ ;Ξ
′′;zip(−→a )(M (F)) ⊢ R′′⇝ Ξ̌2;M2(F);R′

Ξ̌
′ = Ξ̌1∪ Ξ̌2 M ′(F) = M1(F)∪M2(F)

dom(Ξ ′)∩dom(Ξ̂ ,
−−−→
a d÷ τ ,Ξ ′′, Ξ̌ ′) = /0 ρ is the variable renaming Ξ

′/Ξ̌
′

Ξ̂ ▷ H
−−−−−−→
(a,q)⇒ t ′; Id⊗ Î;M (F)I⊜ Ξ

′,Ξ ′′, [ρ]
−→
ψ
′;
{

ν : µF
∣∣ [ρ]M ′(F)

}
× [ρ]R′

AlgHIdI

−→
t ′ @M (F)⊜−→ϕ

Ξ̂ ▷ H
−−−−→
()⇒ t ′; I;M (F)I⊜−→ϕ ;1

AlgHII

Figure A.65: Algorithmic unrolling
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Θ ;Γ ▷h⇒ P Under input Θ and Γ , input head h synthesizes (output) type P

(x : R) ∈ Γ

Θ ;Γ ▷ x⇒ R
Alg⇒Var

Θ ⊢ P type[ξ ] Θ ;Γ ▷ v⇐ P
Θ ;Γ ▷ (v : P)⇒ P

Alg⇒ValAnnot

Θ ;Γ ▷g⇒↑P
Under inputs Θ and Γ , input bound expression g synthesizes (output) ↑P
(possibly non-deterministically)

Θ ;Γ ▷h⇒↓N Θ ;Γ ; [N]▷ s⇒↑P
Θ ;Γ ▷h(s)⇒↑P

Alg⇒App

Θ ⊢ P type[ξ ] Θ ;Γ ▷ e⇐↑P
Θ ;Γ ▷ (e : ↑P)⇒↑P

Alg⇒ExpAnnot

Figure A.66: Algorithmic head and bound expression synthesis
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Θ ;Γ ▷ v⇐ P
Θ̂ ;Γ ⊢ v⇐ P / χ ⊣ ∆ ′

Under inputs Θ̂ and Γ , input value v checks against input type P,
with (outputs) computation constraints χ and new unsolved ∆ ′ (output)

(x : R′) ∈ Γ Θ̂ ⊢ R′ <:+ R /W

Θ̂ ;Γ ⊢ x⇐ R /W ⊣ ·
Alg⇐Var

Θ̂ ;Γ ⊢ ⟨⟩ ⇐ 1 / · ⊣ ·
Alg⇐1

Θ̂ ;Γ ⊢ v1⇐ R1 / χ1 ⊣ ∆1 Θ̂ ;Γ ⊢ v2⇐ R2 / χ2 ⊣ ∆2

Θ̂ ;Γ ⊢ ⟨v1,v2⟩ ⇐ (R1×R2) / χ1, χ2 ⊣ ∆1,∆2
Alg⇐×

Θ̂ ;Γ ⊢ v⇐ Pk / χ ⊣ ∆

Θ̂ ;Γ ⊢ injk v⇐ (P1 +P2) / χ ⊣ ∆
Alg⇐+k

Θ̂ , d̂Ξ ;Γ ⊢ v⇐ [d̂Ξ/dΞ ]Q / χ ⊣ ∆

Θ̂ ;Γ ⊢ v⇐ (∃dΞ . Q) / χ ⊣ d̂Ξ ,∆
Alg⇐∃

∄x. v =
−−−→iinjki

(−−−−→j⟨_ j,−⟩ x
)

M (F)⇝−→α ;−→τ
d÷Θ̂ ▷ H−→α ;F ;M (F)I⊜ d

Θ ;R Θ̂ ;Γ ⊢ v⇐∃dΘ . R∧ d
Θ / χ ⊣ ∆

Θ̂ ;Γ ⊢ into(v)⇐{ν : µF |M (F)} / χ ⊣ ∆
Alg⇐µ

Θ̂ ;Γ ⊢ {e}⇐ ↓N / (e⇐ N) ⊣ ·
Alg⇐↓

Θ̂ ;Γ ⊢ v⇐ R / χ ⊣ ∆

Θ̂ ;Γ ⊢ v⇐ (R∧−→ϕ ) / (−→ϕ , χ) ⊣ ∆
Alg⇐∧

Θ ;Γ ⊢ v⇐ P / χ ⊣ ∆ Θ ,∆ ⊢ χ Wf[ξ ] Θ , [ξ ]∆ ;Γ ⊢ χ fixInstChk ⊣Ω

Θ ;Γ ▷ v⇐ P
Alg⇐Val

Figure A.67: Algorithmic value checking



A.7. ALGORITHMIC SYSTEM 347

Θ ;Γ ▷ e⇐ N Under inputs Θ and Γ , input expression e checks against input N

Θ ;Γ ▷ v⇐ P
Θ ;Γ ▷ returnv⇐↑P

Alg⇐↑

Θ ,dΞ ,−→ψ ;Γ ,x : R▷ e⇐ L for some (∃dΞ . R∧−→ψ ) ∈ {P |Θ ;Γ ▷g⇒↑P}
Θ ;Γ ▷ let x=g; e⇐ L

Alg⇐let

Θ ;Γ ▷h⇒ P Θ ;Γ ; [P]▷{ri⇒ ei}i∈I ⇐ L
Θ ;Γ ▷match h {ri⇒ ei}i∈I ⇐ L

Alg⇐match

Θ ;Γ ,x : R▷ e⇐ L
Θ ;Γ ▷λx.e⇐ R→ L

Alg⇐λ
Θ ⊢ ff true

Θ ;Γ ▷unreachable⇐ L
Alg⇐Unreachable

Θ ⊢ ∀a d÷N,dΞ . M <:− L
Θ ,a÷N;Γ ,x : ↓∀a′ d÷N,dΞ . a′ < a⊃ [a′/a]M▷ e⇐∀dΞ . M

Θ ;Γ ▷ rec x : (∀a d÷N,dΞ . M). e⇐ L
Alg⇐rec

Θ ,dΞ ;Γ ▷ e⇐ N

Θ ;Γ ▷ e⇐∀dΞ . N
Alg⇐∀

Θ ,−→ϕ ;Γ ▷ e⇐ L

Θ ;Γ ▷ e⇐−→ϕ ⊃ L
Alg⇐⊃

Figure A.68: Algorithmic expression checking



A.7. ALGORITHMIC SYSTEM 348

Θ ;Γ ; [P]▷{ri⇒ ei}i∈I ⇐ N
Under Θ and Γ , patterns ri match against type P
and branch expressions ei check against type N (all inputs)

Θ ,dΞ ;Γ ; [Q]▷{ri⇒ ei}i∈I ⇐ N

Θ ;Γ ; [∃dΞ . Q]▷{ri⇒ ei}i∈I ⇐ N
AlgMatch∃

Θ ,−→ϕ ;Γ ; [R]▷{ri⇒ ei}i∈I ⇐ N

Θ ;Γ ; [R∧−→ϕ ]▷{ri⇒ ei}i∈I ⇐ N
AlgMatch∧

Θ ;Γ ▷ e⇐ N
Θ ;Γ ; [1]▷{⟨⟩⇒ e}⇐ N

AlgMatch1

Θ ;Γ ,x1 : R1,x2 : R2▷ e⇐ N
Θ ;Γ ; [R1×R2]▷{⟨x1,x2⟩⇒ e}⇐ N

AlgMatch×

Θ ,dΞ 1,−→ψ 1;Γ ,x1 : R1▷ e1⇐ N Θ ,dΞ 2,−→ψ 2;Γ ,x2 : R2▷ e2⇐ N

Θ ;Γ ; [(∃dΞ 1. R1∧−→ψ 1)+(∃dΞ 2. R2∧−→ψ 2)]▷{inj1 x1⇒ e1 | inj2 x2⇒ e2}⇐ N
AlgMatch+

Θ ;Γ ; [0]▷{}⇐ N
AlgMatch0

M (F)⇝−→α ;−→τ
d÷Θ ▷ H−→α ;F ;M (F)I⊜ d

Θ ;R Θ ,dΘ ;Γ ,x : R▷ e⇐ N
Θ ;Γ ; [{ν : µF |M (F)}]▷{into(x)⇒ e}⇐ N

AlgMatchµ

Figure A.69: Algorithmic pattern matching
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Θ ;Γ ; [N]▷ s⇒↑P
Θ̂ ;Γ ; [M] ⊢ s⇒↑P / χ ⊣ ∆

Inputs Θ ,Γ ,N,s nondeterministically synthesize ↑P (output);
Under Θ̂ and Γ ,
applying s to a head of type ↓M nondeterministically infers ↑P,
completable if χ holds for some Θ̂ ,∆ solutions
(inputs: Θ̂ ,Γ ,M,s; outputs: ↑P, χ ,∆ )

d
Ξ may be · Θ , d̂Ξ ;Γ ; [[d̂Ξ/dΞ ]M] ⊢ s⇒↑P / χ ⊣ ∆

Θ , d̂Ξ ,∆ ⊢ χ Wf[ξ ] Θ , [ξ ](d̂Ξ ,∆);Γ ⊢ χ fixInstChk ⊣Ω

Θ ;Γ ; [∀dΞ . M]▷ s⇒↑ [Ω ][Ω ]P
AlgSpine[∀]

Θ̂ ;Γ ; [L] ⊢ s⇒↑P / χ ⊣ ∆

Θ̂ ;Γ ; [−→ϕ ⊃ L] ⊢ s⇒↑P /−→ϕ , χ ⊣ ∆
AlgSpine⊃

Θ̂ ;Γ ⊢ v⇐ R / χ ⊣ ∆ Θ̂ ;Γ ; [L] ⊢ s⇒↑P / χ
′ ⊣ ∆

′

Θ̂ ;Γ ; [R→ L] ⊢ v,s⇒↑P / χ , χ
′ ⊣ ∆ ,∆ ′

AlgSpineApp

Θ̂ ;Γ ; [↑P] ⊢ · ⇒ ↑P / tt ⊣ ·
AlgSpineNil

Figure A.70: Algorithmic spine typing
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Θ̂
SMT−−−→ Θ̂ ′ Algorithmic context Θ̂ extends to Θ̂ ′ (inputs)

∥Θ̂∥= ∥Θ̂ ′∥
Θ̂ and Θ̂

′ agree on the sorts and ▶-status of evars
if [▶]â : κ=t ∈ Θ̂ then [▶]â : κ=t ∈ Θ̂

′

Θ̂
SMT−−−→ Θ̂

′

Figure A.71: Algorithmic context extension

Θ̂
SMT−−−→ Θ̂ ′ Algorithmic context Θ̂ relaxedly extends to Θ̂ ′ (inputs)

∥Θ̂∥= ∥Θ̂ ′∥
Θ̂ and Θ̂

′ agree on the sorts and ▶-status of evars
if [▶]â : κ=t ∈ Θ̂ then [▶]â : κ=t ∈ Θ̂

′ or ∃([▶]â : κ=t ′ ∈ Θ̂
′).∥Θ̂∥ ⊢ [Θ̂ ]t = [Θ̂ ′]t ′ true

Θ̂
SMT−−−→ Θ̂

′

Figure A.72: Relaxed algorithmic context extension
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Appendix A.8 Intermediate Systems for Algorithmic Completeness

Θ ⊢̃M ′(F ′)≥M (F) /W
Under Θ , measurements M ′(F ′) cover M (F) if W holds
(inputs: Θ ,M ′(F ′),M (F); output: W )

· ⊢̃ tt(F
′);F ′ <:B tt(F);F

Θ ⊢̃M ′(F ′)≥ ·F / tt

Θ ⊢̃M ′(F ′)≥M (F) /W

let
−→
W =

t′ ≡[τ] t

V

t ′ ≡κ t

∣∣∣∣∣∣ · ⊢̃ α
′;F ′ <:τ α;F and d÷Θ ; [τ] ⊢ t′ : κ

for some (foldF ′ α
′)ν t′ =τ t ′ ∈M ′(F ′)


Θ ⊢̃M ′(F ′)≥M (F),(foldF α)ν t=τ t /W

V(∨−→
W

)
Figure A.73: Semideclarative measurement covering
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Θ ⊢̃ R <:+ P / (∀)W
Θ ⊢̃ N <:− L / (∀)W

Under input Θ , type input R (N) is a subtype of input P (L),
if output constraint (∀)W holds

Θ ⊢̃ 1 <:+ 1 / tt
<̃:+1

Θ ⊢̃ 0 <:+ 0 / tt
<̃:+0

Θ ⊢̃ R1 <:+ R′1 /W1 Θ ⊢̃ R2 <:+ R′2 /W2

Θ ⊢̃ R1×R2 <:+ R′1×R′2 /W1

V

W2
<̃:+×

P1 = ∃dΞ 1. R1∧−→ϕ1 P2 = ∃dΞ 2. R2∧−→ϕ2

Θ ⊢̃ P1 +P2 <:+ P′1 +P′2 / (∀dΞ 1.−→ϕ1 ⊃ R1 <:+ P′1)

V

(∀dΞ 2.−→ϕ2 ⊃ R2 <:+ P′2)
<̃:++

Θ ⊢̃ R <:+ R′ /W

Θ ⊢̃ R <:+ R′∧−→ϕ /W

V−→
ϕ

<̃:+∧R
d÷Θ ⊢ σ : dΞ Θ ⊢̃ R <:+ [σ ]Q /W

Θ ⊢̃ R <:+ ∃dΞ . Q /W
<̃:+∃R

Θ ⊢̃M ′(F ′)≥M (F) /W

Θ ⊢̃
{

ν : µF ′
∣∣ M ′(F ′)

}
<:+ {ν : µF |M (F)} /W

<̃:+µ

Θ ⊢̃ ↓N <:+ ↓(∀dΞ .−→ϕ ⊃ L) / ∀dΞ .−→ϕ ⊃ N <:− L
<̃:+↓

Θ ⊢̃ ↑(∃dΞ . R∧−→ϕ ) <:− ↑P / ∀dΞ .−→ϕ ⊃ R <:+ P
<̃:–↑

Θ ⊢̃ L′ <:− L /W

Θ ⊢̃ −→ϕ ⊃ L′ <:− L /W

V−→
ϕ

<̃:–⊃L
d÷Θ ⊢ σ : dΞ Θ ⊢̃ [σ ]M <:− L /W

Θ ⊢̃ ∀dΞ . M <:− L /W
<̃:–∀L

Θ ⊢̃ R′ <:+ R /W1 Θ ⊢̃ L <:− L′ /W2

Θ ⊢̃ R→ L <:− R′→ L′ /W1

V

W2
<̃:–→

Figure A.74: Semideclarative subtyping
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Ξ ⊢̃ α;F <:τ β ;G
Under Ξ , algebra α : F(τ)⇒ τ

is semideclaratively a submeasure of β : G(τ)⇒ τ

(All inputs)

α ◦ inj1 ⊜ α1
α ◦ inj2 ⊜ α2

β ◦ inj1 ⊜ β1
β ◦ inj2 ⊜ β2

Ξ ⊢̃ α1;F1 <:τ β1;G1

Ξ ⊢̃ α2;F2 <:τ β2;G2

Ξ ⊢̃ α;F1⊕F2 <:τ β ;G1⊕G2
<̃:τ⊕

Ξ ,dΞ
′ ⊢̃ (⊤,q)⇒ t;Q⊗ P̂ <:τ (o′,q′)⇒ t ′;P⊗ P̂′

Ξ ⊢̃ (pk(dΞ
′
,⊤),q)⇒ t;∃dΞ

′
. Q⊗ P̂ <:τ (o′,q′)⇒ t ′;P⊗ P̂′

<̃:τ∃L

d÷Ξ ⊢ σ : dΞ
′

Ξ ⊢̃ (⊤,q)⇒ t;Q⊗ P̂ <:τ (⊤,q′)⇒ [σ ]t ′; [σ ]Q′⊗ P̂′

Ξ ⊢̃ (⊤,q)⇒ t;Q⊗ P̂ <:τ (pk(dΞ
′
,⊤),q′)⇒ t ′;∃dΞ

′
. Q′⊗ P̂′

<̃:τ∃R

(−→ϕ may be ·)
Ξ ,−→ϕ ⊢̃ R <:+ Q′ / (∀)W Ξ ,−→ϕ |̃= (∀)W Ξ ⊢̃ q⇒ t; P̂ <:τ q′⇒ t ′; P̂′

Ξ ⊢̃ (⊤,q)⇒ t;R∧−→ϕ ⊗ P̂ <:τ (⊤,q′)⇒ t ′;Q′⊗ P̂′
<̃:τConst

Ξ ,a d÷ τ ,a Id ⊢̃ q⇒ t; Î <:τ q′⇒ t ′; Î

Ξ ⊢̃ (a,q)⇒ t; Id⊗ Î <:τ (a,q′)⇒ t ′; Id⊗ Î
<̃:τId

d÷Ξ ⊢ u≡ t : τ

Ξ ⊢̃ ()⇒u; I <:τ ()⇒ t; I
<̃:τ I

Figure A.75: Semideclarative submeasuring
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Θ ;Γ ⊢̃ h⇒ P Under inputs Θ and Γ , input head h semideclaratively infers (output) type P

(x : R) ∈ Γ

Θ ;Γ ⊢̃ x⇒ R
⇒̃Var

Θ ⊢ P type[ξ ] Θ ;Γ ⊢̃ v⇐ P / χ Θ ;Γ ◁̃ χ

Θ ;Γ ⊢̃ (v : P)⇒ P
⇒̃ValAnnot

Θ ;Γ ⊢̃ g⇒↑P
Under input Θ and Γ , input bound expression g
semideclaratively synthesizes type ↑P (output)

Θ ;Γ ⊢̃ h⇒↓N Θ ;Γ ; [N] ⊢̃ s⇒↑P / χ Θ ;Γ ◁̃ χ

Θ ;Γ ⊢̃ h(s)⇒↑P
⇒̃App

Θ ⊢ P type[ξ ] Θ ;Γ ⊢̃ e⇐↑P

Θ ;Γ ⊢̃ (e : ↑P)⇒↑P
⇒̃ExpAnnot

Figure A.76: Semideclarative head and bound expression type synthesis
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Θ ;Γ ⊢̃ v⇐ P / χ
Under inputs Θ and Γ , input value v semideclaratively checks against type P,
with output constraints χ

(x : R′) ∈ Γ Θ ⊢̃ R′ <:+ R /W

Θ ;Γ ⊢̃ x⇐ R /W
⇐̃Var

Θ ;Γ ⊢̃ ⟨⟩ ⇐ 1 / ·
⇐̃1

Θ ;Γ ⊢̃ v1⇐ R1 / χ1 Θ ;Γ ⊢̃ v2⇐ R2 / χ2

Θ ;Γ ⊢̃ ⟨v1,v2⟩ ⇐ R1×R2 / χ1, χ2
⇐̃×

Θ ;Γ ⊢̃ v⇐ Pk / χ

Θ ;Γ ⊢̃ injk v⇐ P1 +P2 / χ
⇐̃+k

∄x. v =
−−−→iinjki

(−−−−→j⟨_ j,−⟩ x
)

M (F)⇝−→α ;−→τ
d÷Θ ⊢ H−→α ;F ;M (F)I⊜ d

Θ ;R Θ ;Γ ⊢̃ v⇐∃dΘ . R∧ d
Θ / χ

Θ ;Γ ⊢̃ into(v)⇐{ν : µF |M (F)} / χ
⇐̃µ

Θ ;Γ ⊢̃ {e}⇐ ↓N / (e⇐ N)
⇐̃↓

Θ ;Γ ⊢̃ v⇐ R / χ

Θ ;Γ ⊢̃ v⇐ R∧−→ϕ /−→ϕ , χ
⇐̃∧

d÷Θ ⊢ σ : dΞ Θ ;Γ ⊢̃ v⇐ [σ ]Q / χ

Θ ;Γ ⊢̃ v⇐ (∃dΞ . Q) / χ
⇐̃∃

Figure A.77: Semideclarative value type checking
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Θ ;Γ ⊢̃ e⇐ N
Under inputs Θ and Γ , input expression e
semideclaratively checks against input type N

Θ ;Γ ⊢̃ v⇐ P / χ Θ ;Γ ◁̃ χ

Θ ;Γ ⊢̃ returnv⇐↑P
⇐̃↑

Θ ;Γ ⊢̃ g⇒↑(∃dΞ . R∧−→ψ ) Θ ,dΞ ,−→ψ ;Γ ,x : R ⊢̃ e⇐ L

Θ ;Γ ⊢̃ let x=g; e⇐ L
⇐̃let

Θ ;Γ ⊢̃ h⇒ P Θ ;Γ ; [P] ⊢̃ {ri⇒ ei}i∈I ⇐ L

Θ ;Γ ⊢̃match h {ri⇒ ei}i∈I ⇐ L
⇐̃match

Θ ;Γ ,x : R ⊢̃ e⇐ L

Θ ;Γ ⊢̃ λx.e⇐ R→ L
⇐̃λ

Θ ⊢ ff true

Θ ;Γ ⊢̃ unreachable⇐ L
⇐̃Unreachable

Θ ⊢̃ ∀a d÷N,dΞ . M <:− L /W Θ |̃=W
Θ ,a÷N;Γ ,x : ↓∀a′ d÷N,dΞ . a′ < a⊃ [a′/a]M ⊢̃ e⇐∀dΞ . M

Θ ;Γ ⊢̃ rec x : (∀a d÷N,dΞ . M). e⇐ L
⇐̃rec

Θ ,dΞ ;Γ ⊢̃ e⇐M

Θ ;Γ ⊢̃ e⇐∀dΞ . M
⇐̃∀

Θ ,−→ϕ ;Γ ⊢̃ e⇐ L

Θ ;Γ ⊢̃ e⇐−→ϕ ⊃ L
⇐̃⊃

Figure A.78: Semideclarative expression type checking



A.8. INTERMEDIATE SYSTEMS FOR ALGORITHMIC COMPLETENESS 357

Θ ;Γ ; [P] ⊢̃ {ri⇒ ei}i∈I ⇐ N
Under Θ and Γ , patterns ri match semideclaratively against type P
and branch expressions ei check against type N (all inputs)

Θ ,dΞ ;Γ ; [Q] ⊢̃ {ri⇒ ei}i∈I ⇐ N

Θ ;Γ ; [∃dΞ . Q] ⊢̃ {ri⇒ ei}i∈I ⇐ N
M̃atch∃

Θ ,−→ϕ ;Γ ; [R] ⊢̃ {ri⇒ ei}i∈I ⇐ N

Θ ;Γ ; [R∧−→ϕ ] ⊢̃ {ri⇒ ei}i∈I ⇐ N
M̃atch∧

Θ ;Γ ⊢̃ e⇐ N

Θ ;Γ ; [1] ⊢̃ {⟨⟩⇒ e}⇐ N
M̃atch1

Θ ;Γ ,x1 : R1,x2 : R2 ⊢̃ e⇐ N

Θ ;Γ ; [R1×R2] ⊢̃ {⟨x1,x2⟩⇒ e}⇐ N
M̃atch×

Θ ,dΞ 1,−→ψ 1;Γ ,x1 : R1 ⊢̃ e1⇐ N Θ ,dΞ 2,−→ψ 2;Γ ,x2 : R2 ⊢̃ e2⇐ N

Θ ;Γ ; [(∃dΞ 1. R1∧−→ψ 1)+(∃dΞ 2. R2∧−→ψ 2)] ⊢̃ {inj1 x1⇒ e1 | inj2 x2⇒ e2}⇐ N
M̃atch+

Θ ;Γ ; [0] ⊢̃ {} ⇐ N
M̃atch0

M (F)⇝−→α ;−→τ d÷Θ ⊢ H−→α ;F ;M (F)I⊜ d
Θ ;R Θ ,dΘ ;Γ ,x : R ⊢̃ e⇐ N

Θ ;Γ ; [{ν : µF |M (F)}] ⊢̃ {into(x)⇒ e}⇐ N
M̃atchµ

Θ ;Γ ; [N] ⊢̃ s⇒↑P / χ

Under inputs Θ and Γ ,
if spine s (input) is applied to a head of type ↓N (input: N),
it semideclaratively returns a result of type ↑P (output),
if output constraints χ hold semideclaratively

d÷Θ ⊢ σ : dΞ Θ ;Γ ; [[σ ]M] ⊢̃ s⇒↑P / χ

Θ ;Γ ; [∀dΞ . M] ⊢̃ s⇒↑P / χ
S̃pine∀

Θ ;Γ ; [L] ⊢̃ s⇒↑P / χ

Θ ;Γ ; [−→ϕ ⊃ L] ⊢̃ s⇒↑P /−→ϕ , χ
S̃pine⊃

Θ ;Γ ⊢̃ v⇐ R / χ Θ ;Γ ; [L] ⊢̃ s⇒↑P / χ
′

Θ ;Γ ; [R→ L] ⊢̃ v,s⇒↑P / χ , χ
′ S̃pineApp

Θ ;Γ ; [↑P] ⊢̃ · ⇒ ↑P / tt
S̃pineNil

Figure A.79: Semideclarative pattern matching and spine typing
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Θ |̃= (∀)W Under input Θ , input constraint (∀)W semideclaratively holds

Θ ⊢ ϕ true

Θ |̃= ϕ
|̃=Prp

d÷Θ ⊢ u≡ t : τ

Θ |̃= u≡τ t
|̃=IxEq

d÷Θ ; [τ] ⊢ t≡ t′ : κ

Θ |̃= t≡[τ] t
′ |̃=tEq

Θ |̃= (∀)W1 Θ |̃= (∀)W2

Θ |̃= (∀)W1

V(∀)W2
|̃=

V Θ |̃=Wk for some Wk ∈
−→
W

Θ |̃=
∨−→

W
|̃=
∨

Θ ,ϕ |̃= (⊃)W

Θ |̃= ϕ ⊃ (⊃)W
|̃=⊃

Θ ,a d÷ τ |̃= (∀)W

Θ |̃= ∀a d÷ τ . (∀)W
|̃=∀

Θ ⊢̃ A <:± B / (∀)W Θ |̃= (∀)W

Θ |̃= A <:± B
|̃=<:±

Θ ;Γ ◁̃ χ Under inputs Θ and Γ , input constraints χ semideclaratively hold

Θ ;Γ ◁̃ ·
◁̃Empty

Θ |̃=W Θ ;Γ ◁̃ χ

Θ ;Γ ◁̃W , χ
◁̃W

Θ ;Γ ⊢̃ e⇐ N Θ ;Γ ◁̃ χ

Θ ;Γ ◁̃ (e⇐ N), χ
◁̃NegChk

Figure A.80: Semideclarative constraint verification
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Θ ⊢ A≡± B Under input Θ , input types A and B are equivalent

Θ ⊢ 1≡+ 1
Tp≡+1

Θ ⊢ 0≡+ 0
Tp≡+0

Θ ⊢ R1 ≡+ R′1 Θ ⊢ R2 ≡+ R′2
Θ ⊢ R1×R2 ≡+ R′1×R′2

Tp≡+×
Θ ⊢ P1 ≡+ P′1 Θ ⊢ P2 ≡+ P′2

Θ ⊢ P1 +P2 ≡+ P′1 +P′2
Tp≡++

Θ ⊢ R≡+ R′ Θ ⊢ −→ϕ ≡−→ϕ ′ : B
Θ ⊢ R∧−→ϕ ≡+ R′∧−→ϕ ′

Tp≡+∧
Θ ,dΞ ⊢ Q≡+ Q′

Θ ⊢ ∃dΞ . Q≡+ ∃dΞ . Q′
Tp≡+∃

Θ ⊢M1(F)≡M2(F)

Θ ⊢ {ν : µF |M1(F)} ≡+ {ν : µF |M2(F)}
Tp≡+µ

Θ ⊢ N ≡− N′

Θ ⊢ ↓N ≡+ ↓N′
Tp≡+↓

Θ ⊢ P≡+ P′

Θ ⊢ ↑P≡− ↑P′
Tp≡–↑

Θ ⊢ L≡− L′ Θ ⊢ −→ϕ ≡−→ϕ ′ : B
Θ ⊢ −→ϕ ⊃ L≡− −→ϕ ′ ⊃ L′

Tp≡–⊃
Θ ,dΞ ⊢M ≡− M′

Θ ⊢ ∀dΞ . M ≡− ∀dΞ . M′
Tp≡–∀

Θ ⊢ R≡+ R′ Θ ⊢ L≡− L′

Θ ⊢ R→ L≡− R′→ L′
Tp≡–→

Θ ⊢M ′(F)≡M (F) Under input Θ , input measurement lists M ′(F) and M (F) are equivalent

Θ ⊢ ·F ≡ ·F
Θ ⊢M ′(F)≡M (F) d÷Θ ; [τ] ⊢ t≡ u : κ d÷Θ ⊢ t = u true

Θ ⊢M ′(F),(foldF α)ν t=τ t ≡M (F),(foldF α)ν u=τ u

Figure A.81: Declarative equivalence of types (and measurements)
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Ξ ⊢ α;F ≡τ β ;G Under Ξ , measures α : F(τ)⇒ τ and β : G(τ)⇒ τ are equivalent

α ◦ inj1 ⊜ α1
α ◦ inj2 ⊜ α2

β ◦ inj1 ⊜ β1
β ◦ inj2 ⊜ β2

Ξ ⊢ α1;F1 ≡τ β1;G1
Ξ ⊢ α2;F2 ≡τ β2;G2

Ξ ⊢ α;F1⊕F2 ≡τ β ;G1⊕G2
Meas≡⊕

Ξ ⊢ P≡+ P′ Ξ ⊢ q⇒ t; P̂≡τ q′⇒ t ′; P̂′

Ξ ⊢ (⊤,q)⇒ t;P⊗ P̂≡τ (⊤,q′)⇒ t ′;P′⊗ P̂′
Meas≡Const

Ξ ,a d÷ τ ,a Id ⊢ q⇒ t; Î ≡τ q′⇒ t ′; Î′

Ξ ⊢ (a,q)⇒ t; Id⊗ Î ≡τ (a,q′)⇒ t ′; Id⊗ Î′
Meas≡Id

d÷Ξ ⊢ u≡ t : τ

Ξ ⊢ ()⇒u; I ≡τ ()⇒ t; I
Meas≡I

Figure A.82: Declarative measure equivalence

Θ |̃= (∀)W ↔ (∀)W ′ Under Θ (input), constraints (∀)W and (∀)W ′ (inputs) are equivalent

Θ ⊢ ϕ ≡ ψ : B

Θ |̃= ϕ ↔ ψ
|̃=↔Prp

d÷Θ ⊢ u≡ t : τ d÷Θ ⊢ u′ ≡ t ′ : τ

Θ |̃= u≡τ u′↔ t ≡τ t ′
|̃=↔IxEq

d÷Θ ; [τ] ⊢ t1 ≡ t′1 : κ d÷Θ ; [τ] ⊢ t2 ≡ t′2 : κ

Θ |̃= t1 ≡[τ] t2↔ t′1 ≡[τ] t
′
2

|̃=↔tEq

Θ |̃= (∀)W1↔ (∀)W ′1 Θ |̃= (∀)W2↔ (∀)W ′2
Θ |̃= (∀)W1

V(∀)W2↔ (∀)W ′1

V(∀)W ′2
|̃=↔

V

Θ |̃=Wk↔W ′k for all (Wk,W ′k) ∈ zip(
−→
W )(
−→
W ′)

Θ |̃=
∨−→

W ↔
∨−→

W ′
|̃=↔

∨

Θ ⊢ ϕ ≡ ϕ
′ : B Θ ,ϕ |̃= (⊃)W ↔ (⊃)W ′

Θ |̃= ϕ ⊃ (⊃)W ↔ ϕ
′ ⊃ (⊃)W ′

|̃=↔⊃

Θ ,a d÷ τ |̃= (∀)W ↔ (∀)W ′

Θ |̃= ∀a d÷ τ . (∀)W ↔∀a d÷ τ . (∀)W ′
|̃=↔∀

Θ ⊢ A≡± A′ Θ ⊢ B≡± B′

Θ |̃= A <:± B↔ A′ <:± B′
|̃=↔<:±

Figure A.83: Constraint equivalence



A.8. INTERMEDIATE SYSTEMS FOR ALGORITHMIC COMPLETENESS 361

Θ ◁̃ χ1↔ χ2 Under Θ (input), constraint lists χ1 and χ2 (inputs) are equivalent

Θ ◁̃ · ↔ ·
◁̃↔Empty

Θ |̃=W1↔W2 Θ ◁̃ χ1↔ χ2

Θ ◁̃W1, χ1↔W2, χ2
◁̃↔W

Θ ⊢ N1 ≡− N2 Θ ◁̃ χ1↔ χ2

Θ ◁̃ (e⇐ N1), χ1↔ (e⇐ N2), χ2
◁̃↔⇐−

Figure A.84: Equivalence of constraint lists

Θ̂ ; · ⊢̃W fixInstChk ⊣Ω

Θ̂ ;Γ ⊢̃ χ fixInstChk ⊣Ω

Under input(s) Θ̂ (and Γ ) the input constraints W (χ)
semideclaratively hold at output solutions Ω

As in Figure A.61 but replacing ∥Θ̂∥ |= [Ω ]2W by ∥Θ̂∥ |̃= [Ω ]2W
and replacing ∥Θ̂∥;Γ ◁ [Ω ]2χ by ∥Θ̂∥;Γ ◁̃ [Ω ]2χ .

Figure A.85: Semideclarative fixInst
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Appendix A.9 Miscellaneous Definitions

ξ −a, ξ −D, ξ −Ξ Fig. A.5
−∧Θ and −∧−→ϕ Fig. A.14
∃Θ .− Fig. A.14
Θ ⊃− and −→ϕ ⊃− Fig. A.14
∀Θ .− Fig. A.14
d÷− Fig. A.4
⟨− | −⟩ Fig. A.6
[σ ]−, [σ ]h− Fig. A.6, Fig. A.7
Kκ Fig. A.10
hgt(−) Def. C.1 (Height and Structure)
JΘ0;Γ0 ⊢ σ : Θ ;Γ K Def. C.2 (Denotation of Syntactic Substitution)
d[σ ]− Def. C.4 (Substitution on ξ )
⌊δ⌋ Fig. A.46
⌊σ⌋ Def. A.4 (Remove Program Entries)
⌊χ⌋ Fig. A.58
δ↾Θ Fig. A.48
σ↾Θ Similar to definition of δ↾Θ in Fig. A.48
δ1↾ξ = δ2↾ξ Fig. A.48
q

Ξ̌
yfix

δ
and

q
Ξ̌

y
δ

Fig. A.48
Θ Def. A.2 (Remove Propositions)
Θ − Id Def. A.3 (Remove Id Variables)
idΘ ;Γ and (Θ ;Γ )/(Θ ;Γ ) Def. C.5 (Id. Substitution)
⟨σ⟩Ξ , ⟨σ⟩D Def. C.3 (FV Image of a Substitution)
Θ ⊢ Γ ≤+ Γ ′ Def. C.7
Predomain (cpo) Def. D.1
Domain (cppo) Def. D.2
Continuous function Def. D.3
Cpo Def. D.4
Cppo Def. D.5
fold and foldn Def. E.1 (Fold)
∆ ⊢ ξ ′∠ξ Fig. G.1

Figure A.86: Miscellaneous definitions
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Appendix B

On cl and The Equivalence of cl and det

Definition B.1 (ξ Closure Operator). Define

cl0(ξ )(D) =D

cln+1(ξ )(D) = cln(ξ )(D)∪{b | A⊆ cln(ξ )(D) for some A�b ∈ ξ}

Define

cl(ξ )(D) =
⋃

k∈N
clk(ξ )(D)

Lemma B.1. If n ∈ N and b /∈ cln(ξ )( /0) and b ∈B then cln(ξ ∪B�c)( /0) = cln(ξ )( /0).

Proof. By induction on n.

• Case n = 0: cln(ξ ∪B�c)( /0) = cl0(ξ ∪B�c)( /0) = /0 = cl0(ξ )( /0) = cln(ξ )( /0).

• Case n = k+1:

b /∈ cln(ξ )( /0) Given

clk(ξ )( /0) ⊆ clk+1(ξ )( /0) By def. of clk+1, ∪ property

= cln(ξ )( /0) Current case

b /∈ clk(ξ )( /0) Otherwise b ∈ cln(ξ )( /0)
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cln(ξ ∪B�c)( /0) = clk+1(ξ ∪B�c)( /0)

= clk(ξ ∪B�c)( /0)

∪
{

d
∣∣ A⊆ clk(ξ ∪B�c)( /0) for some A�d ∈ (ξ ∪B�c)

}
By def.

= clk(ξ )( /0)

∪
{

d
∣∣ A⊆ clk(ξ )( /0) for some A�d ∈ (ξ ∪B�c)

}
By i.h.

= clk(ξ )( /0)

∪
{

d
∣∣ A⊆ clk(ξ )( /0) for some A�d ∈ ξ

}
As B⊈ clk(ξ )( /0)

= clk+1(ξ )( /0) By def.

= cln(ξ )( /0)

Lemma B.2. If B⊆ cln(ξ ∪B�c)( /0) then B⊆ cln(ξ )( /0).

Proof. By contradiction. Suppose there exists b ∈B such that b /∈ cln(ξ )( /0). By Lemma

B.1, cln(ξ )( /0) = cln(ξ ∪B�c)( /0). Therefore, b /∈ cln(ξ ∪B�c)( /0), contradicting b ∈

B⊆ cln(ξ ∪B�c)( /0).

Lemma B.3. If b ∈ cl(ξ )( /0) then cl(ξ ∪B�c)( /0)⊆ cl(ξ ∪ (B∪{b})�c)( /0).

Proof. It suffices to show (by induction on n) that,

for all n ∈ N, we have cln(ξ ∪B�c)( /0)⊆ cl(ξ ∪ (B∪{b})�c)( /0).

The n = 0 case is easy.

For the n = k+1 case, suppose D�a ∈ (ξ ∪B�c) and D⊆ clk(ξ ∪B�c)( /0)

and show a ∈ cl(ξ ∪ (B∪{b})�c)( /0).

• Case D�a =B�c:
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B ⊆ clk(ξ ∪B�c)( /0) As D=B

B ⊆ clk(ξ )( /0) By Lemma B.2

⊆ cl(ξ )( /0)

{b} ⊆ cl(ξ )( /0) Given

B∪{b} ⊆ cl(ξ )( /0) Property of ∪

⊆ cl(ξ ∪ (B∪{b})�c)( /0) cl(−)(O) monotone

a = c

∈ cl(ξ ∪ (B∪{b})�c)( /0) By def. of cl

• Case D�a ̸=B�c:

D�a ∈ (ξ ∪B�c) Above

D�a ∈ ξ As D�a ̸=B�c

⊆ (ξ ∪ (B∪{b})�c)

D ⊆ clk(ξ ∪B�c)( /0) Above

⊆ clk(ξ ∪ (B∪{b})�c)( /0) By i.h.

a ∈ clk+1(ξ ∪ (B∪{b})�c)( /0) By def.

⊆ cl(ξ ∪ (B∪{b})�c)( /0) By def., ∪ property

Lemma B.4 (Equivalence of cl and det). ξ ⊢D det if and only if D⊆ cl(ξ )( /0)

Proof. There are two parts.

We first show the “only if” part by structural induction on ξ ⊢ a det, assuming a ∈D.

• Case
/0�a ∈ ξ

ξ ⊢ a det

DetUnit
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a ∈{c |B⊆ /0 for some B�c ∈ ξ} As /0�a ∈ ξ and /0⊆ /0

= /0∪{c |B⊆ /0 for some B�c ∈ ξ}

= cl0(ξ )( /0)∪
{

c
∣∣B⊆ cl0(ξ )( /0) for some B�c ∈ ξ

}
= cl1(ξ )( /0)

⊆ ∪ j∈N cl j(ξ )( /0)

= cl(ξ )( /0)

• Case
ξ0 ⊢ b det ξ0∪B�c ⊢ a det

ξ0,(B,b)�c ⊢ a det

DetCut

b ∈ cl(ξ0)( /0) By i.h.

a ∈ cl(ξ0∪B�c)( /0) By i.h.

⊆ cl(ξ0,(B,b)�c)( /0) By Lemma B.3

We now show the second part, the “if” part.

It suffices to show that, for all n ∈ N, we have ξ ⊢ cln(ξ )( /0) det.

We proceed by induction on n.

• Case n = 0 holds vacuously.

• Case n = k+1:

By definition,

clk+1(ξ )( /0) = clk(ξ )( /0)∪
{

a
∣∣∣ C⊆ clk(ξ )( /0) for some C�a ∈ ξ

}
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Suppose a ∈ clk+1(ξ )( /0).

Either a ∈ clk(ξ )( /0) or a ∈
{

a
∣∣ C⊆ clk(ξ )( /0) for some C�a ∈ ξ

}
.

If a ∈ clk(ξ )( /0) then the goal ξ ⊢ a det follows from the induction hypothesis.

Assume a /∈ clk(ξ )( /0). There exists C�a ∈ ξ such that C⊆ clk(ξ )( /0).

If C= /0 then ξ ⊢ a det by DetUnit.

Assume C ̸= /0.

ξ = (ξ − (C�a)),C�a As C�a ∈ ξ

C ⊆ clk+1((ξ − (C�a)),C�a)( /0) By equality

C ⊆ clk+1(ξ − (C�a))( /0) By Lemma B.2

ξ − (C�a) ⊢ clk+1(ξ − (C�a))( /0) det By i.h.

ξ − (C�a) ⊢C det As C⊆ clk+1(ξ − (C�a))( /0)

(ξ − (C�a)), /0�a ⊢ a det By DetUnit

(ξ − (C�a)),C�a ⊢ a det By #C uses of DetCut

ξ ⊢ a det By equality

Lemma B.5 (Weaken cl). If B⊆ cl(ξ )(A) then cl(ξ )(A) = cl(ξ )(A∪B).

Proof. Because cl(O)(−) is monotone, cl(ξ )(A)⊆ cl(ξ )(A∪B).

It is straightforward to show cln(ξ )(A∪B) ⊆ cl(ξ )(A) for all n ∈ N by induction on

n. For n = 0 we have cl0(ξ )(A∪B) = A∪B ⊆ cl(ξ )(A). For n = m+1 use the i.h. and

unpack definitions.
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Lemma B.6 (cl transitive). If D⊆ cl(ξ )(A) then b ∈ cl(ξ ∪D�b)(A).

Proof.

D ⊆ cl(ξ )(A) Given

⊆ cl(ξ ∪D�b)(A) cl(−)(O) monotone

By definition, there exists n ∈ N such that D⊆ cln(ξ ∪D�b)(A). Thus,

b ∈ cln+1(ξ ∪D�b)(A) By definition of cln+1

⊆ cl(ξ ∪D�b)(A) By definition of cl

Lemma B.7 (Extraneous Assumptions). cl(ξ )(D) = cl(ξ )(D∩FV(ξ ))∪D.

Proof. Straightforward. For the ⊆ direction it suffices to show that for all n ∈ N we have

cln(ξ )(D)⊆ cl(ξ )(D∩FV(ξ ))∪D. We proceed by induction on n. The n= 0 case holds as

cl0(ξ )(D) =D⊆ _∪D. As for the n = m+1 case, suppose A�â ∈ ξ and A⊆ clm(ξ )(D).

By the i.h., A⊆ cl(ξ )(D∩FV(ξ ))∪D. But A⊆ FV(ξ ) so A⊆ cl(ξ )(D∩FV(ξ ))∪ (D∩

FV(ξ )) = cl(ξ )(D∩FV(ξ )). Thus b ∈ cl(ξ )(D∩FV(ξ ))⊆ cl(ξ )(D∩FV(ξ ))∪D. The

⊇ direction is similar.

Lemma B.8 (Consequence for cl).

If A⊆ cl(ξ )(B) and A�a ∈ ξ then a ∈ cl(ξ )(B).

Proof. Straightforward.

Lemma B.9 (Subtraction and cl).

If A⊆ cl(ξ ∪ (ξ ′−A))(B) then cl(ξ ∪ (ξ ′−A))(B)⊆ cl(ξ ∪ξ ′)(B).

Proof. Straightforward consequence of the following statement

(which can be proved straightforwardly by induction on m+n, case analyzing m):
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If m ∈ N and n ∈ N and A⊆ clm(ξ ∪ (ξ ′−A))(B)

then clm+n(ξ ∪ (ξ ′−A))(B)⊆ cl(ξ ∪ξ ′)(B).
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Appendix C

Syntactic Metatheory of Declarative (Refined) System

Definition C.1 (Height and Structure). Given a derivation D of judgment form J that is

mutually recursive with judgment forms J1, . . . ,Jn (n≥ 0), we define the height hgt(D)

of D to be the number of rules concluding a judgment of form J or J1 or . . . or Jn

that are used in the longest branch (that is, sequence of judgments of form J or J1 or . . .

or Jn) in D . Further, we define the structure of D to be the tree structure of applications

of rules in D concluding a judgment of form J or J1 or . . . or Jn, and ultimately

concluding the conclusion of D .

Note that we overload “,” and “|||||” as syntax and −,− and −|||||− as a list concatenation

metaoperation on logical contexts (“,”), semantic substitutions (“,”), and algebras (“|||||”).

Definition C.2 (Denotation of Syntactic Substitution).

Assume D :: Θ0;Γ0 ⊢ σ : Θ ;Γ . Define JDK
δ

for each ⊢ δ : Θ0;Γ0 as follows:u

w
v

Θ0;Γ0 ⊢ · : ·; ·

}

�
~

δ

= ·

u

w
v

D0 :: Θ0;Γ0 ⊢ σ : Θ ;Γ Θ0 ⊢ t : τ · · ·

Θ0;Γ0 ⊢ σ , t/a : Θ ,a÷ τ;Γ

}

�
~

δ

= JD0Kδ
,JtK⌊δ⌋ /a
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u

w
v

D0 :: Θ0;Γ0 ⊢ σ : Θ ;Γ d÷Θ0 ⊢ t : τ · · ·

Θ0;Γ0 ⊢ σ , t/a : Θ ,a d÷ τ[,a Id];Γ

}

�
~

δ

= JD0Kδ
,JtK

δ↾d÷Θ0

/a

u

w
v

D0 :: Θ0;Γ0 ⊢ σ : Θ ;Γ Θ0 ⊢ [σ ]ϕ true

Θ0;Γ0 ⊢ σ : Θ ,ϕ;Γ

}

�
~

δ

= JD0Kδ

u

w
v

D0 :: Θ0;Γ0 ⊢ σ : Θ ;Γ E :: Θ0;Γ0 ⊢ v⇐ [⌊σ⌋]P · · ·

Θ0;Γ0 ⊢ σ ,v : [⌊σ⌋]P/x : Θ ;Γ ,x : P

}

�
~

δ

= JD0Kδ
,JE K

δ
/x

We may also write JΘ0;Γ0 ⊢ σ : Θ ;Γ K
δ

, if the derivation D is clear from context, or JσK
δ

if

D ,Θ0,Γ0,Θ , and Γ are clear from context. As we proceed, we will prove that this definition

is sound, that is:

JΘ0;Γ0 ⊢ σ : Θ ;Γ K : JΘ0;Γ0K︸ ︷︷ ︸
{δ | ⊢δ :Θ0;Γ0}

→ JΘ ;Γ K︸ ︷︷ ︸
{δ | ⊢δ :Θ ;Γ }

In particular, see Lemmas C.22, C.25, and E.28.

We often implicitly use the next thirteen lemmas.

Lemma C.1 (Filter Out Prog. Vars. Syn.). If Θ0;Γ0 ⊢ σ : Θ ;Γ then Θ0 ⊢ ⌊σ⌋ : Θ .

Proof. By structural induction on the given syntactic substitution typing derivation. (Use

obvious fact that ⌊−⌋ is idempotent.)

Lemma C.2 (Filter Out Propositions).

(1) If ⊢ δ : Θ then ⊢ δ : Θ .

(2) If Θ0;Γ0 ⊢ σ : Θ ;Γ then Θ0;Γ0 ⊢ σ : Θ ;Γ .

(3) If Θ0 ⊢ σ : Ξ then Θ0 ⊢ σ : Ξ .

Proof. Each part is proved by structural induction on the given derivation.
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Lemma C.3 (Stratify Sem. Subs. 1). If ⊢ δ : Θ ,Θ1 then there exist δ ′ and δ1

such that δ = δ ′,δ1 and ⊢ δ ′ : Θ and ⊢ δ ′,δ1 : Θ ,Θ1.

Proof. By structural induction on Θ1.

Lemma C.4 (Stratify Sem. Subs.).

Assume n ∈ N and read Θ1, . . . ,Θm as · for m = 0.

If ⊢ δ : Θ ,Θ1, . . . ,Θn then there exist δ ′,δ1, . . . ,δn such that δ = δ ′,δ1, . . . ,δn and ⊢ δ ′ : Θ

and ⊢ δ ′,δ1 : Θ ,Θ1 and . . . and ⊢ δ ′,δ1, . . . ,δn : Θ ,Θ1, . . . ,Θn.

Proof. By induction on n. The n = 0 case is immediate (put δ ′ = δ ).

Suppose ⊢ δ : Θ ,Θ1, . . . ,Θk,Θk+1. By Lemma C.3 (Stratify Sem. Subs. 1), there exist δ̃

and δk+1 such that ⊢ δ̃ : Θ ,Θ1, . . . ,Θk and ⊢ δ̃ ,δk+1 : Θ ,Θ1, . . . ,Θk,Θk+1. By the i.h., there

exist δ ′,δ1, . . . ,δk such that δ̃ = δ ′,δ1, . . . ,δk and ⊢ δ ′ : Θ and ⊢ δ ′,δ1 : Θ ,Θ1 and . . . and

⊢ δ ′,δ1, . . . ,δk : Θ ,Θ1, . . . ,Θk. Rewriting a semantic substitution above with the equation

just obtained, we have ⊢ δ ′,δ1, . . . ,δk,δk+1 : Θ ,Θ1, . . . ,Θk,Θk+1.

Lemma C.5 (Sem. Subs. Length). If ⊢ δ : Θ then len(δ ) = len
(
Θ
)
.

Proof. By structural induction on the given semantic substitution derivation.

Lemma C.6 (Sorting Weakening). Assume Ξ ⊆ Ξ ′.

(1) If Ξ ⊢ t : τ [ξt ] then Ξ ′ ⊢ t : τ [ξt ] by a derivation of equal structure.

(2) If Ξ ; [τ] ⊢ t : κ then Ξ ′; [τ] ⊢ t : κ by a derivation of equal structure.

Proof. By structural induction on the given sorting derivation. Parts (1) and (2) are mutu-

ally recursive.

Lemma C.7 (Ix. J−K Weak. Invariant). Assume ⊢ δ : Ξ and ⊢ δ ′ : Ξ ′

and Ξ ⊆ Ξ ′ and δ ′↾Ξ = δ .
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(1) If Ξ ⊢ t : τ [ξt ] then JΞ ⊢ t : τ [ξt ]Kδ
= JΞ ′ ⊢ t : τ [ξt ]Kδ ′ .

(2) If Ξ ; [τ] ⊢ t : κ then JΞ ; [τ] ⊢ t : κK
δ
= JΞ ′; [τ] ⊢ t : κK

δ ′ .

Proof. By structural induction on the given index sorting derivation. Parts (1) and (2) are

mutually recursive. Use Lemma C.6 (Sorting Weakening).

Lemma C.8 (Prop. Truth Weakening). If Θ ⊢ ϕ true and Θ ⊆Θ ′ then Θ ′ ⊢ ϕ true.

Proof. Assume ⊢ δ : Θ ′.

Θ ⊢ϕ true Given

Θ ⊢ϕ : B Presupposed derivation

Θ ′ ⊢ϕ : B By Lemma C.6 (Sorting Weakening)

JϕK
δ
= JϕK

δ↾
Θ

By Lemma C.7 (Ix. J−K Weak. Invariant)

= {•} By inversion on Θ ⊢ ϕ true

Θ ′ ⊢ϕ true By PropTrue

Lemma C.9 (Ix. Subs. Weakening). If Θ0 ⊢ σ : Θ and Θ0 ⊆Θ ′0 then Θ ′0 ⊢ σ : Θ .

Proof. By structural induction on Θ0 ⊢ σ : Θ .

• Case

Θ ⊢ · : ·
SubstEmpty

Θ ′0 ⊢ · : · By SubstEmpty

• Case
Θ0 ⊢ σ

′ : Θ
′

Θ0 ⊢ t : τ a /∈ dom(Θ ′)

Θ0 ⊢ σ
′, t/a : Θ

′,a÷ τ

SubstIx
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Θ0 ⊢σ ′ : Θ ′ Subderivation

Θ ′0 ⊢σ ′ : Θ ′ By i.h.

Θ0 ⊢ t : τ Premise

Θ ′0 ⊢ t : τ By Lemma C.6 (Sorting Weakening)

a /∈ dom(Θ ′) Premise

Θ ′0 ⊢σ ′, t/a : Θ ′,a÷ τ By SubstIx

• Case SubstIxDet: Similar to SubstIx case, but also uses d÷Θ0 ⊆Θ0 and transitivity

of ⊆.

• Case SubstProp: Similar to SubstIx case.

• Case SubstVal: Impossible.

Lemma C.10 (Ix. Subst. J−K Weak. Invariant). If ⊢ δ : Θ0 and ⊢ δ ′ : Θ ′0 and Θ0 ⊆Θ ′0 and

δ ′↾Θ0
= δ . If Θ0 ⊢ σ : Θ then JΘ0 ⊢ σ : ΘK

δ
=

q
Θ ′0 ⊢ σ : Θ

y
δ ′ (for any such weakened

derivation).

Proof. By structural induction on Θ0 ⊢ σ : Θ . Use Lemma C.7 (Ix. J−K Weak. Invariant).

Lemma C.11 (Ix. Id. Subs. Extension). If Θ0; · ⊢ σ : Θ ; · and a /∈ dom(Θ)∪dom(Θ0) then

Θ0,a÷ τ; · ⊢ σ ,a/a : Θ ,a÷ τ; · and Θ0,a d÷ τ; · ⊢ σ ,a/a : Θ ,a d÷ τ; · and Θ0,a d÷ τ ,a Id; · ⊢

σ ,a/a : Θ ,a d÷ τ ,a Id; ·.

Proof. We prove Θ0,a÷ τ; · ⊢ σ ,a/a : Θ ,a÷ τ; ·. The others are similar (use SubstIxDet

and def. of d÷−).
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Θ0; · ⊢σ : Θ ; · Given

a÷ τ ∈ (Θ0,a÷ τ) By def. of membership

Θ0,a÷ τ; · ⊢σ : Θ ; · By Lemma C.9 (Ix. Subs. Weakening)

Θ0,a÷ τ ⊢ a : τ By IxVar

Θ0,a÷ τ; · ⊢σ ,a/a : Θ ,a÷ τ By SubstIx

Substitution can affect ξ . To handle this, we define substitution on ξ . The definition

uses the notion of free-variable image of a substitution at a set of index variables.

Definition C.3 (FV Image of a Substitution). Assume Θ0 ⊢ σ : Θ .

Given a set D of index variables, define the free-variable image of σ at D by

⟨σ⟩D=
⋃

a∈D


{a} if σ(a) is undefined

FV(σ(a)) else

If D⊆ dom(σ) then this definition is equivalent to ⟨σ⟩D= ∪a∈DFV(σ(a)).

Definition C.4 (Substitution on ξ ). Assume Θ0 ⊢ σ : Θ . Define d[σ ]ξ by

d[σ ]·= ·

d[σ ](ξ ,D�a) =



d[σ ]ξ ∪ (⟨σ⟩D�a) if σ(a) is undefined

d[σ ]ξ ∪ (⟨σ⟩D�σ(a)) if σ(a) is a variable

d[σ ]ξ else
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If pos(ξ )⊆ dom(σ) then this definition is equivalent to the one given by

d[σ ]·= ·

d[σ ](ξ ,D�a) =


d[σ ]ξ ∪ (⟨σ⟩D�σ(a)) if σ(a) is a variable

d[σ ]ξ else

Lemma C.12 (Value-Det. Substitution). If Θ0 ⊢ σ : Θ then d÷Θ0 ⊢ σ↾d÷Θ
: d÷Θ .

Proof. By structural induction on Θ0 ⊢ σ : Θ .

• Case

Θ0 ⊢ ·︸︷︷︸
σ

: ·︸︷︷︸
Θ

SubstEmpty

d÷Θ0 ⊢ ·︸︷︷︸
σ↾d÷Θ

: ·︸︷︷︸
d÷Θ

By SubstEmpty

• Case
Θ0 ⊢ σ

′ : Θ
′

Θ0 ⊢ t : τ a /∈ dom(Θ ′)

Θ0 ⊢ σ
′, t/a : Θ

′,a÷ τ

SubstIx

Θ0 ⊢σ ′ : Θ ′ Subderivation

d÷Θ0 ⊢σ ′↾d÷Θ ′
: d÷Θ ′ By i.h.

d÷Θ0 ⊢ (σ ′, t/a)↾d÷Θ ′
: d÷Θ ′ By def. of restriction (a /∈ dom(d÷Θ ′))

d÷Θ0 ⊢ (σ ′, t/a)↾d÷(Θ ′,a÷τ)
: d÷(Θ ′,a÷ τ) By def. of d÷−
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• Case
Θ0 ⊢ σ

′ : Θ
′ d÷Θ0 ⊢ t : τ a /∈ dom(Θ ′)

Θ0 ⊢ σ
′, t/a : Θ

′,a d÷ τ[,a Id]
SubstIxDet

Θ0 ⊢σ ′ : Θ ′ Subderivation

d÷Θ0 ⊢σ ′↾d÷Θ ′
: d÷Θ ′ By i.h.

d÷Θ0 ⊢ t : τ Premise

d÷(d÷Θ0) ⊢ t : τ Because d÷− idempotent

a /∈ dom(Θ ′) Premise

a /∈ dom(d÷Θ ′) As d÷Θ ′ ⊆Θ ′

d÷Θ0 ⊢σ ′↾d÷Θ ′
, t/a : d÷Θ ′,a d÷ τ[,a Id] By SubstIxDet

d÷Θ0 ⊢σ ′↾d÷Θ ′,ad÷τ
, t/a : d÷Θ ′,a d÷ τ[,a Id] By prop. of restriction (a /∈ dom(σ ′))

d÷Θ0 ⊢σ ′↾d÷(Θ ′,ad÷τ)
, t/a : d÷(Θ ′,a d÷ τ ,a Id) Because d÷Θ ′ ⊆Θ ′

d÷Θ0 ⊢ (σ ′, t/a)↾d÷(Θ ′,ad÷τ)
: d÷(Θ ′,a d÷ τ ,a Id) By def. of restriction

d÷Θ0 ⊢σ↾d÷Θ
: d÷Θ By equalities

• Case SubstProp: Similar to SubstIx case.

• Case SubstVal: Impossible.

Definition C.5 (Id. Substitution). The identity substitution on (Θ ;Γ ), written idΘ ;Γ , is
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defined as follows:

id·;· = ·

idΘ ,a:τ;· = idΘ ;·,a/a

idΘ ,ϕ;· = idΘ ;·

idΘ ;Γ ,x:R = idΘ ;Γ ,x : R/x

We may write idΘ for idΘ ;· and idΓ for id·;Γ .

We may write Θ/Θ for idΘ and Γ /Γ for idΓ and Θ ;Γ /Θ ;Γ for idΘ ;Γ .

Definition C.6 (Id. Subst. Subtract). Define σ − idΘ ;Γ by

·− idΘ ;Γ = ·

(σ , t/a)− idΘ ;Γ =


σ − idΘ ;Γ if t = a and a ∈ dom(Θ)

(σ − idΘ ;Γ ), t/a else

(σ ,v : R/x)− idΘ ;Γ =


σ − idΘ ;Γ if v = x and x ∈ dom(Γ )

(σ − idΘ ;Γ ),v : R/x else

Lemma C.13 (Ix. Id. Subst.).

If Θ0 ⊢ σ : Θ and O is the subject of derivation D under Θ

then for any Θ ′ we have [σ ]O = [σ − idΘ ′]O . In particular, [Θ/Θ ]O = O .

Proof. By structural induction on D . Straightforward.

Lemma C.14 (ξ Subst. Union). d[σ ](ξ1∪ξ2) =
d[σ ]ξ1∪ d[σ ]ξ2
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Proof. Assume D′�a′ ∈ d[σ ](ξ1∪ξ2). Then there exists D�a in either ξ1 or ξ2 such that

⟨σ⟩D = D′ and either a′ = σ(a) or a′ = a and σ(a) is undefined. In any case, D′�a′ ∈
d[σ ]ξ1∪ d[σ ]ξ2. Similarly, d[σ ](ξ1∪ξ2)⊇ d[σ ]ξ1∪ d[σ ]ξ2.

Lemma C.15 (ξ Subst. Monotone). If ξ ′ ⊇ ξ then d[σ ]ξ ′ ⊇ d[σ ]ξ .

Proof. Suppose ξ ′ ⊇ ξ . Assume D′�a′ ∈ d[σ ]ξ . Then there exists D�a ∈ ξ such that

⟨σ⟩D = D′ and either a′ = σ(a) or a′ = a and σ(a) is undefined. Because ξ ′ ⊇ ξ and

D�a ∈ ξ , we have D�a ∈ ξ ′. We need to show that D′�a′ ∈ d[σ ]ξ ′, that is, that there

exists B�b∈ ξ ′ such that ⟨σ⟩B=D′ and either a′=σ(b) or a′= b and σ(a′) is undefined;

but we have just shown that D�a is such an element.

Lemma C.16 (Append Ix. Spine). If Ξ ; [τ] ⊢ t : κ ′ and Ξ ; [κ ′] ⊢ u : κ

then Ξ ; [τ] ⊢ t,u : κ .

Proof. By structural induction on Ξ ; [τ] ⊢ t : κ ′. Straightforward.

Lemma C.17 (Ix. Syntactic Substitution).

(1) If Ξ ⊢ t : τ [ξt ] and Ξ0 ⊢ σ : Ξ then Ξ0 ⊢ [σ ]t : τ [d[σ ]ξt ]

(2) If Ξ ; [τ] ⊢ t : κ and Ξ0 ⊢ σ : Ξ then Ξ0; [τ] ⊢ [σ ]t : κ .

(3) If Ξ0 ⊢ u : ω and Ξ0; [ω] ⊢ t : κ then Ξ0 ⊢ ⟨u | t⟩ : κ .

Proof. Define m ∈ N by

m = ∑

(t ′/c) ∈ σ

such that t ′ ̸= c

size(Ξ(c))

if we are in part (1) or part (2), and m = size(ω) if we are in part (3) where size measures

the structural size of a sort. Proceed by lexicographic induction, first, on m, second, on
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the size of the part number where (3) < (1) and (3) < (2) and ( j) = (k) otherwise, third,

the structure of t in part (1) and t in parts (2) and (3), and fourth, the height of the sorting

derivation for t (part (1)).

(1) • Case
(a : τ) ∈ Ξ

Ξ ⊢ a︸︷︷︸
t

: τ [ ·︸︷︷︸
ξt

]

IxVar

(a : τ) ∈Ξ Premise

Ξ0 ⊢σ : Ξ Given

Ξ = Ξ1,a : τ ,Ξ2 By inversion

σ = σ1,u/a,σ2
′′

Ξ0 ⊢ u : τ [ξu]
′′

ξu ⊇ · Empty set subset of every set

Ξ0 ⊢ u : τ [·] By IxSub (if ξ ′ ̸= ·) or by ξ ′ = ·

[σ ]t = [σ1,u/a,σ2]a By equalities

= u By def. of [−]− and variable lookup

Ξ0 ⊢ u : τ [d[σ ]·] By Def. C.4

Z Ξ0 ⊢ [σ ]t : τ [d[σ ]ξt ] By equalities

• Case
Ξ ,a÷κ ⊢ t0 : τ0 [ξt0]

Ξ ⊢ λa. t0 : κ ⇒ τ0 [·]
Ixλ
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Ξ0 ⊢σ : Ξ Given

Ξ0,a÷κ ⊢σ ,a/a : Ξ ,a÷κ By Lemma C.11 (Ix. Id. Subs. Extension)

Ξ ,a÷κ ⊢ t0 : τ0 [ξt0] Subderivation

Ξ0,a÷κ ⊢ [σ ,a/a]t0 : τ0 [ξ
′] By i.h. (same m; same part; smaller t)

Ξ0,a÷κ ⊢ [σ ]t0 : τ0 [ξ
′] Identity subst.

Ξ0 ⊢ λa. [σ ]t0 : τ0 [·] By Ixλ

Ξ0 ⊢ [σ ](λa. t0) : τ0 [·] By def. of subst.

Z Ξ0 ⊢ [σ ](λa. t0) : τ0 [
d[σ ]ξt ] By Def. C.4 and equality

• Case
(a : ω) ∈ Ξ Ξ ; [ω] ⊢ t : κ

Ξ ⊢ a(t) : κ [·]
IxApp
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(a : ω) ∈Ξ Premise

Ξ0 ⊢σ : Ξ Given

Ξ0 ⊢σ(a) : ω By inversion on substitution typing

(weakening if needed)

Ξ ; [ω] ⊢ t : κ Subderivation

Ξ0; [ω] ⊢ [σ ]t : κ By i.h. (same m; same part size; smaller t/t)

Ξ0 ⊢ ⟨σ(a) | [σ ]t⟩ : κ [ξ ′] By i.h. (m same or smaller; smaller part)

Ξ0 ⊢ [σ ](a(t)) : κ [ξ ′] By def. of [−]−

ξ ′ ⊇ · Empty set subset of every set

Ξ0 ⊢ [σ ](a(t)) : κ [·] By IxSub (if ξ ′ ̸= ·) or by ξ ′ = ·

Z Ξ0 ⊢ [σ ](a(t)) : κ [d[σ ]ξt ] By Def. C.4 and equality

• Case
(a d÷κ) ∈ Ξ (u d÷κ) /∈ Ξ d÷Ξ ⊢ u : κ [ξu]

Ξ ⊢ a = u : B [FV(u)�a]
Ix=L

Ξ0 ⊢σ : Ξ Given

d÷Ξ0 ⊢σ↾d÷Ξ
: d÷Ξ By Lemma C.12 (Value-Det. Substitution)

d÷Ξ ⊢ u : κ [ξu] Subderivation

d÷Ξ0 ⊢ [σ↾d÷Ξ
]u : κ [d[σ↾d÷Ξ

]ξu] By i.h. (same m; same part size; smaller t/t)

d÷Ξ0 ⊢ [σ ]u : κ [d[σ ]ξu] By property of restriction

Ξ0 ⊢ [σ ]u : κ [d[σ ]ξu] By Lemma C.6 (Sorting Weakening)
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– Case: σ(a) is a variable.

(σ(a) d÷κ) ∈Ξ0 By inversion on SubstIxDet and on IxVar

(u d÷κ) /∈Ξ Premise

([σ ]u d÷κ) /∈Ξ0 Follows from def. of subst.

Ξ0 ⊢σ(a) = [σ ]u : B [FV([σ ]u)�σ(a)] By Ix=L

Z Ξ0 ⊢ [σ ](a = u) : B [FV([σ ]u)�σ(a)] By def. of substitution

FV([σ ]u)�σ(a) = ⟨σ⟩FV(u)�σ(a) Follows from Def. C.3

= d[σ ](FV(u)�a) By Def. C.4

= d[σ ]ξt By equality

– Case: σ(a) = (t1, t2).

κ = κ1×κ2 By inversion (u not a variable)

u = (u1,u2)
′′

Ξ0 ⊢σ(a) : κ1×κ2 [ξ ] By inversion

Ξ0 ⊢ t1 : κ1 [ξt1] By inversion

Ξ0 ⊢ t2 : κ2 [ξt2]
′′

ξ = ξt1 ∪ξt2
′′

Ξ0 ⊢ [σ ]u1 : κ1 [ξ
′
u1
] By inversion

Ξ0 ⊢ [σ ]u2 : κ2 [ξ
′
u2
] ′′

d[σ ]ξu = ξ ′u1
∪ξ ′u2

′′

* Case: t1, t2, [σ ]u1, [σ ]u2 are variables.



384

Ξ0 ⊢ t1 = [σ ]u1 : B [·] By Ix=LR

Ξ0 ⊢ t2 = [σ ]u2 : B [·] By Ix=LR

Ξ0 ⊢ (t1, t2) = ([σ ]u1, [σ ]u2) : B [·] By Ix=×

Ξ0 ⊢ (t1, t2) = ([σ ]u1, [σ ]u2) : B [d[σ ](FV(u)�a)] By def. of d[−]−

(σ(a) not var.)

Ξ0 ⊢ [σ ](a = u) : B [d[σ ]ξt ] By equalities

and by def.

* Case: t1, t2, [σ ]u1, [σ ]u2 are pairs.

Ξ0 ⊢ t1 = [σ ]u1 : B [_∪ξ ′u1
] By Ix=×

Ξ0 ⊢ t2 = [σ ]u2 : B [_∪ξ ′u2
] By Ix=×

Ξ0 ⊢ (t1, t2) = ([σ ]u1, [σ ]u2) : B [_∪ξ ′u1
∪_∪ξ ′u2

] By Ix=×

Ξ0 ⊢ (t1, t2) = ([σ ]u1, [σ ]u2) : B [·] By IxSub (if needed)

Ξ0 ⊢ (t1, t2) = ([σ ]u1, [σ ]u2) : B [d[σ ](FV(u)�a)] By def. of d[−]−

(σ(a) not var.)

Ξ0 ⊢ [σ ](a = u) : B [d[σ ]ξt ] By equalities

and by def.

* Case: Ix=L applies for tk, [σ ]uk and Ix= applies for t3−k, [σ ]u3−k.

Similar to preceding subcase.

* Case: Ix=R applies for tk, [σ ]uk and Ix= applies for t3−k, [σ ]u3−k.

Similar to preceding subcase.
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– Case: σ(a) is not a variable or a pair.

(σ(a) d÷κ) /∈Ξ0 Because σ(a) is not a variable

(u d÷κ) /∈Ξ Premise

([σ ]u d÷κ) /∈Ξ0 Follows from def. of subst.

d÷Ξ0 ⊢σ(a) : κ [_] By inversion on substitution sorting

Ξ0 ⊢σ(a) : κ [_] By Lemma C.6 (Sorting Weakening)

Ξ0 ⊢σ(a) = [σ ]u : B [·] By Ix=

Ξ0 ⊢ [σ ](a = u) : B [·] By def. of substitution

Z Ξ0 ⊢ [σ ](a = u) : B [d[σ ]ξt ] By def. of d[−]− (σ(a) not var.)

and equality

• Case Ix=R: Similar to Ix=L case.

• Case Ix=LR: Similar to Ix=L case but with more cases to consider.

• Case IxSub: Straightforward. This is the only case using the fourth part of the

induction metric. Use Lemma C.15 (ξ Subst. Monotone).

• Case Ix∧, Ix=×: Straightforward. Use Lemma C.14 (ξ Subst. Union).

• The remaining cases are straightforward (for all uses of i.h., m stays the same,

the part number is equal in size, and t/t gets smaller).

(2) Straightforward (for all uses of i.h., m stays the same, the part number is equal in

size, and t/t gets smaller).

(3) Consider the case where u is a variable: Then ⟨u | t⟩= u(t) by definition of ⟨− | −⟩;

by inversion on IxVar, (u : ω) ∈ Ξ0; by IxApp, Ξ0 ⊢ u(t) : κ .
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Now consider the case where u is not a variable. We case analyze rules concluding

Ξ0; [ω] ⊢ t : κ .

• Case

Ξ0; [ κ︸︷︷︸
ω

] ⊢ ·︸︷︷︸
t

: κ

IxSpineNil

⟨u | t⟩ = ⟨u | ·⟩ Current case

= u By def. of ⟨− | −⟩

Ξ0 ⊢ u : κ Given

• Case
Ξ0 ⊢ t0 : κ0 Ξ0; [ω0] ⊢ t0 : κ

Ξ0; [κ0⇒ ω0] ⊢ t0,t0 : κ

IxSpineEntry

u = λb.u0 By inversion on Ixλ

Ξ0,b÷κ0 ⊢ u0 : ω0 [_] ′′

Ξ0 ⊢ t0 : κ0 Subderivation

Ξ0 ⊢ [t0/b]u0 : ω0 [_] By i.h. (smaller m)

Ξ0; [ω0] ⊢ t0 : κ Subderivation

⟨u | t⟩ = ⟨λb.u0 | t0,t0⟩ By equalities

= ⟨[t0/b]u0 | t0⟩ By def. of ⟨− | −⟩

Ξ0 ⊢ ⟨[t0/b]u0 | t0⟩ : κ By i.h. (smaller m)
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• Case
Ξ0; [ωk] ⊢ t0 : κ

Ξ0; [ω1×ω2] ⊢ .k,t0 : κ

IxSpineProjk

In case IxApp concludes Ξ0 ⊢ u : ω , use Lemma C.16 (Append Ix. Spine), the

def. of ⟨− | −⟩, and rule IxApp.

Consider the case where IxApp does not conclude Ξ0 ⊢ u : ω .

u = (u1,u2) By inversion on Ix×

Ξ0 ⊢ uk : ωk
′′

Ξ0; [ωk] ⊢ t0 : κ Subderivation

⟨u | t⟩ = ⟨(u1,u2) | .k,t0⟩ By equalities

= ⟨uk | t0⟩ By def. of ⟨− | −⟩

Ξ0 ⊢ ⟨uk | t0⟩ : κ By i.h. (smaller m)

Lemma C.18 (Subst. on Substitution).

If Θ0 ⊢ σ : Θ and Θ ⊢ σ ′ : Ξ then Θ0 ⊢ [σ ]σ ′ : Ξ .

Proof. By structural induction on Θ ⊢ σ ′ : Ξ . The SubstIx and SubstIxDet cases use

Lemma C.17 (Ix. Syntactic Substitution) and the SubstIxDet case uses Lemma C.12 (Value-

Det. Substitution).

Lemma C.19 (Hereditary Associativity).

If Ξ ⊢ t : τ and Ξ ; [τ] ⊢ t : κ ′ and Ξ ; [κ ′] ⊢ u : κ then ⟨t | t,u⟩= ⟨⟨t | t⟩ | u⟩.

Proof. By structural induction on Ξ ; [τ] ⊢ t : κ ′. Straightforward.

Lemma C.20 (Ix. Barendregt). Assume Ξ0 ⊢ σ : Ξ1 and Ξ1,Ξ2 ⊢ σ ′ : Ξ ′

and dom(Ξ ′)∩dom(Ξ0) = /0 and dom(Ξ ′) ̸= /0.
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(1) If Ξ1,Ξ ′,Ξ2 ⊢ t : τ then [σ ][σ ′]t = [[σ ]σ ′][σ ]t.

(2) If Ξ1,Ξ ′,Ξ2; [τ] ⊢ t : κ then [σ ][σ ′]t= [[σ ]σ ′][σ ]t.

(3) If Ξ1,Ξ2 ⊢ u : ω and Ξ1,Ξ2; [ω] ⊢ t : κ then [σ ]⟨u | t⟩= ⟨[σ ]u | [σ ]t⟩.

Proof. Define m ∈ N by

m = ∑
c∈dom(Ξ ′)

size(Ξ ′(c))+ ∑

(t ′/c) ∈ σ

such that t ′ ̸= c

size(Ξ1(c))

if we are in part (1) or in part (2), and

m = size(ω)+ ∑

(t ′/c) ∈ σ

such that t ′ ̸= c

size(Ξ1(c))

if we are in part (3), where size measures the structural size of a sort.

We proceed by lexicographic induction,

first, on m (parts (1), (2), and (3));

second, on the part number (of the lemma),

where pt. (3)< pt. (1), pt. (3)< pt. (2), pt. (1) = pt. (2) and pt. (k) = pt. (k);

third, on t/t structure, that is, on the structure of t (pt. (1)) and t (pts. (2) and (3)));

and fourth, on height of the sorting derivation for t in part (1).

Parts (1), (2), and (3) are mutually recursive.

We sometimes show substitution, sorting, and termination reasoning such as that found

in part (1), case IxApp, beginning of subcase a ∈ dom(Ξ ′), but often elide it.
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(1) • Case
(a : τ) ∈ (Ξ1,Ξ ′,Ξ2)

Ξ1,Ξ ′,Ξ2 ⊢ a : τ

IxVar

– Case a ∈ dom(Ξ ′)

[σ ]([σ ′]t) = [σ ]([σ ′]a) Current case

= [σ ](σ ′(a)) By def. of [−]−

= [[σ ]σ ′]a By def. of [−]−

= [[σ ]σ ′]([σ ]a) By def. of [−]− (a /∈ dom(Ξ1))

= [[σ ]σ ′]([σ ]t) Current case

– Case a ∈ dom(Ξ1)

[σ ]([σ ′]t) = [σ ]([σ ′]a) Current case

= [σ ]a By def. of [−]− (a /∈ dom(Ξ ′))

= [[σ ]σ ′]([σ ]a) By def. of [−]−

(FV([σ ]a) ∈ dom(Ξ0) and dom(Ξ ′)∩dom(Ξ0) = /0)

= [[σ ]σ ′]([σ ]t) Current case

– Case a ∈ dom(Ξ2)

[σ ]([σ ′]t) = [σ ]([σ ′]a) Current case

= [σ ]a By def. of [−]− (a /∈ dom(Ξ ′))

= a By def. of [−]− (a /∈ dom(Ξ1))

= [[σ ]σ ′]a By def. of [−]− (a /∈ dom(Ξ ′))

= [[σ ]σ ′]([σ ]a) By def. of [−]− (a /∈ dom(Ξ1))

= [[σ ]σ ′]([σ ]t) Current case
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• Case
(a : τa) ∈ (Ξ1,Ξ ′,Ξ2) Ξ1,Ξ ′,Ξ2; [τa] ⊢ t : κ

Ξ1,Ξ ′,Ξ2 ⊢ a(t) : κ

IxApp

– Case a ∈ dom(Ξ ′)

Ξ1,Ξ2 ⊢σ ′(a) : Ξ ′(a) By inversion

(a : τa) ∈ (Ξ1,Ξ ′,Ξ2) Premise

τa = Ξ ′(a) By inversion

Ξ1,Ξ ′,Ξ2; [Ξ ′(a)] ⊢ t : κ Rewrite subderivation

Ξ1,Ξ2; [Ξ ′(a)] ⊢ [σ ′]t : κ By Lemma C.17

Ξ1,Ξ2 ⊢ ⟨σ ′(a) | [σ ′]t⟩ : κ By Lemma C.17

Ξ0,Ξ2 ⊢ [σ ](σ ′(a)) : Ξ ′(a) By Lemma C.17

Ξ0,Ξ ′,Ξ2; [Ξ ′(a)] ⊢ [σ ]t : κ By Lemma C.17

Ξ0,Ξ2 ⊢ [σ ]σ ′ : Ξ ′ By Lemma C.18

Ξ0,Ξ2; [Ξ ′(a)] ⊢ [[σ ]σ ′]([σ ]t) : κ By Lemma C.17

Ξ0,Ξ2 ⊢ ⟨[σ ](σ ′(a)) | [[σ ]σ ′]([σ ]t)⟩ : κ By Lemma C.17
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[σ ]([σ ′]t) = [σ ]([σ ′](a(t))) Current case

= [σ ]⟨σ ′(a) | [σ ′]t⟩ By def. of [−]−

= ⟨[σ ](σ ′(a)) | [σ ]([σ ′]t)⟩ By i.h. (same/smaller m; pt. (3)< (1))

= ⟨[σ ](σ ′(a)) | [[σ ]σ ′]([σ ]t)⟩ By i.h. (same m; pt. (2) = (1); t< a(t))

= [[σ ]σ ′](a([σ ]t)) By def. of [−]−

= [[σ ]σ ′]([σ ](a(t))) By def. of [−]− (a /∈ dom(Ξ1))

= [[σ ]σ ′]([σ ]t) Current case

– Case a ∈ dom(Ξ1)

[σ ]([σ ′]t) = [σ ]([σ ′](a(t))) Current case

= [σ ](a([σ ′]t)) By def. of [−]− (a /∈ dom(Ξ ′))

= ⟨σ(a) | [σ ]([σ ′]t)⟩ By def. of [−]−

= ⟨σ(a) | [[σ ]σ ′]([σ ]t)⟩ By i.h.

(same m; pt. (2) = (1); t< a(t))

= ⟨[[σ ]σ ′](σ(a)) | [[σ ]σ ′]([σ ]t)⟩ Because dom(Ξ0)∩dom(Ξ ′) = /0

= [[σ ]σ ′]⟨σ(a) | [σ ]t⟩ By i.h.

(same/smaller m; pt. (3)< (1))

= [[σ ]σ ′]([σ ](a(t))) By def. of [−]−

= [[σ ]σ ′]([σ ]t) Current case

where the second use of i.h. calls i.h. (part (3)) with (Ξ0/Ξ0, [σ ]σ ′) for σ

and Ξ1(a) for ω and σ(a) for u and [σ ]t for t and (Ξ0,Ξ2) for Ξ0 and
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(Ξ0,Ξ ′) for Ξ1 and Ξ2 for Ξ2.

– Case a ∈ dom(Ξ2)

[σ ]([σ ′](a(t))) = [σ ](a([σ ′]t)) By def. of [−]−

(a /∈ dom(Ξ ′) by inversion on ctx. WF)

= a([σ ]([σ ′]t)) By def. of [−]− (a /∈ dom(Ξ1))

= a([[σ ]σ ′]([σ ]t)) By i.h. (same m; same part; smaller t/t)

= [[σ ]σ ′]([σ ](a(t))) By def. of [−]− (twice)

• Case
Ξ1,Ξ ′,Ξ2,a÷κ ⊢ t0 : τ0

Ξ1,Ξ ′,Ξ2 ⊢ λa. t0 : κ ⇒ τ0

Ixλ

Ξ0 ⊢σ : Ξ1 Premise

Ξ1,Ξ2 ⊢σ ′ : Ξ ′ Given

Ξ1,Ξ2,a÷κ ⊢σ ′ : Ξ ′ By Lemma C.9 (Ix. Subs. Weakening)

Ξ1,Ξ ′,Ξ2,a÷κ ⊢ t0 : τ0 Subderivation

[σ ][σ ′]t = [σ ][σ ′](λa. t0) By equality

= λa. [σ ][σ ′]t0 By def. of [−]−

= λa. [[σ ]σ ′][σ ]t0 By i.h. (same m; same part; smaller t)

= [[σ ]σ ′][σ ](λa. t0) By def. of [−]−

= [[σ ]σ ′][σ ]t By equality
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• Case IxSub: Straightforward. This is the only case using the fourth part of the

lexicographic induction.

• The remaining cases are straightforward (for all uses of i.h., m is the same, the

part numbers are equal in size, and t gets smaller). For the Ix=L, Ix=R, and

Ix=LR cases, apply IxVar and use Lemma C.6 (Sorting Weakening) as needed

(not needed for Ix=LR case) to apply i.h. while avoiding a similar case analysis

to that seen in the IxVar case.

(2) Straightforward (in all uses of i.h., m is the same, the part numbers are equal size

according to the induction measure, and t/t gets smaller). We show one case:

• Case
Ξ1,Ξ ′,Ξ2 ⊢ t0 : κ0 Ξ1,Ξ ′,Ξ2; [τ0] ⊢ t′ : κ

Ξ1,Ξ ′,Ξ2; [κ0⇒ τ0] ⊢ t0,t′ : κ

IxSpineEntry

[σ ]([σ ′](t0,t′)) = [σ ]([σ ′]t0, [σ ′]t′) By def. of [−]−

= [σ ]([σ ′]t0), [σ ]([σ ′]t′) By def. of [−]−

= [[σ ]σ ′]([σ ]t0), [σ ]([σ ′]t′) By i.h.

(same m; pt. (1) = (2); t0 < (t0,t′))

= [[σ ]σ ′]([σ ]t0), [[σ ]σ ′]([σ ]t′) By i.h.

(same m; pt. (2) = (2); t′ < (t0,t′))

= [[σ ]σ ′]([σ ]t0, [σ ]t′) By def. of [−]−

= [[σ ]σ ′]([σ ](t0,t′)) By def. of [−]−

(3) • Case t ̸= · and u is a variable, c
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– Case c ∈ dom(Ξ1) (hence c ∈ dom(σ))

[σ ]⟨u | t⟩ = [σ ]⟨c | t⟩ By equality

= [σ ](c(t)) By def. of ⟨− | −⟩

= ⟨σ(c) | [σ ]t⟩ By def. of [−]− (c ∈ dom(σ))

= ⟨[σ ]c | [σ ]t⟩ By def. of [−]−

= ⟨[σ ]u | [σ ]t⟩ By equality

– Case c ∈ dom(Ξ2) (hence c /∈ dom(σ))

[σ ]⟨t | t⟩ = [σ ]⟨c | t⟩ By equality

= [σ ](c(t)) By def. of ⟨− | −⟩

= c([σ ]t) By def. of [−]−

= ⟨c | [σ ]t⟩ By def. of [−]−

= ⟨[σ ]c | [σ ]t⟩ By def. of [−]− (c /∈ dom(σ))

= ⟨[σ ]t | [σ ]t⟩ By equality

Because we have considered this case, in the following cases of rule concluding

Ξ1,Ξ2; [ω] ⊢ t : κ (except IxSpineNil), we need not consider the subcase where

u is a variable.

• Case

Ξ1,Ξ2; [κ] ⊢ · : κ

IxSpineNil
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[σ ]⟨u | t⟩ = [σ ]⟨u | ·⟩ Current case

= [σ ]u By def. of ⟨− | −⟩

= ⟨[σ ]u | ·⟩ By def. of ⟨− | −⟩

= ⟨[σ ]u | [σ ]·⟩ By def. of [−]−

= ⟨[σ ]u | [σ ]t⟩ Current case

• Case
Ξ1,Ξ2 ⊢ t0 : κ0 Ξ1,Ξ2; [ω0] ⊢ t′ : κ

Ξ1,Ξ2; [κ0⇒ ω0] ⊢ t0,t′ : κ

IxSpineEntry
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u = λc.u0 By inversion on Ixλ (u not a variable)

Ξ1,Ξ2,c÷κ0 ⊢ u0 : ω0
′′

Ξ1,Ξ2 ⊢ λc.u0 : κ0⇒ ω0
′′

Ξ1,Ξ2 ⊢ t0 : κ0 Premise

Ξ1,Ξ2 ⊢ [t0/c]u0 : ω0 By Lemma C.17 (Ix. Syntactic Substitution)

with identity substitution reasoning

Ξ1,Ξ2; [ω0] ⊢ t′ : κ Subderivation

[σ ]⟨u | t⟩ = [σ ]⟨λc.u0 | t0,t′⟩ Current case

= [σ ]⟨[t0/c]u0 | t′⟩ By def. of ⟨− | −⟩

= ⟨[σ ]([t0/c]u0) | [σ ]t′⟩ By i.h. (smaller m)

= ⟨[[σ ]t0/c]([σ ]u0) | [σ ]t′⟩ By i.h. (smaller m)

(c /∈ dom(Ξ0) by variable convention)

(Ξ1,c÷κ0,Ξ2 ⊢ u0 : ω0 as Ξ2 = Ξ2)

= ⟨λc. [σ ]u0 | [σ ]t0, [σ ]t′⟩ By def. of ⟨− | −⟩

= ⟨[σ ](λc.u0) | [σ ](t0,t′)⟩ By def. of [−]−

= ⟨[σ ]u | [σ ]t⟩ Current case

• Case
Ξ1,Ξ2; [ωk] ⊢ t′ : κ

Ξ1,Ξ2; [ω1×ω2] ⊢ .k,t′ : κ

IxSpineProjk
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– Case
(a : τ) ∈ (Ξ1,Ξ2) Ξ1,Ξ2; [τ] ⊢ u : ω1×ω2

Ξ1,Ξ2 ⊢ a(u) : ω1×ω2

IxApp

[σ ]⟨u | t⟩ = [σ ]⟨a(u) | t⟩ By equalities

= [σ ](a(u,t)) By def. of ⟨− | −⟩

= ⟨σ(a) | [σ ]u, [σ ]t⟩ By def. of [−]−

= ⟨⟨σ(a) | [σ ]u⟩ | [σ ]t⟩ By Lemma C.19 (Hereditary Associativity)

with Lemma C.17 (Ix. Syntactic Substitution)

and Lemma C.6 (Sorting Weakening)

= ⟨[σ ](a(u)) | [σ ]t⟩ By def. of [−]−

= ⟨[σ ]u | [σ ]t⟩ By equalities

– Case
Ξ1,Ξ2 ⊢ u1 : ω1 Ξ1,Ξ2 ⊢ u2 : ω2

Ξ1,Ξ2 ⊢ (u1,u2) : ω1×ω2

Ix×

[σ ]⟨u | t⟩ = [σ ]⟨(u1,u2) | .k,t′⟩ By equalities

= [σ ]⟨uk | t′⟩ By def. of ⟨− | −⟩

= ⟨[σ ]uk | [σ ]t′⟩ By i.h. (smaller m)

= ⟨([σ ]u1, [σ ]u2) | .k, [σ ]t′⟩ By def. of ⟨− | −⟩

= ⟨[σ ](u1,u2) | [σ ](.k,t′)⟩ By def. of [−]−

= ⟨[σ ]u | [σ ]t⟩ By equalities

Lemma C.21 (Sorting Soundness).

(1) If Ξ ⊢ t : τ [ξt ] and ⊢ δ : Ξ then JtK
δ
∈ JτK.
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(2) If Ξ ; [τ] ⊢ t : κ and ⊢ δ : Ξ then JtK
δ

: JτK→ JκK.

Proof. By mutual induction on the structure of the given sorting derivation.

Lemma C.22 (Ix. Subst. Typing Sound (No Prop)).

If Ξ0; · ⊢ σ : Ξ ; · and ⊢ δ : Ξ0; · then ⊢ JσK
δ

: Ξ ; ·

Proof. By structural induction on the given substitution typing derivation.

• Case

Ξ0; · ⊢ · : ·; ·
SubstEmpty

J·K
δ
= · By def.

⊢ · : ·; · By Emptyδ

• Case
Ξ0; · ⊢ σ

′ : Ξ
′; · Ξ0 ⊢ t : τ a /∈ dom(Ξ)

Ξ0; · ⊢ σ
′, t/a : Ξ ,a÷ τ; ·

SubstIx

Ξ0; · ⊢σ ′ : Ξ ′; · Subderivation

⊢ Jσ ′K
δ

: Ξ ′; · By i.h.

Ξ0 ⊢ t : τ Premise

JtK
δ
∈ JτK By Lemma C.21 (Sorting Soundness)

⊢
q

σ
′y

δ
,JtK

δ
/a︸ ︷︷ ︸

JσK
δ

: Ξ
′,a÷ τ︸ ︷︷ ︸

Ξ

; · By Ixδ

• Case SubstIxDet: Similar to SubstIx case. Use Lemma C.7 (Ix. J−K Weak. Invari-

ant).

• Case SubstProp: Impossible.
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• Case SubstVal: Impossible (because Γ = ·).

Lemma C.23 (Compose Ix. Spine).

If Ξ ; [τ] ⊢ t : κ ′ and Ξ ; [κ ′] ⊢ u : κ and ⊢ δ : Ξ

then Jt,uK
δ
= JuK

δ
◦ JtK

δ
.

Proof. By structural induction on Ξ ; [τ] ⊢ t : κ ′.

Lemma C.24 (Index Substitution Soundness). Assume Ξ0; · ⊢ σ : Ξ ; · and ⊢ δ : Ξ0; ·.

(1) If Ξ ⊢ t : τ [ξt ] then J[σ ]tK
δ
= JtKJσK

δ
(for any derivation Ξ0 ⊢ [σ ]t : τ [d[σ ]ξt ]).

(2) If Ξ ; [τ] ⊢ t : κ then J[σ ]tK
δ
= JtKJσK

δ
(for any derivation Ξ0; [τ] ⊢ [σ ]t : κ).

(3) If Ξ0 ⊢ u : ω and Ξ0; [ω] ⊢ t : κ then J⟨u | t⟩K
δ
= JtK

δ
JuK

δ
.

Proof. Define m ∈ N by

m = ∑

(t ′/c) ∈ σ

such that t ′ ̸= c

size(Ξ(c))

if we are in part (1) or part (2), and m = size(ω) if we are in part (3), where size measures

the structural size of a sort. Proceed by lexicographic induction, first, on m, second, on the

part size, where part (3) is smaller than parts (1) and (2) and otherwise parts are equal in

size, third, on the structure of t/t, and fourth, on the height of the sorting derivation for t

in part (1).

By Lemma C.2 (Filter Out Propositions), Ξ0; · ⊢ σ : Ξ ; ·. By Lemma C.22 (Ix. Subst.

Typing Sound (No Prop)), ⊢ JσK
δ

: Ξ , so we can apply JtK and JtK to JσK
δ

.
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(1) • Case
(a : τ) ∈ Ξ

Ξ ⊢ a : τ [·]
IxVar

J[σ ]tK
δ
= J[σ ]aK

δ
By equality

= Jσ(a)K
δ

By def. of [−]−

= JσK
δ
(a) By def. of J−K (Def. C.2) and lookup

= JaKJσK
δ

By def. of J−K

= JtKJσK
δ

By equality

• Case
Ξ ,a÷κ ⊢ t0 : τ0 [ξt ]

Ξ ⊢ λa. t0 : κ ⇒ τ0 [·]
Ixλ

J[σ ]tK
δ
= J[σ ](λa. t0)Kδ

By equality

= Jλa. [σ ]t0Kδ
By def. of [−]−

= d 7→ J[σ ]t0Kδ ,d/a By def. of J−K

= d 7→ J[σ ,a/a]t0Kδ ,d/a Identity subst.

= d 7→ Jt0KJσ ,a/aK
δ ,d/a

By i.h. (same m; same part; smaller t)

with Lemma C.11 (Ix. Id. Subs. Extension)

= d 7→ Jt0KJσK
δ ,d/a,JaK

δ ,d/a/a By def. of J−K

= d 7→ Jt0KJσK
δ ,d/a,d/a By def. of J−K and lookup

= d 7→ Jt0KJσK
δ

,d/a By Lemma C.10

with Lemma C.9 (Ix. Subs. Weakening)

= Jλa. t0KJσK
δ

By def. of J−K

= JtKJσK
δ

By equality
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• Case
(a : ω) ∈ Ξ Ξ ; [ω] ⊢ u : κ

Ξ ⊢ a(u) : κ [·]
IxApp

J[σ ]tK
δ
= J[σ ](a(u))K

δ
By equality

= J⟨σ(a) | [σ ]u⟩K
δ

By def. of [−]−

with Lemma C.17 (Ix. Syntactic Substitution), pt. (3)

= J[σ ]uK
δ
Jσ(a)K

δ
By i.h. (same or smaller m; smaller part)

= JuKJσK
δ
Jσ(a)K

δ
By i.h. (same m; same part size; smaller t/t)

= JuKJσK
δ
(JσK

δ
(a)) By def.

= Ja(u)KJσK
δ

By def.

= JtKJσK
δ

By equality

• Case IxSub: Straightforward but this is the only case that uses the fourth part

of the lexicographic induction.

• The remaining cases are straightforward (for all uses of i.h., m is the same, the

part is the same, and t is smaller).

(2) Straightforward (for all uses of i.h., m is the same, the part size is the same, and t/t

is smaller).

(3) By Lemma C.17 (Ix. Syntactic Substitution), Ξ ⊢ ⟨u | t⟩ : κ . We first consider the

case where t ̸= · and u is a variable. We then case analyze Ξ0; [ω] ⊢ t : κ and may

assume u is not a variable when t ̸= ·.
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• Case t ̸= · and u is a variable

J⟨u | t⟩K
δ
= Ju(t)K

δ
By def. of ⟨− | −⟩

= JtK
δ
JuK

δ
By def. of J−K

• Case

Ξ0; [κ] ⊢ · : κ

IxSpineNil

J⟨u | t⟩K
δ
= J⟨u | ·⟩K

δ
By equality

= JuK
δ

By def. of ⟨− | −⟩

= idJκK JuK
δ

By def. of idJκK

= J·K
δ
JuK

δ
By def. of J−K

= JtK
δ
JuK

δ
By equality

• Case
Ξ0 ⊢ t0 : κ0 Ξ0; [ω0] ⊢ t′ : κ

Ξ0; [κ0⇒ ω0] ⊢ t0,t′ : κ

IxSpineEntry

u = λa.u0 By inversion on given sorting derivations

(u not a variable)
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J⟨λa.u0 | t0,t′⟩K
δ
= J⟨[t0/a]u0 | t′⟩Kδ

By def. of ⟨− | −⟩

= J⟨[idΞ , t0/a]u0 | t′⟩Kδ
Identity substitution

(use weakening for typing)

= Jt′K
δ
J[idΞ , t0/a]u0Kδ

By i.h. (smaller m)

with Lemma C.17

= Jt′K
δ
J[t0/a]u0Kδ

Identity subst.

= Jt′K
δ
Ju0Kδ ,Jt0Kδ

/a By i.h. (smaller m)

= Jt′K
δ
Ju0Kδ ,Jt0Kδ

/a By def. of J−K

= Jt′K
δ
(Jλa.u0Kδ

Jt0Kδ
) By def. of J−K

= Jt0,t′K
δ
Jλa.u0Kδ

By def. of J−K

• Case
Ξ0; [ωk] ⊢ t′ : κ

Ξ0; [ω1×ω2] ⊢ .k,t′ : κ

IxSpineProjk

– Case
Ξ0 ⊢ u1 : ω1 Ξ0 ⊢ u2 : ω2

Ξ0 ⊢ (u1,u2) : ω1×ω2

Ix×

J⟨u | t⟩K
δ
= J⟨(u1,u2) | .k,t′⟩K

δ
By equalities

= J⟨uk | t′⟩Kδ
By def. of ⟨− | −⟩

= Jt′K
δ
JukKδ

By i.h. (smaller m)

= Jt′K
δ
(πk J(u1,u2)Kδ

) By def. of J−K and πk

= J.k,t′K
δ
J(u1,u2)Kδ

By def. of J−K

= JtK
δ
JuK

δ
By equalities
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– Case
(a : ω) ∈ Ξ0 Ξ0; [ω] ⊢ u : ω

Ξ0 ⊢ a(u) : ω [·]
IxApp

J⟨u | t⟩K
δ
= J⟨a(u) | t⟩K

δ
By equality

= Ja(u,t)K
δ

By def. of ⟨− | −⟩

= Ju,tK
δ

δ (a) By def. of J−K

= JtK
δ
(JuK

δ
δ (a)) By Lemma C.23 (Compose Ix. Spine)

= JtK
δ
Ja(u)K

δ
By def. of J−K

= JtK
δ
JuK

δ
By equality

Lemma C.25 (Index Subst. Typing Sound).

If Θ0 ⊢ σ : Θ and ⊢ δ : Θ0 then ⊢ JσK
δ

: Θ .

Proof. By structural induction on the derivation Θ0 ⊢ σ : Θ .

• Case SubstEmpty: Similar to SubstEmpty case of Lemma C.22.

• Case SubstIx: Similar to SubstIx case of Lemma C.22.

• Case SubstIxDet: Similar to SubstIx case of Lemma C.22. Use Lemma C.7 (Ix.

J−K Weak. Invariant).

• Case
Θ0 ⊢ σ : Θ

′
Θ0 ⊢ [σ ]ϕ true

Θ0 ⊢ σ : Θ
′,ϕ

SubstProp



405

⊢ δ : Θ0 Given

Θ0 ⊢σ : Θ ′ Subderivation

⊢ JσK
δ

: Θ ′ By i.h.

Θ0 ⊢ [σ ]ϕ true Premise

Θ0 ⊢ [σ ]ϕ : B Presupposed derivation

JϕKJσK
δ
= J[σ ]ϕK

δ
By Lemma C.24 (Index Substitution Soundness)

= {•} By inversion on PropTrue

⊢ JσK
δ

: Θ ′,ϕ By Propδ

• Case SubstVal: Impossible.

Lemma C.26 (Sem. Subs. Entry).

(1) If ⊢ δ1 : Θ1 and ⊢ δ1,δ2 : Θ1,Θ2 and d ∈ JτK and a /∈ dom(Θ1,Θ2)

then ⊢ δ1,d/a,δ2 : Θ1,a : τ ,Θ2.

(2) If ⊢ δ1 : Θ1 and ⊢ δ1,δ2 : Θ1,Θ2 and Θ1 ⊢ ϕ : B and JϕK
δ1
= {•}

then ⊢ δ1,δ2 : Θ1,ϕ ,Θ2.

Proof. Each part is proved by structural induction on Θ2. In part (1), use Lemma C.7 (Ix.

J−K Weak. Invariant) in the Θ2 =Θ ′2,ψ case.

Lemma C.27 (Prop. Truth Equiv. Relation).

(1) If Ξ ⊢ t : κ then Ξ ⊢ t = t true.

(2) If Θ ⊢ t1 = t2 true then Θ ⊢ t2 = t1 true.



406

(3) If Θ ⊢ t1 = t2 true and Θ ⊢ t2 = t3 true then Θ ⊢ t1 = t3 true.

Proof. (1) Assume ⊢ δ : Ξ .

JtK
δ
∈ JκK By Lemma C.21 (Sorting Soundness)

JtK
δ
= JtK

δ
Equality on JκK is reflexive

Ξ ⊢ t = t true By PropTrue

(2) Assume ⊢ δ :Θ . We are given Θ ⊢ t1 = t2 true, which presupposes Θ ⊢ t1 = t2 :B. By

inversion on the index sorting equality rules and by Lemma C.21 (Sorting Soundness)

we know Jt1Kδ
and Jt2Kδ

are elements of JκK for some κ .

Jt1 = t2Kδ
= {•} By inversion on PropTrue

Jt1Kδ
= Jt2Kδ

By def. of J−K

Jt2Kδ
= Jt1Kδ

Equality on JκK is symmetric

Jt2 = t1Kδ
= {•} By def. of J−K

Θ ⊢ t2 = t1 true By PropTrue

(3) Similar to part (2).

Lemma C.28 (Assumption). If (Θ1,ϕ ,Θ2) ctx then Θ1,ϕ ,Θ2 ⊢ ϕ true.

Proof. Suppose ⊢ δ : Θ1,ϕ ,Θ2. By Lemma C.4 (Stratify Sem. Subs), δ = δ1,δ2 and ⊢ δ1 :

Θ1,ϕ . By inversion on Propδ , JϕK
δ1

= {•}. By Lemma C.7 (Ix. J−K Weak. Invariant),

JϕK
δ
= {•}. By PropTrue, Θ1,ϕ ,Θ2 ⊢ ϕ true.

Lemma C.29 (Consequence).

If Θ1,ψ ,Θ2 ⊢ ϕ true and Θ1 ⊢ ψ true then Θ1,Θ2 ⊢ ϕ true.

Proof. By inversion on Θ1,ψ ,Θ2 ⊢ ϕ true, for all ⊢ δ : Θ1,ψ ,Θ2, we have JϕK
δ
= {•}.

Suppose ⊢ δ : Θ1,Θ2. By Lemma C.4 (Stratify Sem. Subs), there exist δ1,δ2 such that
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δ = δ1,δ2 and ⊢ δ1 : Θ1 and ⊢ δ1,δ2 : Θ1,Θ2; these together with the given Θ1 ⊢ ψ true

yields ⊢ δ : Θ1,ψ ,Θ2 by Lemma C.26 (Sem. Subs. Entry). Eliminating the above “for all”,

we have JϕK
δ
= {•}. By PropTrue, Θ1,Θ2 ⊢ ϕ true.

Lemma C.30 (Prop. Truth Syn. Subs.).

If Θ0 ⊢ σ : Θ and Θ ⊢ ϕ true then Θ0 ⊢ [σ ]ϕ true.

Proof. Only one rule can conclude Θ ⊢ ϕ true:

• Case
for all δ , if ⊢ δ : Θ then JϕK

δ
= {•}

Θ ⊢ ϕ true

PropTrue

⊢ δ : Θ0 Suppose

Θ0 ⊢σ : Θ Given

⊢ JσK
δ

: Θ By Lemma C.25 (Index Subst. Typing Sound)

J[σ ]ϕK
δ
= JϕKJσK

δ
By Lemma C.24 (Index Substitution Soundness)

= {•} By premise (for all δ , if ⊢ δ : Θ then JϕK
δ
= {•})

Θ0 ⊢ [σ ]ϕ true By PropTrue

Lemma C.31 (Subst. Inconsistent). If Θ0 ⊢ σ : Θ and Θ ⊢ ff true then Θ0 ⊢ ff true.

Proof. Follows from Lemma C.30 (Prop. Truth Syn. Subs) and the definition of substitu-

tion.

Lemma C.32 (Id. Subst. Typing). For all Θ ctx, we have Θ ; · ⊢ idΘ ;· : Θ ; ·.

Proof. By structural induction on Θ ctx. Use Lemma C.9 (Ix. Subs. Weakening), Lemma

C.13 (Ix. Id. Subst) and Lemma C.28 (Assumption).
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Lemma C.33 (Ix. Equiv. Sound). Assume ⊢ δ : Θ .

(1) If Θ ⊢ u≡ t : τ then JuK
δ
= JtK

δ
.

(2) If Θ ; [τ] ⊢ u≡ t : κ then JuK
δ
= JtK

δ
.

Proof. By mutual induction on the structure of the given equivalence derivation.

Lemma C.34 (Ix. Equiv. Reflexive).

(1) If Ξ ⊢ t : τ [ξt ] then Ξ ⊢ t ≡ t : τ .

(2) If Ξ ; [τ] ⊢ t : κ then Ξ ; [τ] ⊢ t≡ t : κ .

Proof. By mutual induction on the structure of the given sorting derivation.

Lemma C.35 (Ix. Equiv. Transitive).

(1) If Θ ⊢ t1 ≡ t2 : τ and Θ ⊢ t2 ≡ t3 : τ then Θ ⊢ t1 ≡ t3 : τ .

(2) If Θ ; [τ] ⊢ t≡ t′ : κ and Θ ; [τ] ⊢ t′ ≡ u : κ then Θ ; [τ] ⊢ t≡ u : κ .

Proof. By mutual induction on the structure of the given equivalence derivations. Use

Lemma C.27 (Prop. Truth Equiv. Relation) as needed.

Lemma C.36 (Ix. Equiv. Weakening). If Θ ⊢ u≡ t : τ and Θ ⊆Θ ′

then Θ ′ ⊢ u≡ t : τ by a derivation of equal structure.

Proof. By structural induction on Θ ⊢ u≡ t : τ . The Ix≡SMT case uses Lemma C.8 (Prop.

Truth Weakening).

Lemma C.37 (Ix. App. Respects Equivalence).

If Θ ⊢ u1 ≡ u2 : τ and Θ ; [τ] ⊢ t1 ≡ t2 : κ then Θ ⊢ ⟨u1 | t1⟩= ⟨u2 | t2⟩ true.
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Proof. Follows straightforwardly from Lemma C.17 (Ix. Syntactic Substitution), Lemma

C.33 (Ix. Equiv. Sound), and Lemma C.24 (Index Substitution Soundness) (part (3)).

Lemma C.38 (Type/Functor Barendregt). Assume Ξ0 ⊢ σ : Ξ1 and Ξ1,Ξ2 ⊢ σ ′ : Ξ ′

and dom(Ξ0)∩dom(Ξ ′) = /0 and dom(Ξ ′) ̸= /0.

(1) If Ξ1,Ξ ′,Ξ2 ⊢ A type[ξ ] then [σ ][σ ′]A = [[σ ]σ ′][σ ]A.

(2) If Ξ1,Ξ ′,Ξ2 ⊢M (F)msmts[ξ ] then [σ ][σ ′](M (F)) = [[σ ]σ ′][σ ](M (F)).

(3) If Ξ1,Ξ ′,Ξ2 ⊢F functor[ξ ] then [σ ][σ ′]F = [[σ ]σ ′][σ ]F .

Proof. Part (1) by structural induction on the given type well-formedness derivation. The

DeclTp∧ and DeclTp⊃ cases of part (1) use (repeated) Lemma C.20 (Ix. Barendregt). Use

Lemma C.9 (Ix. Subs. Weakening) in the DeclTp∃ and DeclTp∀ cases.

Part (2) by structural induction. in order to use Lemma C.20 (Ix. Barendregt), weaken

the latter using Lemma C.6 (Sorting Weakening) with d÷(Ξ1,Ξ ′,Ξ2) ⊆ (Ξ1,Ξ ′,Ξ2). Also

use the fact that the algebra and functor are closed (because its input Ξ is empty).

Part (3) by structural induction, using part (1).

Lemma C.39 (Algebra Barendregt). Assume Ξ0 ⊢ σ : Ξ1 and Ξ1,Ξ2 ⊢ σ ′ : Ξ ′

and dom(Ξ0)∩dom(Ξ ′) = /0 and dom(Ξ ′) ̸= /0.

If Ξ1,Ξ ′,Ξ2 ⊢ q⇒ t : P̂(τ)⇒ τ then [σ ][σ ′](q⇒ t) = [[σ ]σ ′][σ ](q⇒ t).

Proof. By structural induction on Ξ1,Ξ ′,Ξ2 ⊢ q⇒ t : P̂(τ)⇒ τ . The DeclAlg⊕ case is

impossible. The DeclAlgI case uses Lemma C.20 (Ix. Barendregt). The DeclAlgId case

uses Lemma C.11 (Ix. Id. Subs. Extension). The DeclAlg∃ case uses (repeated) Lemma

C.11 (Ix. Id. Subs. Extension). The DeclAlgConst case uses Lemma C.38 (Type/Functor

Barendregt).



C.1. STRUCTURAL PROPERTIES 410

Lemma C.40 (Subst. Algebra Pattern).

If α ◦ injk ⊜ αk then [σ ]α ◦ injk ⊜ [σ ]αk for all σ .

Proof. By structural induction on α ◦ injk ⊜ αk.

Appendix C.1 Structural Properties

Lemma C.41 (Ix.-Level Weakening). Assume Ξ ⊆ Ξ ′ for parts mentioning Ξ , and assume

Θ ⊆Θ ′ for the other parts, those mentioning Θ .

(1) If D :: Ξ ⊢ A type[ξ ] then Ξ ′ ⊢ A type[ξ ].

(2) If D :: Ξ ⊢F functor[ξ ] then Ξ ′ ⊢F functor[ξ ].

(3) If D :: Ξ ⊢ α : F(τ)⇒ τ then Ξ ′ ⊢ α : F(τ)⇒ τ .

(4) If D :: Ξ ⊢M (F)msmts[ξ ] then Ξ ′ ⊢M (F)msmts[ξ ].

(5) If D :: Ξ ⊢ Γ ctx then Ξ ′ ⊢ Γ ctx.

(6) If D :: Θ ⊢ t ≡ t ′ : τ then Θ ′ ⊢ t ≡ t ′ : τ .

(7) If D :: Θ ; [τ] ⊢ t≡ t′ : κ then Θ ′; [τ] ⊢ t≡ t′ : κ .

(8) If D :: Θ ⊢Θ1 ≡Θ2 ctx then Θ ′ ⊢Θ1 ≡Θ2 ctx.

(9) If D :: Θ ⊢ A≡± B then Θ ′ ⊢ A≡± B.

(10) If D :: Θ ⊢M ′(F)≡M (F) then Θ ′ ⊢M ′(F)≡M (F).

(11) If D :: Θ ⊢ A≤± B then Θ ′ ⊢ A≤± B.

(12) If D :: Ξ ⊢ α;F ≤τ β ;G then Ξ ′ ⊢ α;F ≤τ β ;G.
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(13) If D :: Ξ ⊢M ′(F ′)≥M (F) then Ξ ′ ⊢M ′(F ′)≥M (F).

(14) If D :: Ξ ⊢ H
−→
β ;G;M (F)I⊜ dΘ ;R then Ξ ′ ⊢ H

−→
β ;G;M (F)I⊜ dΘ ;R.

(15) If D :: Θ ;Γ ⊢ h⇒ P then Θ ′;Γ ⊢ h⇒ P.

(16) If D :: Θ ;Γ ⊢ g⇒↑P then Θ ′;Γ ⊢ g⇒↑P.

(17) If D :: Θ ;Γ ⊢ v⇐ P then Θ ′;Γ ⊢ v⇐ P.

(18) If D :: Θ ;Γ ⊢ e⇐ N then Θ ′;Γ ⊢ e⇐ N.

(19) If D :: Θ ;Γ ; [P] ⊢ {ri⇒ ei}i∈I ⇐ N then Θ ′;Γ ; [P] ⊢ {ri⇒ ei}i∈I ⇐ N.

(20) If D :: Θ ;Γ ; [N] ⊢ s⇒↑P then Θ ′;Γ ; [N] ⊢ s⇒↑P.

Moreover, each consequent (weakened) derivation has the same structure as D .

Proof. Each part is proved by structural induction on the given derivation D . Parts (1), (2),

(3), and (4) are mutually recursive, as are parts (6) and (7); parts (9) and (10); parts (11),

(12), and (13); and parts (15) through (20). Use Lemma C.6 (Sorting Weakening), Lemma

C.8 (Prop. Truth Weakening), and Lemma C.36 (Ix. Equiv. Weakening) as needed, as well

as previous parts.

Lemma C.42 (Ix.-Level Subs. Weakening). If Θ0;Γ0 ⊢ σ : Θ ;Γ and Θ0 ⊆Θ ′0

then Θ ′0;Γ0 ⊢ σ : Θ ;Γ .

Proof. Similar to Lemma C.9 (Ix. Subs. Weakening), but the SubstVal case uses (the value

typing part of) Lemma C.41 (Ix.-Level Weakening).

Lemma C.43 (Index Id. Subs. Extension). If Θ0;Γ0 ⊢ σ : Θ ;Γ and a /∈ dom(Θ)∪dom(Θ0)

then Θ0,a÷ τ;Γ0 ⊢ σ ,a/a : Θ ,a÷ τ;Γ and Θ0,a d÷ τ;Γ0 ⊢ σ ,a/a : Θ ,a d÷ τ;Γ

and Θ0,a d÷ τ ,a Id;Γ0 ⊢ σ ,a/a : Θ ,a d÷ τ ,a Id;Γ .
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Proof. We show the “÷” part; the “d÷” parts are similar (use SubstIxDet and d÷− def.).

Θ0;Γ0 ⊢σ : Θ ;Γ Given

Θ0,a÷ τ;Γ0 ⊢σ : Θ ;Γ By Lemma C.42 (Ix.-Level Subs. Weakening)

Θ0,a÷ τ ⊢ a : τ By IxVar

Θ0,a÷ τ;Γ0 ⊢σ ,a/a : Θ ,a÷ τ;Γ By SubstIx

Lemma C.44 (Assumption Subst. Extension). Assume Θ0;Γ0 ⊢ σ : Θ ;Γ .

If Θ ⊢ ϕ : B then Θ0, [⌊σ⌋]ϕ;Γ0 ⊢ σ : Θ ,ϕ;Γ .

Proof. Assume Θ ⊢ ϕ : B.

Θ0 ⊢ [⌊σ⌋]ϕ : B By Lemma C.17 (Ix. Syntactic Substitution)

Θ0, [⌊σ⌋]ϕ;Γ0 ⊢σ : Θ ;Γ By Lemma C.42 (Ix.-Level Subs. Weakening)

Θ0, [⌊σ⌋]ϕ ⊢ [⌊σ⌋]ϕ true By Lemma C.28 (Assumption)

Θ0, [⌊σ⌋]ϕ;Γ0 ⊢σ : Θ ,ϕ;Γ By SubstProp

Lemma C.45 (Ix.-Level Id. Subs. Extension). Assume Θ0;Γ0 ⊢ σ : Θ ;Γ .

If (Θ ,Θ ′) ctx and (Θ0,Θ ′) ctx then Θ0, [⌊σ⌋]Θ ′;Γ0 ⊢ σ , idΘ ′ : Θ ,Θ ′;Γ .

Proof. By structural induction on the given substitution typing derivation, analyzing cases

for the structure of Θ ′. The Θ ′ = (Θ ′1,a : τ) case uses Lemma C.43 (Index Id. Subs. Exten-

sion). The Θ ′ = (Θ ′1,ϕ) case uses Lemma C.44 (Assumption Subst. Extension).

Lemma C.46 (Det. FV). If ξ ⊢D det then D⊆ FV(ξ ).

Proof. Assume a ∈D. It is straightforward to prove a ∈ FV(ξ ) by structural induction on

ξ ⊢ a det.

Lemma C.47 (ξ FV). (1) If Ξ ⊢ t : τ [ξ ] then FV(ξ )⊆ dom(d÷Ξ).
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(2) If Ξ ⊢ A type[ξ ] then FV(ξ )⊆ dom(d÷Ξ).

(3) If Ξ ⊢F functor[ξ ] then FV(ξ )⊆ dom(d÷Ξ).

Proof. By inspection of the rules, only value-determined variables are added to ξ .

Lemma C.48 (⟨−⟩(−) Equation).

If Ξ0 ⊢ σ : Ξ and D⊆ dom(d÷Ξ)∪A

and dom(Ξ0)∩A= /0 and dom(Ξ)∩A= /0

then ⟨σ⟩(D−A) = ⟨σ⟩D−A.

Proof. (⊆) Assume a′ ∈ ⟨σ⟩(D−A). Then there exists a ∈ (D−A) such that either σ(a)

is defined and a′ ∈ FV(σ(a)) or σ(a) is undefined and a = a′. In either case, we have

a′ ∈ ⟨σ⟩D−A.

(⊇) Assume b′ ∈ ⟨σ⟩D−A. Then b′ /∈A and there exists b∈D such that either σ(b) is

defined and b′ ∈ FV(σ(b)) or σ(b) is undefined and b = b′. In the first case, b /∈A because

otherwise we contradict the fact that σ(b) is defined. In the second case, b /∈ A because

otherwise we contradict the fact that b′ /∈ A. In either case, b′ ∈ ⟨σ⟩(D−A).

Lemma C.49 (d[−]− Equation).

If Ξ0 ⊢ σ : Ξ and FV(ξ )⊆ dom(d÷Ξ)∪A

and dom(Ξ0)∩A= /0 and dom(Ξ)∩A= /0

then d[σ ](ξ −A) = d[σ ]ξ −A.

Proof. (⊆) Assume B′�a′ ∈ d[σ ](ξ −A). Then there exist B and a such that B�a∈ ξ and

⟨σ⟩(B−A) =B′ and a /∈A and either σ(a) is defined and σ(a) = a′ or σ(a) is undefined

and a = a′. In either case, we know a′ /∈ A. By Lemma C.48, ⟨σ⟩(B−A) = ⟨σ⟩B−A so

B′ = ⟨σ⟩B−A. It follows that B′�a′ ∈ d[σ ]ξ −A.
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(⊇) Assume C′�b′ ∈ d[σ ]ξ −A. Then b′ /∈ A and there exist C and b such that C�b ∈

ξ and C′ = ⟨σ⟩C−A and either σ(b) = b′ or σ(b) is undefined and b = b′. In either

case, we know b /∈ A. By Lemma C.48, ⟨σ⟩C−A = ⟨σ⟩(C−A). It follows that C′�b′ ∈
d[σ ](ξ −A).

Lemma C.50 (Det. Preservation). If Ξ0 ⊢ σ : Ξ and ξ − d÷Ξ ⊢D det

and FV(ξ )⊆ dom(d÷Ξ)∪D∪A and dom(Ξ0)∩ (D∪A) = /0 and dom(Ξ)∩ (D∪A) = /0

then d[σ ]ξ − d÷Ξ0 ⊢D det.

Proof. By the given conditions and definitions it follows that ξ − d÷Ξ = d[σ ]ξ − d÷Ξ0.

Lemma C.51 (WF Syn. Substitution). Assume Ξ0 ⊢ σ : Ξ .

(1) If Ξ ⊢ A type[ξ ] then Ξ0 ⊢ [σ ]A type[d[σ ]ξ ].

(2) If Ξ ⊢F functor[ξ ] then Ξ0 ⊢ [σ ]F functor[d[σ ]ξ ].

(3) If Ξ ⊢ α : F(τ)⇒ τ then Ξ0 ⊢ [σ ]α : ([σ ]F)(τ)⇒ τ .

(4) If Ξ ⊢M ′(F)msmts[ξ ] then Ξ0 ⊢ [σ ](M ′(F))msmts[d[σ ]ξ ].

Proof. By structural induction on the given well-formedness derivation. Part (2) uses part

(1) and part (3) uses part (2).

(1) • Case

Ξ ⊢ 0︸︷︷︸
A

type[ ·︸︷︷︸
ξ

]

DeclTp0

Ξ0 ⊢ 0 type[·] By DeclTp0

Ξ0 ⊢ [σ ]0 type[·] By def. of subst.

Z Ξ0 ⊢ [σ ]0 type[d[σ ]·] By Def. C.4



C.1. STRUCTURAL PROPERTIES 415

• Case DeclTp1: Similar to DeclTp0 case.

• Case
Ξ ⊢ P1 type[ξ1] Ξ ⊢ P2 type[ξ2]

Ξ ⊢ P1 +P2 type[·]
DeclTp+

Ξ0 ⊢σ : Ξ Given

Ξ0 ⊢ [σ ]P1 type[
d[σ ]ξ1] By i.h.

Ξ0 ⊢ [σ ]P2 type[
d[σ ]ξ2] By i.h.

Ξ0 ⊢ [σ ]P1 +[σ ]P2 type[·] By DeclTp+

Ξ0 ⊢ [σ ](P1 +P2) type[·] By def. of subst.

Z Ξ0 ⊢ [σ ](P1 +P2) type[
d[σ ]·] By Def. C.4

• Case
Ξ ⊢ R1 type[ξ1] Ξ ⊢ R2 type[ξ2]

Ξ ⊢ R1×R2 type[ξ1∪ξ2]

DeclTp×

Ξ0 ⊢ [σ ]R1 type[
d[σ ]ξ1] By i.h.

Ξ0 ⊢ [σ ]R2 type[
d[σ ]ξ2] By i.h.

Ξ0 ⊢ [σ ]R1× [σ ]R2 type[
d[σ ]ξ1∪ d[σ ]ξ2] By DeclTp×

Ξ0 ⊢ [σ ](R1×R2) type[
d[σ ]ξ1∪ d[σ ]ξ2] By def. of subst.

Ξ0 ⊢ [σ ](R1×R2) type[
d[σ ](ξ1∪ξ2)] By Lemma C.14 (ξ Subst. Union)

• Case
Ξ ,dΞ ⊢ Q type[ξQ] ξQ− d÷Ξ ⊢ d

Ξ det

Ξ ⊢ ∃dΞ . Q type[ξQ− d
Ξ ]

DeclTp∃
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Ξ0 ⊢σ : Ξ Given

Ξ0,dΞ ⊢σ ,dΞ/dΞ : Ξ ,dΞ By Lemma C.43 (Index Id. Subs. Extension)

Ξ ,dΞ ⊢Q type[ξQ] Subderivation

Ξ0,dΞ ⊢ [σ ,dΞ/dΞ ]Q type[d[σ ,dΞ/dΞ ]ξQ] By i.h.

Ξ0,dΞ ⊢ [σ ]Q type[d[σ ]ξQ] Identity substitution

ξQ− d÷Ξ ⊢ dΞ det Premise

FV(ξQ) ⊆ dom(d÷(Ξ ,dΞ)) By Lemma C.47 (ξ FV)

= dom(d÷Ξ ,dΞ) By def. of d÷− and dom(−)

D ⊆ FV(ξQ− d÷Ξ) Straightforward

⊆ dom(dΞ) By definition of subtraction

dom(Ξ0)∩dom(dΞ) = /0 By variable convention

dom(Ξ)∩dom(dΞ) = /0 By variable convention

d[σ ]ξQ− d÷Ξ0 ⊢ dΞ det By Lemma C.50 (Det. Preservation)

Ξ0 ⊢∃dΞ . [σ ]Q type[d[σ ]ξQ− dΞ ] By DeclTp∃

Ξ0 ⊢ [σ ]∃dΞ . Q type[d[σ ]ξQ− dΞ ] By def. of subst.

Ξ0 ⊢ [σ ]∃dΞ . Q type[d[σ ](ξQ− dΞ)] By Lemma C.49

• Case DeclTp∧: Straightforward. Use Lemma C.14 (ξ Subst. Union).

• Case
Ξ ⊢ N type[ξ ]

Ξ ⊢ ↓N type[·]
DeclTp↓
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Ξ0 ⊢ [σ ]N type[_] By i.h.

Ξ0 ⊢ [σ ]↓N type[·] By DeclTp↓ and def. of subst.

Ξ0 ⊢ [σ ]↓N type[d[σ ]·] By Def. C.4

• Case
Ξ ⊢M (F)msmts[ξ ]

Ξ ⊢ {ν : µF |M (F)} type[ξ ]
DeclTpµ

Ξ0 ⊢ [σ ]M (F)msmts[d[σ ]ξ ] By i.h.

Ξ0 ⊢ [σ ]M ([σ ]F)msmts[d[σ ]ξ ] As FV(F) = /0 (follows from premise)

Ξ0 ⊢{ν : µ[σ ]F | [σ ]M ([σ ]F)} type[d[σ ]ξ ] By DeclTpµ

Ξ0 ⊢ [σ ]{ν : µF |M (F)} type[d[σ ]ξ ] By def.

• Case DeclTp∀: Similar to case for dual rule DeclTp∃.

• Case DeclTp⊃: Similar to case for dual rule DeclTp∧.

• Case DeclTp→: Similar to case for DeclTp×.

• Case DeclTp↑: Similar to case for dual rule DeclTp↓.

(2) Similar to part (1) but simpler.

(3) • Case
α ◦ inj1 ⊜ α1

α ◦ inj2 ⊜ α2

Ξ ⊢ α1 : F1(τ)⇒ τ

Ξ ⊢ α2 : F2(τ)⇒ τ

Ξ ⊢ α : (F1⊕F2)(τ)⇒ τ

DeclAlg⊕
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α ◦ injk ⊜αk Premises

([σ ]α)◦ injk ⊜ [σ ]αk By Lemma C.40

Ξ0 ⊢ [σ ]αk : ([σ ]Fk)(τ)⇒ τ By i.h.

Ξ0 ⊢ [σ ]α : ([σ ]F1⊕ [σ ]F2)(τ)⇒ τ By DeclAlg⊕

Ξ0 ⊢ [σ ]α : ([σ ](F1⊕F2))(τ)⇒ τ By definition of substitution

• Case
d÷Ξ ⊢ t : τ

Ξ ⊢ ()⇒ t : I(τ)⇒ τ

DeclAlgI

Ξ0 ⊢σ : Ξ Given

d÷Ξ0 ⊢σ↾d÷Ξ
: d÷Ξ By Lemma C.12 (Value-Det. Substitution)

d÷Ξ0 ⊢ [σ ]t : τ By Lemma C.17 (Ix. Syntactic Substitution)

and property of restriction/substitution

Ξ0 ⊢ ()⇒ [σ ]t : I(τ)⇒ τ By DeclAlgI

Ξ0 ⊢ [σ ](()⇒ t) : ([σ ]I)(τ)⇒ τ By def. of subst.

• Case
Ξ ,a d÷ τ ,a Id ⊢ q⇒ t : P̂(τ)⇒ τ

Ξ ⊢ (a,q)⇒ t : (Id⊗ P̂)(τ)⇒ τ

DeclAlgId

Ξ0 ⊢σ : Ξ Given

d÷Ξ0 ⊢σ↾d÷Ξ
: d÷Ξ By Lemma C.12 (Value-Det. Substitution)
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Ξ0,a d÷ τ ,a Id ⊢ [σ ](q⇒ t) : ([σ ]P̂)(τ)⇒ τ By i.h., identity subst.

Ξ0,a d÷ τ ,a Id ⊢ q⇒ [σ ]t : ([σ ]P̂)(τ)⇒ τ By def. of subst.

Ξ0 ⊢ (a,q)⇒ [σ ]t : (Id⊗ [σ ]P̂)(τ)⇒ τ By DeclAlgId

Z Ξ0 ⊢ [σ ]((a,q)⇒ t) : ([σ ](Id⊗ P̂))(τ)⇒ τ By def. of subst.

• Case
Ξ ⊢ Q type[ξQ] Ξ ⊢ q⇒ t : P̂(τ)⇒ τ

Ξ ⊢ (⊤,q)⇒ t : (Q⊗ P̂)(τ)⇒ τ

DeclAlgConst

Ξ ⊢Q type[ξQ] Premise

Ξ0 ⊢ [σ ]Q type[_] By part (1)

Ξ ⊢ q⇒ t : P̂(τ)⇒ τ Subderivation

Ξ0 ⊢ q⇒ [σ ]t : ([σ ]P̂)(τ)⇒ τ By i.h. and def. of subst.

Ξ0 ⊢ (⊤,q)⇒ [σ ]t : ([σ ]Q⊗ [σ ]P̂)(τ)⇒ τ By DeclAlgConst

Ξ0 ⊢ [σ ]((⊤,q)⇒ t) : [σ ](Q⊗ P̂)(τ)⇒ τ By def. of subst.

• Case
Ξ ,dΞ

′ ⊢ (⊤,q)⇒ t : (Q⊗ P̂)(τ)⇒ τ

Ξ ⊢ (pk(dΞ
′
,⊤),q)⇒ t : (∃dΞ

′
. Q⊗ P̂)(τ)⇒ τ

DeclAlg∃

By (repeated) Lemma C.43 (Index Id. Subs. Extension),

Ξ0,dΞ
′ ⊢ σ ,dΞ

′
/dΞ

′
: Ξ ,dΞ

′

By i.h. and def. of substitution and identity substitution,

Ξ0,dΞ
′ ⊢ (⊤,q)⇒ [σ ]t : ([σ ]Q⊗ [σ ]P̂)(τ)⇒ τ



C.1. STRUCTURAL PROPERTIES 420

By DeclAlg∃,

Ξ0 ⊢ (pk(dΞ
′
,⊤),q)⇒ [σ ]t : (∃dΞ

′
. [σ ]Q⊗ [σ ]P̂)(τ)⇒ τ

By definition of substitution,

Ξ0 ⊢ [σ ]((pk(dΞ
′
,⊤),q)⇒ t) : ([σ ](∃dΞ

′
. Q⊗ P̂))(τ)⇒ τ

(4) • Case
· ⊢ F functor[_]

Ξ ⊢ ·F msmts[·]

· ⊢F functor[_] Premise

· ⊢ [σ ]F functor[_] As FV(F) = /0

Ξ0 ⊢ ·[σ ]F msmts[·] By same rule

Ξ0 ⊢ ·[σ ]F msmts[d[σ ]·] By Def. C.4

Ξ0 ⊢ [σ ](·F)msmts[d[σ ]·] By def. of subst.

• Case
Ξ ⊢M (F)msmts[ξ ] · ⊢ α : F(τ)⇒ τ d÷Ξ ; [τ] ⊢ t : κ (t d÷κ) ∈ Ξ

Ξ ⊢M (F),(foldF α)ν t=τ t msmts[ξ ∪FV(t)�t]
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Ξ0 ⊢σ : Ξ Given

Ξ ⊢M (F)msmts[ξ ] Subderivation

Ξ0 ⊢ [σ ](M (F))msmts[σ ⊢ ξ det] By i.h.

· ⊢α : F(τ)⇒ τ Premise

· ⊢ [σ ]α : ([σ ]F)(τ)⇒ τ As FV(α ,F) = /0

d÷Ξ0 ⊢σ↾d÷Ξ
: d÷Ξ By Lemma C.12 (Value-Det. Substitution)

d÷Ξ ; [τ] ⊢ t : κ Premise

d÷Ξ0; [τ] ⊢ [σ↾d÷Ξ
]t : κ By Lemma C.17 (Ix. Syntactic Substitution)

d÷Ξ0; [τ] ⊢ [σ ]t : κ By restriction property

(FV(t)⊆ dom(d÷Ξ))

(t d÷κ) ∈Ξ Premise

d÷Ξ0 ⊢σ(t) : κ By inversion on substitution typing

– Case σ(t) ∈ dom(Ξ0)

By a rule,

Ξ0 ⊢ [σ ](M (F)),(fold[σ ]F [σ ]α)ν [σ ]t=τ [σ ]t msmts[d[σ ]ξ ∪FV([σ ]t)�σ(t)]

Ξ0 ⊢ [σ ](M (F),(foldF α)ν t=τ t)msmts[d[σ ]ξ ∪FV([σ ]t)�σ(t)] By def.

Ξ0 ⊢ [σ ](M (F),(foldF α)ν t=τ t)msmts[d[σ ]ξ ∪⟨σ⟩FV(t)�σ(t)] By Def. C.4

and Def. C.3

Ξ0 ⊢ [σ ](M (F),(foldF α)ν t=τ t)msmts[d[σ ]ξ ∪ d[σ ](FV(t)�t)] By Def. C.4

Ξ0 ⊢ [σ ](M (F),(foldF α)ν t=τ t)msmts[d[σ ](ξ ∪FV(t)�t)] Lemma C.14
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– Case σ(t) /∈ dom(Ξ0)

Ξ0 ⊢ [σ ](M (F)),(fold[σ ]F [σ ]α)ν [σ ]t=τ [σ ]t msmts[d[σ ]ξ ] By rule

Ξ0 ⊢ [σ ](M (F),(foldF α)ν t=τ t)msmts[d[σ ]ξ ] By def.

Ξ0 ⊢ [σ ](M (F),(foldF α)ν t=τ t)msmts[d[σ ]ξ ∪ /0] /0 unit for ∪

Ξ0 ⊢ [σ ](M (F),(foldF α)ν t=τ t)msmts[d[σ ]ξ ∪ d[σ ](FV(t)�t)] By Def. C.4

Ξ0 ⊢ [σ ](M (F),(foldF α)ν t=τ t)msmts[d[σ ](ξ ∪FV(t)�t)] Lemma C.14

• Case
Ξ ⊢M (F)msmts[ξ ] · ⊢ α : F(τ)⇒ τ d÷Ξ ; [τ] ⊢ t : κ

(t d÷κ) /∈ Ξ d÷Ξ ⊢ t : κ

Ξ ⊢M (F),(foldF α)ν t=τ t msmts[ξ ]

Similar to previous case.

Lemma C.52 (Det. Weakening). If ξ ⊢D det and ξ ⊆ ξ ′ then ξ ′ ⊢D det.

Proof. Assume a ∈D. It is straightforward to prove ξ ′ ⊢ a det by structural induction on

ξ ⊢ a det. (Alternatively, use Lemma B.4 (Equivalence of cl and det) and the fact that

cl(−)(O) is monotone.)

Lemma C.53 (Subtraction to Cut). If ξ ⊢B det and ξ −B ⊢D det then ξ ⊢D det.

Proof. By Lemma B.4 (Equivalence of cl and det) and Lemma B.9 (Subtraction and cl), as

well as monotonocity of cl(−)(O) and idempotency of ∪.

Lemma C.54 (liftapps WF).

If
−−−→
a d÷ τ =−→a d÷M (F) and Ξ ,

−−−−−−→
a d÷ τ ,a Id ⊢ H

−−−→
q⇒ t ′; Î;M (F)I⊜ Ξ ′′,

−−→
ψ ′′;R′′
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and O ′1 is a subterm of R′′ and O ′2 is a subterm of
−−→
ψ ′′ , each WF under Ξ1,

−−−−−−→
a d÷ τ ,a Id,Ξ ′′

and Ξ ;Ξ ′′;zip(−→a )(M (F)) ⊢ O ′1⇝ Ξ̌1;M1(F);O1

and Ξ ;Ξ ′′;zip(−→a )(M (F)) ⊢ O ′2⇝ Ξ̌2;M2(F);O2

and Ξ̌ = Ξ̌1∪ Ξ̌2 and M ′(F) = M1(F)∪M2(F)

and dom(Ξ ′)∩dom(Ξ ,
−−−−−−→
a d÷ τ ,a Id,Ξ ′′, Ξ̌) = /0 and ρ = Ξ ′/Ξ̌ is a variable renaming

then Ξ , Ξ̌ ,Ξ ′′ ⊢M ′(F)msmts[ξM ′] and cl((ξ[ρ]M ′− d÷Ξ)−Ξ ′′)( /0) = dom(Ξ ′)

and O1 and O2 are each well-formed under Ξ , Ξ̌ ,Ξ ′′ and, in particular,

if O ′1 is a type R′′0 or measurement list M ′′
0 then ξO ′1

− d÷(Ξ ,
−−−→
a d÷ τ) = ξ[ρ]O1−

d÷(Ξ ,Ξ ′),

and if O ′2 is an index t0 then ξO ′2
− d÷(Ξ ,

−−−→
a d÷ τ) = ξ[ρ]O2−

d÷(Ξ ,Ξ ′).

Proof. By structural induction on O ′1 or O ′2. Use Lemma B.8 (Consequence for cl) in the

key case where O ′1 or O ′2 is ak(u) for some ak ∈ −→a (and u).

We sometimes implicitly use the following lemma (which uses the preceding lemma).

Lemma C.55 (Unrolling Output WF).

If Ξ ⊢ H
−→
β ;G;M (F)I⊜ dΘ ;R and Ξ ⊢ G functor[ξG]

then there exists ξ such that Ξ ⊢ ∃dΘ . R∧ dΘ type[ξ ] and ξG ⊆ ξ .

Proof. By structural induction on the given unrolling derivation. Use Lemma C.53 (Sub-

traction to Cut) (in the HConstI case), Lemma C.54 (liftapps WF) (in the HIdI case), Lemma

B.8 (Consequence for cl) (in the HIdI case), Lemma B.9 (Subtraction and cl) (in the HIdI

case), Lemma B.4 (Equivalence of cl and det) (in the HIdI case), cl(−)(O) monotone (in

the HIdI case), Lemma C.52 (Det. Weakening) (HConstI, HIdI cases), Lemma C.47 (ξ FV),

Lemma C.41 (Ix.-Level Weakening), Lemma C.6 (Sorting Weakening), and Lemma C.17

(Ix. Syntactic Substitution).
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Lemma C.56 (liftapps Syntactic Substitution).

If Ξ ;Ξ ′;
−−−−−−−−−−−−−−−→
(a,(foldF α)ν _ =τ _) ⊢ O ⇝ Ξ̌ ;M ′(F);O ′ and Ξ0 ⊢ σ : Ξ

then Ξ0;Ξ ′;
−−−−−−−−−−−−−−−→
(a,(foldF α)ν _ =τ _) ⊢ [σ ]O ⇝ [σ ]Ξ̌ ; [σ ]M ′(F); [σ ]O ′.

Proof. By structural induction on the given liftapps derivation.

Lemma C.57 (Unrolling Syntactic Substitution). If Ξ ⊢ H
−→
β ;G;M (F)I⊜ dΘ ;R

and Ξ0 ⊢ σ : Ξ then Ξ0 ⊢ H[σ ]
−→
β ; [σ ]G; [σ ]M ([σ ]F)I⊜ [σ ]dΘ ; [σ ]R.

Moreover, the height and structure of the unrolling derivation remain the same.

Proof. By structural induction on the unrolling derivation. Use Lemma C.40 (Subst. Alge-

bra Pattern), Lemma C.12 (Value-Det. Substitution), Lemma C.51 (WF Syn. Substitution),

Lemma C.17 (Ix. Syntactic Substitution), Lemma C.56 (liftapps Syntactic Substitution),

Lemma C.6 (Sorting Weakening), Lemma C.20.

Lemma C.58 (Ix. Equiv. Syn. Subs.). Assume Θ0 ⊢ σ : Θ .

(1) If Θ ⊢ u≡ t : τ then Θ0 ⊢ [σ ]u≡ [σ ]t : τ .

(2) If Θ ; [τ] ⊢ t1 ≡ t2 : κ then Θ0; [τ] ⊢ [σ ]t1 ≡ [σ ]t2 : κ .

Proof. By mutual induction on the structure of the given equivalence derivation. Use

Lemma C.30 (Prop. Truth Syn. Subs) and Lemma C.11 (Ix. Id. Subs. Extension).

Lemma C.59 (Sub. Syn. Subs.).

(1) If Θ ⊢ A≤± B and Θ0 ⊢ σ : Θ

then Θ0 ⊢ [σ ]A≤± [σ ]B by a derivation of equal structure and height.

(2) If Ξ ⊢ α;F ≤τ β ;G and Ξ0 ⊢ σ : Ξ

then Ξ0 ⊢ [σ ]α; [σ ]F ≤τ [σ ]β ; [σ ]G by a derivation of equal structure and height.
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(3) If Θ ⊢M ′(F ′)≥M (F) and Θ0 ⊢ σ : Θ

then Θ0 ⊢ [σ ]M ′(F ′)≥ [σ ]M (F) by a derivation of equal structure and height.

Proof. Each part by structural induction on the given subtyping/submeasuring derivation.

Part (2) uses part (1) and part (1) uses part (3). Use these lemmas: Lemma C.13 (Ix.

Id. Subst), Lemma C.17 (Ix. Syntactic Substitution), Lemma C.9 (Ix. Subs. Weakening),

Lemma C.12 (Value-Det. Substitution), Lemma C.58 (Ix. Equiv. Syn. Subs), Lemma C.38

(Type/Functor Barendregt), Lemma C.40 (Subst. Algebra Pattern), Lemma C.39 (Algebra

Barendregt).

Appendix C.2 Subtyping Properties

Definition C.7. Given Θ ctx and Θ ⊢ Γ ctx and Θ ⊢ Γ ′ ctx, define Θ ⊢ Γ ≤+ Γ ′ by point-

wise subtyping of the variables’ types, assuming dom(Γ ) = dom(Γ ′).

Lemma C.60 (Ix. Equiv. Consequence).

(1) If Θ1,ϕ ,Θ2 ⊢ t1 ≡ t2 : τ and Θ1 ⊢ ϕ true then Θ1,Θ2 ⊢ t1 ≡ t2 : τ .

(2) If Θ1,ϕ ,Θ2; [τ] ⊢ t1 ≡ t2 : κ and Θ1 ⊢ ϕ true then Θ1,Θ2; [τ] ⊢ t1 ≡ t2 : κ .

Proof. By mutual induction on the structure of the given equivalence derivation. The

Ix≡SMT case uses Lemma C.29 (Consequence).

Lemma C.61 (Subtyping Consequence).

If Θ1 ⊢ ϕ true and Θ1,ϕ ,Θ2 ⊢ A≤± B then Θ1,Θ2 ⊢ A≤± B.

Proof. By structural induction on the given subtyping derivation, analyzing cases for the

latter’s concluding rule. Use Lemma C.29 (Consequence) when necessary (e.g., for the

≤+∧R case). The judgment Θ ⊢M ′(F ′) ≥M (F) is proposition independent because its
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functors and algebras are closed and the operation d÷− removes propositions from logical

contexts.

Lemma C.62 (Subtyping Reflexive).

(1) If Ξ ⊢ A type[ξA] then Ξ ⊢ A≤± A.

(2) If Ξ ⊢ α : F(τ)⇒ τ then Ξ ⊢ α;F ≤τ α;F.

(3) If Ξ ⊢M (F)msmts[ξ ] then Ξ ⊢M (F)≥M (F).

Proof. By mutual induction on the structure of the given type or algebra formation deriva-

tion. Straightforward.

Use Lemma C.6 (Sorting Weakening) and Lemma C.29 (Consequence) together with

both left and right subtyping rules in cases DeclTp∧ and DeclTp⊃. Cases DeclTp∃ and

DeclTp∀ follow a similar pattern as cases DeclTp∧ and DeclTp⊃ but uses IxVar rather

than Lemma C.29 (Consequence) and does not use Lemma C.6 (Sorting Weakening).

Use Lemma C.34 (Ix. Equiv. Reflexive) and Lemma C.27 (Prop. Truth Equiv. Relation)

in part (3).

Use Lemma C.34 (Ix. Equiv. Reflexive) in the DeclAlgI case of part (2).

Lemma C.63 (Subtyping Transitive).

(1) If Θ ⊢ P≤+ P̃ and Θ ⊢ P̃≤+ P′ then Θ ⊢ P≤+ P′.

(2) If Θ ⊢ N′ ≤− Ñ and Θ ⊢ Ñ ≤− N then Θ ⊢ N′ ≤− N.

(3) If Ξ ⊢ α;F ≤τ β̃ ; G̃ and Ξ ⊢ β̃ ; G̃≤τ β ;G then Ξ ⊢ α;F ≤τ β ;G.

(4) If Ξ ⊢M ′(F ′)≥ M̃ (F̃) and Ξ ⊢ M̃ (F̃)≥M (F) then Ξ ⊢M ′(F ′)≥M (F).
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Proof. By mutual induction on the structure of the two given derivations.

(1) • Case
Θ ,dΞ

′ ⊢ Q≤+ P̃

Θ ⊢ ∃dΞ
′
. Q≤+ P̃

≤+∃L

...

Θ ⊢ P̃≤+ P′

Θ ,dΞ
′ ⊢Q≤+ P̃ Subderivation

Θ ⊢ P̃≤+ P′ Given

Θ ,dΞ
′ ⊢ P̃≤+ P′ By Lemma C.41 (Ix.-Level Weakening)

Θ ,dΞ
′ ⊢Q≤+ P′ By i.h.

Θ ⊢∃dΞ
′. Q≤+ P′ By ≤+∃L

• Case
Θ ,−→ϕ ⊢ R≤+ P̃

Θ ⊢ R∧−→ϕ ≤+ P̃
≤+∧L

...

Θ ⊢ P̃≤+ P′

Similar to preceding case.

• Case

Θ ⊢ 1≤+ 1
≤+1

Θ ⊢ 1≤+ 1
≤+1

Θ ⊢ 1≤+ 1 By ≤+1

• Case

Θ ⊢ 0≤+ 0
≤+0

Θ ⊢ 0≤+ 0
≤+0

Θ ⊢ 0≤+ 0 By ≤+0
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• Case
Θ ⊢ R1 ≤+ R̃1 Θ ⊢ R2 ≤+ R̃2

Θ ⊢ R1×R2 ≤+ R̃1× R̃2

≤+×
Θ ⊢ R̃1 ≤+ R′1 Θ ⊢ R̃2 ≤+ R′2

Θ ⊢ R̃1× R̃2 ≤+ R′1×R′2

≤+×

Θ ⊢R1 ≤+ R̃1 Subderivation

Θ ⊢ R̃1 ≤+ R′1 Subderivation

Θ ⊢R1 ≤+ R′1 By i.h.

Θ ⊢R2 ≤+ R′2 Similarly

Θ ⊢R1×R2 ≤+ R′1×R′2 By ≤+×

• Case
Θ ⊢ P1 ≤+ P̃1 Θ ⊢ P2 ≤+ P̃2

Θ ⊢ P1 +P2 ≤+ P̃1 + P̃2

≤++
Θ ⊢ P̃1 ≤+ P′1 Θ ⊢ P̃2 ≤+ P′2

Θ ⊢ P̃1 + P̃2 ≤+ P′1 +P′2

≤++

Similar to ≤+× case.

• Case ...

Θ ⊢ R︸︷︷︸
P

≤+ R̃︸︷︷︸
P̃

Θ ⊢ R̃≤+ R′ Θ ⊢ −→ϕ true

Θ ⊢ R̃≤+ R′∧−→ϕ
≤+∧R

Θ ⊢R≤+ R̃ Given

Θ ⊢ R̃≤+ R′ Subderivation

Θ ⊢R≤+ R′ By i.h.

Θ ⊢−→ϕ true Subderivation

Θ ⊢R≤+ R′∧−→ϕ By ≤+∧R

• Case ...

Θ ⊢ R︸︷︷︸
P

≤+ R̃︸︷︷︸
P̃

d÷Θ ⊢ σ : dΞ
′

Θ ⊢ R̃≤+ [σ ]Q

Θ ⊢ R̃≤+ ∃dΞ
′
. Q

≤+∃R
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Similar to ≤+∧R case.

• Case
Θ ⊢M ′(F ′)≥ M̃ (F̃)

Θ ⊢
{

ν : µF ′
∣∣ M ′(F ′)

}
≤+

{
ν : µF̃

∣∣∣ M̃ (F̃)
} ≤+µ

– Case
Θ ⊢ M̃ (F̃)≥M (F)

Θ ⊢
{

ν : µF̃
∣∣∣ M̃ (F̃)

}
≤+ {ν : µF |M (F)}

≤+µ

Θ ⊢M ′(F ′)≥ M̃ (F̃) Subderivation

Θ ⊢ M̃ (F̃)≥M (F) Subderivation

Θ ⊢M ′(F ′)≥M (F) By i.h.

Θ ⊢{ν : µF ′ |M ′(F ′)} ≤+ {ν : µF |M (F)} By ≤+µ

• Case
Θ ⊢ N′ ≤− Ñ

Θ ⊢ ↓N′ ≤+ ↓ Ñ
≤+↓

Θ ⊢ Ñ ≤− N

Θ ⊢ ↓ Ñ ≤+ ↓N
≤+↓

Θ ⊢N′ ≤− Ñ Subderivation

Θ ⊢ Ñ ≤− N Subderivation

Θ ⊢N′ ≤− N By i.h.

Θ ⊢ ↓N′ ≤− ↓N By ≤+↓

(2) Similar to part (1). First consider the cases where ≤–∀R or ≤–⊃R concludes Θ ⊢

Ñ ≤− N, and then case analyze Θ ⊢ N′ ≤− Ñ.

(3) Similar to part (1) but simpler. First consider the case where Meas≤∃L concludes

Ξ ⊢ α;F ≤τ β̃ ; G̃ and then case analyze Ξ ⊢ β̃ ; G̃≤τ β ;G. In the Meas≤I case, use

Lemma C.35 (Ix. Equiv. Transitive).
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(4) It suffices to show that, for all (foldF α)ν t=τ t ∈M (F),

there exists (foldF ′ α ′)ν t′ =τ t ′ ∈M ′(F ′) such that the following three lines hold:

· ⊢α ′;F ′ ≤τ α;F

d÷Θ ; [τ] ⊢ t′ ≡ t : κ

d÷Θ ⊢ t ′ = t true

Assume (foldF α)ν t=τ t ∈M (F).

By inversion on Ξ ⊢ M̃ (F̃)≥M (F)

there exists (foldF̃ α̃)ν t̃=τ t̃ ∈ M̃ (F̃) such that the following three lines hold:

· ⊢ α̃; F̃ ≤τ α;F

d÷Θ ; [τ] ⊢ t̃≡ t : κ

d÷Θ ⊢ t̃ = t true

By inversion on Ξ ⊢M ′(F ′)≥ M̃ (F̃)

there exists (foldF ′ α ′)ν t′ =τ t ′ ∈M ′(F ′)

such that the following three lines hold:

· ⊢α;F ≤τ α̃; F̃

d÷Θ ; [τ] ⊢ t′ ≡ t̃ : κ

d÷Θ ⊢ t ′ = t̃ true

· ⊢α;F ≤τ α;F By i.h.

d÷Θ ; [τ] ⊢ t′ ≡ t : κ By Lemma C.35 (Ix. Equiv. Transitive)

d÷Θ ⊢ t ′ = t true By Lemma C.27 (Prop. Truth Equiv. Relation)
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Appendix C.3 Substitution Lemma and Subsumption Admissibility

Lemma C.64 (Prog.-Level Weakening). Assume Γ ⊆ Γ ′ and Θ ⊢ Γ ′ ctx.

(1) If Θ ;Γ ⊢ h⇒ P then Θ ;Γ ′ ⊢ h⇒ P.

(2) If Θ ;Γ ⊢ g⇒↑P then Θ ;Γ ′ ⊢ g⇒↑P.

(3) If Θ ;Γ ⊢ v⇐ P then Θ ;Γ ′ ⊢ v⇐ P.

(4) If Θ ;Γ ⊢ e⇐ N then Θ ;Γ ′ ⊢ e⇐ N.

(5) If Θ ;Γ ; [P] ⊢ {ri⇒ ei}i∈I ⇐ N then Θ ;Γ ′; [P] ⊢ {ri⇒ ei}i∈I ⇐ N.

(6) If Θ ;Γ ; [N] ⊢ s⇒↑P then Θ ;Γ ′; [N] ⊢ s⇒↑P.

Moreover, each of the consequent derivations have the same structure and height as the

given derivation.

Proof. By mutual induction on the structure of the given typing derivation.

Lemma C.65 (Prog.-Level Subs. Weakening).

If Θ ;Γ0 ⊢ σ : Θ ;Γ and Γ0 ⊆ Γ ′0 and Θ ⊢ Γ ′ ctx then Θ ;Γ ′0 ⊢ σ : Θ ;Γ .

Proof. By structural induction on the given substitution typing derivation, case analyzing

its concluding rule. Similar to Lemma C.42 (Ix.-Level Subs. Weakening). The SubstVal

case uses Lemma C.64 (Prog.-Level Weakening).

Lemma C.66 (Id. Subst. Extension). Assume Θ0;Γ0 ⊢ σ : Θ ;Γ . If Θ ⊢ R type[ξ ] and

x /∈ dom(Γ )∪dom(Γ0) then Θ0;Γ0,x : [⌊σ⌋]R ⊢ σ ,x : [⌊σ⌋]R/x : Θ ;Γ ,x : R.
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Proof.

Θ0 ⊢ ⌊σ⌋ : Θ By Lemma C.1 (Filter Out Prog. Vars. Syn)

Θ0 ⊢ [⌊σ⌋]R type[_] By Lemma C.51 (WF Syn. Substitution)

Θ0;Γ0,x : [⌊σ⌋]R ⊢σ : Θ ;Γ By Lemma C.65 (Prog.-Level Subs. Weakening)

Θ0 ⊢ [⌊σ⌋]R≤+ [⌊σ⌋]R By Lemma C.62 (Subtyping Reflexive)

Θ0;Γ0,x : [⌊σ⌋]R ⊢ x⇐ [⌊σ⌋]R By Decl⇐Var

Θ0;Γ0,x : [⌊σ⌋]R ⊢σ ,x : [⌊σ⌋]R/x : Θ ;Γ ,x : R By SubstVal

Lemma C.67 (Typing Consequence). Assume Θ1 ⊢ ϕ true.

(1) If Θ1,ϕ ,Θ2;Γ ⊢ h⇒ P then Θ1,Θ2;Γ ⊢ h⇒ P.

(2) If Θ1,ϕ ,Θ2;Γ ⊢ g⇒↑P then Θ1,Θ2;Γ ⊢ g⇒↑P.

(3) If Θ1,ϕ ,Θ2;Γ ⊢ v⇐ P then Θ1,Θ2;Γ ⊢ v⇐ P.

(4) If Θ1,ϕ ,Θ2;Γ ⊢ e⇐ N then Θ1,Θ2;Γ ⊢ e⇐ N.

(5) If Θ1,ϕ ,Θ2;Γ ; [P] ⊢ {ri⇒ ei}i∈I ⇐ N then Θ1,Θ2;Γ ; [P] ⊢ {ri⇒ ei}i∈I ⇐ N.

(6) If Θ1,ϕ ,Θ2;Γ ; [N] ⊢ s⇒↑P then Θ1,Θ2;Γ ; [N] ⊢ s⇒↑P.

Proof. By mutual induction on the program typing derivation, and case analysis on the

rule concluding the latter, using Lemma C.61 (Subtyping Consequence) for the Decl⇐Var

case of the value typing part and for the Decl⇐rec case of the expression typing part, using

Lemma C.29 (Consequence) when necessary (e.g., for the Decl⇐∧ case of the value typing

part).

Lemma C.68 (Index-Level Substitution). Assume Θ0; · ⊢ σ : Θ ; ·.
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(1) If Θ ;Γ ⊢ h⇒ P then Θ0; [σ ]Γ ⊢ [σ ]hh⇒ [σ ]P.

(2) If Θ ;Γ ⊢ g⇒↑P then Θ0; [σ ]Γ ⊢ [σ ]g⇒ [σ ]↑P.

(3) If Θ ;Γ ⊢ v⇐ P then Θ0; [σ ]Γ ⊢ [σ ]v⇐ [σ ]P.

(4) If Θ ;Γ ⊢ e⇐ N then Θ0; [σ ]Γ ⊢ [σ ]e⇐ [σ ]N.

(5) If Θ ;Γ ; [P] ⊢ {ri⇒ ei}i∈I ⇐ N then Θ0; [σ ]Γ ; [[σ ]P] ⊢ [σ ]{ri⇒ ei}i∈I ⇐ [σ ]N.

(6) If Θ ;Γ ; [N] ⊢ s⇒↑P then Θ0; [σ ]Γ ; [[σ ]N] ⊢ [σ ]s⇒ [σ ]↑P.

Moreover, the structure and height of the consequent derivation are the same as those of

the given derivation.

Proof. By mutual induction on the structure of the given program typing derivation. Case

analyze rules concluding the given typing derivation. Each case is straightforward. Use

Lemma C.51 (WF Syn. Substitution), Lemma C.59 (Sub. Syn. Subs), Lemma C.38 (Type-

/Functor Barendregt), Lemma C.17 (Ix. Syntactic Substitution), Lemma C.30 (Prop. Truth

Syn. Subs), Lemma C.31 (Subst. Inconsistent), Lemma C.57 (Unrolling Syntactic Sub-

stitution), Lemma C.45 (Ix.-Level Id. Subs. Extension), and Lemma C.13 (Ix. Id. Subst)

as needed. Note that, given Θ ;Γ ⊢J or Θ ;Γ ; [P] ⊢J , for every (x : A) ∈ Γ where

Θ ⊢ A type[_] we have Θ0 ⊢ [σ ]A type[_] by Lemma C.51 (WF Syn. Substitution). The

structure/height condition holds immediately in the base cases; it holds in the inductive

cases by the i.h. and the fact that we only re-apply the same rule as the given case.

Lemma C.69 (Ix. Equiv. Symmetric).

(1) If Θ ⊢ u≡ t : τ then Θ ⊢ t ≡ u : τ .

(2) If Θ ; [τ] ⊢ u≡ t : κ then Θ ; [τ] ⊢ t≡ u : κ .
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Proof. By mutual induction on the structure of the given equivalence derivation, using

Lemma C.27 (Prop. Truth Equiv. Relation) in one case.

Lemma C.70 (Equiv. Resp. Prp. Truth).

If Θ ⊢ u true and Θ ⊢ u≡ t : B then Θ ⊢ t true.

Proof. Follows from Lemma C.33 (Ix. Equiv. Sound) and PropTrue.

Lemma C.71 (Ctx. Equiv. Compat.). Assume Θ1 ⊢Θ ≡Θ ′ ctx.

(1) If ⊢ δ : Θ1,Θ ,Θ2 then ⊢ δ : Θ1,Θ ′,Θ2.

(2) If Θ1,Θ ,Θ2 ⊢ t true then Θ1,Θ ′,Θ2 ⊢ t true.

(3) If Θ1,Θ ,Θ2 ⊢ u≡ t : τ then Θ1,Θ ′,Θ2 ⊢ u≡ t : τ .

(4) If Θ1,Θ ,Θ2; [τ] ⊢ u≡ t : κ then Θ1,Θ ′,Θ2; [τ] ⊢ u≡ t : κ .

(5) If Θ1,Θ ,Θ2 ⊢ A≤± B then Θ1,Θ ′,Θ2 ⊢ A≤± B.

(6) If Θ1,Θ ,Θ2;Γ ⊢ h⇒ P then Θ1,Θ ′,Θ2;Γ ⊢ h⇒ P.

(7) If Θ1,Θ ,Θ2;Γ ⊢ g⇒↑P then Θ1,Θ ′,Θ2;Γ ⊢ g⇒↑P.

(8) If Θ1,Θ ,Θ2;Γ ⊢ v⇐ P then Θ1,Θ ′,Θ2;Γ ⊢ v⇐ P.

(9) If Θ1,Θ ,Θ2;Γ ⊢ e⇐ N then Θ1,Θ ′,Θ2;Γ ⊢ e⇐ N.

(10) If Θ1,Θ ,Θ2;Γ ; [P] ⊢ {ri⇒ ei}i∈I ⇐ N

then Θ1,Θ ′,Θ2;Γ ; [P] ⊢ {ri⇒ ei}i∈I ⇐ N.

(11) If Θ1,Θ ,Θ2;Γ ; [N] ⊢ s⇒↑P then Θ1,Θ ′,Θ2;Γ ; [N] ⊢ s⇒↑P.

Further, none of the consequent derivations change in structure or height.
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Proof. All necessary proposition-independent derivations (derivations under a Ξ ) with Θ ′

instead of Θ follow from Θ =Θ ′ (which is easy to check) and weakening.

(1) By lexicographic induction, first, on the structure of Θ2, and second, on the structure

of Θ .

(2)

⊢ δ : Θ1,Θ ′,Θ2 Assume

Θ1 ⊢Θ ′ ≡Θ ctx By repeated Lemma C.69 (Ix. Equiv. Symmetric) (and rules)

⊢ δ : Θ1,Θ ,Θ2 By part (2)

Θ1,Θ ,Θ2 ⊢ t true Given

JtK
δ
= {•} By inversion on PropTrue

Θ1,Θ ′,Θ2 ⊢ t true By PropTrue

(3) By structural induction on the index equivalence derivation, using part (2) as needed.

This part is mutually recursive with part (4).

(4) By structural induction on the given index spine equivalence derivation. This part is

mutually recursive with part (3).

(5) By structural induction on the given subtyping derivation, using parts (2) and (4) as

needed.

Parts (6) through (11) are proved by mutual induction on the structure of the program typing

derivation, using previous parts as needed.

Lemma C.72 (Equal Ix. Equalities). If Θ ⊢ u = u′ true and Θ ⊢ t = t ′ true

then Θ ⊢ (u = t) = (u′ = t ′) true.
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Proof. Follows from definition of PropTrue and Lemma C.27 (Prop. Truth Equiv. Rela-

tion).

Lemma C.73 (Unroll Subst. Undo).

If d÷Ξ ⊢ σ : dΞ 1 and Ξ ,dΞ
′ ⊢ H
−−−−−→
q⇒ [σ ]u; P̂;M (F)I⊜ dΘ ;R

and Ξ ⊢M (F)msmts[_] and Ξ ,dΞ 1,dΞ
′ ⊢ q⇒u : P̂(τ)⇒ τ

then there exist dΘ ′ and R′ such that Ξ ,dΞ
′ ⊢ H−−−→q⇒u; P̂;M (F)I⊜ dΘ

′;R′

and [σ ]dΘ
′
= dΘ and [σ ]R′ = R and dΘ

′
= dΘ ;

moreover, if Ξ ,dΞ 1 ⊢ R1∧−→ψ 1 type[ξ1] and ξ1− d÷Ξ ⊢ dΞ 1 det

then Ξ ,dΞ
′ ⊢ H
−−−−−−−−−−−−−→
(pk(dΞ 1,⊤),q)⇒u;∃dΞ 1. R1∧−→ψ 1⊗ P̂;M (F)I⊜ dΞ 1,dΘ ′,−→ψ 1;R1×R′.

Proof. By structural induction on Ξ ,dΞ
′ ⊢ H
−−−−−→
q⇒ [σ ]u; P̂;M (F)I⊜ dΘ ;R.

Use Lemma C.20 (Ix. Barendregt) and Lemma C.55 (Unrolling Output WF).

Lemma C.74. If
−−−→
a d÷ τ =−→a d÷M (F) and Ξ ⊢M (F)≥≡M ′(F ′)

and Ξ ;Ξ ′′;zip(−→a )(M (F)) ⊢ O2⇝ Ξ̌ ;M1(F);O1

and O2 is a subterm of an unrolling output of principal functor Î

and ρ = Ξ ′/Ξ̌ is a variable renaming (where Ξ ′ is fresh)

and (if O2 is not a type or measurements) O2 is judg. equivalent to O ′2 under (Ξ ,Ξ ′′,
−−−−−−→
a d÷ τ ,a Id)

or (if O2 is a type) D :: Ξ ,Ξ ′′,
−−−−−−→
a d÷ τ ,a Id ⊢ O2 ≤+ O ′2

and every subderivation Ξ ,Ξ ′′,
−−−−−−→
a d÷ τ ,a Id ⊢M2 ≥M ′

2 that is a premise of ≤+µ in D

satisfies Ξ ,Ξ ′′,
−−−−−−→
a d÷ τ ,a Id ⊢M2 ≥≡M ′

2

or (if O2 is measurements) Ξ ,Ξ ′′,
−−−−−−→
a d÷ τ ,a Id ⊢ O2 ≥≡ O ′2

then Ξ ;Ξ ′′;zip(−→a )(M ′(F ′)) ⊢ O ′2⇝ Ξ̌ ′;M ′
1(F);O ′1

and Ξ ,Ξ ′,Ξ ′′ ⊢ [ρ]M1(F)≥≡ [ρ]M ′
1(F
′)

and (if O2 is not a type or measurements) [ρ]O1 is judg. equivalent to [ρ]O ′1 under (Ξ ,Ξ ′,Ξ ′′)

or (if O2 is a type) D ′ :: Ξ ,Ξ ′,Ξ ′′ ⊢ [ρ]O1 ≤+ [ρ]O ′1
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and every subderivation Ξ ,Ξ ′,Ξ ′′ ⊢M ′
2 ≥M ′′

2 that is a premise of ≤+µ in D

satisfies Ξ ,Ξ ′,Ξ ′′ ⊢M ′
2 ≥≡M ′′

2

or (if O2 is measurements) Ξ ,Ξ ′,Ξ ′′ ⊢ [ρ]O1 ≥≡ [ρ]O ′1.

Proof. By structural induction on O2. Use congruence lemmas and reflexivity lemmas.

Lemma C.75 (Unroll to Supertype). If dΞ ,Ξ ⊢ H
−→
β ;G;M (F)I⊜ dΘ ;R

and Ξ ⊢
−→
β ;G≤−→

τ

−→
β ′;G′ and dΞ ⊢M (F)≥≡M ′(F ′)

then there exist D , dΘ ′, and R′ such that dΞ ,Ξ ⊢ H
−→
β ′;G′;M ′(F ′)I⊜ dΘ

′;R′

and D :: dΞ ,Ξ ⊢ ∃dΘ . R∧ dΘ ≤+ ∃dΘ ′. R′∧ dΘ
′;

moreover, if G = Î

then dΞ , d÷Ξ ,dΘ ⊢ dΘ − dΘ ≡ dΘ
′− dΘ

′ : B

and every subderivation dΞ , d÷Ξ ,dΘ ⊢M1 ≥M ′
1 that is a premise of ≤+µ in D

satisfies dΞ , d÷Ξ ,dΘ ⊢M1 ≥≡M ′
1,

and the ≤+∃R-witness dΞ , d÷Ξ ,dΘ ⊢ σ : dΘ ′ of D

is the identity substitution on dΘ
′ and dom(dΘ

′
) = dom(dΘ).

Proof. By induction on the height of dΞ ,Ξ ⊢ H
−→
β ;G;M (F)I ⊜ dΘ ;R. For each case, the

types in dΞ ,Ξ ⊢ ∃dΘ . R∧ dΘ ≤+ ∃dΘ ′. R′∧ dΘ
′ are well-formed by Lemma C.55 (Un-

rolling Output WF).

Case analyze the given unrolling derivation and consider dΞ ,Ξ ⊢
−→
β ;G ≤τ

−→
β ′;G′ sub-

cases. Use Lemma C.73 (Unroll Subst. Undo) in the HConstI subcase. Use Lemma C.37

(Ix. App. Respects Equivalence), Lemma C.72 (Equal Ix. Equalities), Lemma C.69 (Ix.

Equiv. Symmetric), Lemma C.28 (Assumption), Lemma C.71 (Ctx. Equiv. Compat), and

Lemma C.36 (Ix. Equiv. Weakening) in the HII case.

The HIdI case relies on using the “moreover” conditions. These conditions together

with the definition of judgmental index equivalence (so that Id variables in judgmentally
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equivalent index terms must struturally be in the same positions) makes the needed ⇝

premises have outputs with the needed relations to the original⇝ premises outputs: Lemma

C.74.

Lemma C.76. If
−−−→
a d÷ τ =−→a d÷M (F) and Ξ ⊢M (F)≥≡M ′(F ′)

and Ξ ;Ξ ′′;zip(−→a )(M (F)) ⊢ O2⇝ Ξ̌ ;M1(F);O1

and O2 is a subterm of an unrolling output of principal functor Î

and ρ = Ξ ′/Ξ̌ is a variable renaming (where Ξ ′ is fresh)

and (if O2 is not a type or measurements) O ′2 is judg. equivalent to O2 under (Ξ ,Ξ ′′,
−−−−−−→
a d÷ τ ,a Id)

or (if O2 is a type) D :: Ξ ,Ξ ′′,
−−−−−−→
a d÷ τ ,a Id ⊢ O ′2 ≤+ O2

and every subderivation Ξ ,Ξ ′′,
−−−−−−→
a d÷ τ ,a Id ⊢M ′

2 ≥M2 that is a premise of ≤+µ in D

satisfies Ξ ,Ξ ′′,
−−−−−−→
a d÷ τ ,a Id ⊢M ′

2 ≥≡M2

or (if O2 is measurements) Ξ ,Ξ ′′,
−−−−−−→
a d÷ τ ,a Id ⊢ O ′2 ≥≡ O2

then Ξ ;Ξ ′′;zip(−→a )(M ′(F ′)) ⊢ O ′2⇝ Ξ̌ ′;M ′
1(F);O ′1

and Ξ ,Ξ ′,Ξ ′′ ⊢ [ρ]M ′
1(F
′)≥≡ [ρ]M1(F)

and (if O2 is not a type or measurements) [ρ]O ′1 is judg. equivalent to [ρ]O1 under (Ξ ,Ξ ′,Ξ ′′)

or (if O2 is a type) D ′ :: Ξ ,Ξ ′,Ξ ′′ ⊢ [ρ]O ′1 ≤+ [ρ]O1

and every subderivation Ξ ,Ξ ′,Ξ ′′ ⊢M ′′
2 ≥M ′

2 that is a premise of ≤+µ in D

satisfies Ξ ,Ξ ′,Ξ ′′ ⊢M ′′
2 ≥≡M ′

2

or (if O2 is measurements) Ξ ,Ξ ′,Ξ ′′ ⊢ [ρ]O ′1 ≥≡ [ρ]O1.

Proof. By structural induction on O2. Use congruence lemmas and reflexivity lemmas.

Lemma C.77 (Unroll to Subtype). If dΞ ,Ξ ⊢ H
−→
β ;G;M (F)I⊜ dΘ ;R

and Ξ ⊢
−→
β ′;G′ ≤−→

τ

−→
β ;G and dΞ ⊢M ′(F ′)≥≡M (F)

then there exist D , dΘ ′, and R′ such that dΞ ,Ξ ⊢ H
−→
β ′;G′;M ′(F ′)I⊜ dΘ

′;R′

and D :: dΞ ,Ξ ⊢ ∃dΘ ′. R′∧ dΘ
′ ≤+ ∃dΘ . R∧ dΘ ;
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moreover, if G = Î

then dΞ , d÷Ξ ,dΘ ⊢ dΘ
′− dΘ

′ ≡ dΘ − dΘ : B

and every subderivation dΞ , d÷Ξ ,dΘ ⊢M ′
1 ≥M1 that is a premise of ≤+µ in D

satisfies dΞ , d÷Ξ ,dΘ ⊢M ′
1 ≥≡M1,

and the ≤+∃R-witness dΞ , d÷Ξ ,dΘ ⊢ σ : dΘ of D

is the identity substitution on dΘ and dom(dΘ) = dom(dΘ
′
).

Proof. By induction on the height of the given unrolling derivation. For each case, the types

in dΞ ,Ξ ⊢ ∃dΘ ′. R′∧ dΘ
′ ≤+ ∃dΘ . R∧ dΘ are well-formed by Lemma C.55 (Unrolling

Output WF).

Similar to Lemma C.75 (Unroll to Supertype).

Case analyze the given unrolling derivation and consider dΞ ,Ξ ⊢
−→
β ′;G′ ≤τ

−→
β ;G sub-

cases. Use Lemma C.57 (Unrolling Syntactic Substitution) in the HConstI case. Use

Lemma C.37 (Ix. App. Respects Equivalence), Lemma C.72 (Equal Ix. Equalities), Lemma

C.69 (Ix. Equiv. Symmetric), Lemma C.28 (Assumption), Lemma C.71 (Ctx. Equiv. Com-

pat), and Lemma C.36 (Ix. Equiv. Weakening) in the HII case.

The HIdI case relies on using the “moreover” conditions. These conditions together

with the definition of judgmental index equivalence (so that Id variables in judgmentally

equivalent index terms must struturally be in the same positions) makes the needed ⇝

premises have outputs with the needed relations to the original⇝ premises outputs: Lemma

C.76.

Lemma C.78 (Unroll Sublist).

If Ξ ⊢ H
−→
β ;G;M (F)I⊜ dΘ ;R and zip(

−→
β ′)(M ′(F))⊆ zip(

−→
β )(M (F))

then Ξ ⊢ H
−→
β ′;G;M ′(F)I⊜ dΘ

′;R′ and Ξ ⊢ ∃dΘ . R∧ dΘ ≤+ ∃dΘ ′. R′∧ dΘ
′

and if G = Î then dΘ
′ ⊆ dΘ and R′ ⊆ R where the latter (R′ ⊆ R) is defined by
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• 1⊆ 1

• if R′ ⊆ R and M ′
1(F)⊆M1(F)

then {ν : µF |M ′
1(F)}×R′ ⊆ {ν : µF |M1(F)}×R

Proof. By structural induction on Ξ ⊢ H
−→
β ;G;M (F)I⊜ dΘ ;R.

• Case −→
β ◦ inj1 ⊜

−→
β1

−→
β ◦ inj2 ⊜

−→
β2

Ξ ⊢ H
−→
β1;G1;M (F)I⊜ d

Θ 1;R1

Ξ ⊢ H
−→
β2;G2;M (F)I⊜ d

Θ 2;R2

Ξ ⊢ H
−→
β ;G1⊕G2;M (F)I⊜ ·;(∃dΘ 1. (R1∧ d

Θ 1))+(∃dΘ 2. (R2∧ d
Θ 2))

H⊕I

−→
β ◦ inj j ⊜

−→
β j Premises

zip(
−→
β ′)(M ′(F)) ⊆ zip(

−→
β )(M (F)) Given

−→
β ′ ◦ inj j ⊜

−→
β ′j Straightforward

zip(
−→
β ′j)(M

′(F)) ⊆ zip(
−→
β j)(M (F)) ′′

Ξ ⊢ H
−→
β j ;G j;M (F)I⊜ dΘ j;R j Subderivations

Ξ ⊢ H
−→
β ′j ;G j;M ′(F)I⊜ dΘ

′
j;R′j By i.h. (twice)

Ξ ⊢∃dΘ j. R j∧ dΘ j ≤+ ∃dΘ ′j. R′j∧ dΘ
′
j
′′

Ξ ⊢ H
−→
β ′;G1⊕G2;M ′(F)I⊜ ·;(∃dΘ ′1. R′1∧ dΘ

′
1)+(∃dΘ ′2. R′2∧ dΘ

′
2) By H⊕I

Ξ ⊢ (∃dΘ 1. R1∧ dΘ 1)+(∃dΘ 2. R2∧ dΘ 2)≤+ (∃dΘ ′1. R′1∧ dΘ
′
1)+(∃dΘ ′2. R′2∧ dΘ

′
2) ≤++

• Case −→
β ⇝

−→
β0 Ξ ,dΞ 1 ⊢ H

−→
β0; P̂;M (F)I⊜ d

Θ 0;R0

Ξ ⊢ H
−→
β ;∃dΞ 1. R1∧−→ϕ1⊗ P̂;M (F)I⊜ d

Ξ 1,dΘ 0,−→ϕ1;R1×R0

HConstI
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−→
β ⇝

−→
β0 Premise

zip(
−→
β ′)(M ′(F)) ⊆ zip(

−→
β )(M (F)) Given

−→
β ′ ⇝

−→
β ′0 Straightforward

zip(
−→
β ′0)(M

′(F)) ⊆ zip(
−→
β0)(M (F)) ′′

Ξ ,dΞ 1 ⊢ H
−→
β0; P̂;M (F)I⊜ dΘ 0;R0 Subderivation

Ξ ,dΞ 1 ⊢ H
−→
β ′0; P̂;M ′(F)I⊜ dΘ

′
0;R′0 By i.h.

Ξ ,dΞ 1 ⊢∃dΘ 0. R0∧ dΘ 0 ≤+ ∃dΘ ′0. R′0∧ dΘ
′
0
′′

Z Ξ ⊢ H
−→
β ′;∃dΞ 1. R1∧−→ϕ1⊗ P̂;M ′(F)I⊜ dΞ 1,dΘ ′0,−→ϕ1;R1×R′0 By HConstI

Ξ ,dΞ 1,dΘ 0,dΘ 0− dΘ 0 ⊢R0 ≤+ ∃dΘ ′0. R′0∧ dΘ
′
0 By inversion

Ξ ,dΞ 1,dΘ 0,dΘ 0− dΘ 0 ⊢R0 ≤+ [σ ]R′0 By inversion

Ξ ,dΞ 1,dΘ 0,dΘ 0− dΘ 0 ⊢σ : dΘ ′0
′′

Ξ ,dΞ 1,dΘ 0,dΘ 0− dΘ 0 ⊢ [σ ](dΘ
′
0− dΘ

′
0) true

′′
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Ξ ,dΞ 1,dΘ 0,−→ϕ1 ,dΘ 0− dΘ 0 ⊢R0 ≤+ [σ ]R′0 By weakening

Ξ ,dΞ 1,dΘ 0,−→ϕ1 ,dΘ 0− dΘ 0 ⊢σ : dΘ ′0 By weakening

Ξ ,dΞ 1,dΘ 0,−→ϕ1 ,dΘ 0− dΘ 0 ⊢ dΞ 1/
dΞ 1,σ : dΞ 1,dΘ ′0 Straightforward

Ξ ,dΞ 1,dΘ 0,−→ϕ1 ,dΘ 0− dΘ 0 ⊢ [σ ](dΘ
′
0− dΘ

′
0) true By weakening

Ξ ,dΞ 1,dΘ 0,−→ϕ1 ,dΘ 0− dΘ 0 ⊢R1 ≤+ R1 By Lemma C.62

Ξ ,dΞ 1,dΘ 0,−→ϕ1 ,dΘ 0− dΘ 0 ⊢R1 ≤+ [σ ]R1 FV(R1)∩dom(σ) = /0

Ξ ,dΞ 1,dΘ 0,−→ϕ1 ,dΘ 0− dΘ 0 ⊢R1×R0 ≤+ [σ ]R1× [σ ]R0 By ≤+×

Ξ ,dΞ 1,dΘ 0,−→ϕ1 ,dΘ 0− dΘ 0 ⊢ [σ ](dΘ
′
0− dΘ

′
0),
−→
ϕ1 true By Lemma C.29 (Consequence)

Ξ ,dΞ 1,dΘ 0,−→ϕ1 ,dΘ 0− dΘ 0 ⊢ [σ ](dΘ
′
0− dΘ

′
0), [σ ]−→ϕ1 true FV(−→ϕ1)∩dom(σ) = /0

Ξ ,dΞ 1,dΘ 0,−→ϕ1 ,dΘ 0− dΘ 0 ⊢ [σ ](dΘ
′
0− dΘ

′
0,−→ϕ1) true Property of subst.

Ξ ,dΞ 1,dΘ 0,−→ϕ1 ,dΘ 0− dΘ 0 ⊢R1×R0 ≤+ [σ ]R1× [σ ]R0∧ [σ ](dΘ
′
0− dΘ

′
0,−→ϕ1) ≤+∧R

Ξ ,dΞ 1,dΘ 0,−→ϕ1 ,dΘ 0− dΘ 0 ⊢R1×R0 ≤+ ∃dΞ 1,dΘ ′0. R1×R0∧ (dΘ
′
0− dΘ

′
0,−→ϕ1) ≤+∃R

By ≤+∧L and ≤+∃L and exchange,

Ξ ⊢∃dΞ 1,dΘ 0,−→ϕ1 . R1×R0∧ (dΞ 1,dΘ 0,−→ϕ1)≤+ ∃dΞ 1,dΘ ′0. R1×R0∧ (dΘ
′
0− dΘ

′
0,−→ϕ1)

By definitions,

Ξ ⊢∃dΞ 1,dΘ 0,−→ϕ1 . R1×R0∧ (dΞ 1,dΘ 0,−→ϕ1)≤+ ∃dΞ 1,dΘ ′0,−→ϕ1 . R1×R′0∧ (dΞ 1,dΘ ′0,−→ϕ1)
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Let dΘ
′
= dΞ 1,dΘ ′0,−→ϕ1 .

Let R′ = R1×R′0.

Z Ξ ⊢∃dΘ . R∧ dΘ ≤+ ∃dΘ ′. R′∧ dΘ
′ By equalities

• Case −−−→
a d÷ τ =−→a d÷M (F)

Ξ ,
−−−−−−→
a d÷ τ ,a Id ⊢ H−−−→q⇒u; Î;M (F)I⊜ Ξ1,−→ψ1;R1

Ξ ;Ξ1;zip(−→a )(M (F)) ⊢ −→ψ1 ⇝ Ξ̌1;M1(F);−→ψ0

Ξ ;Ξ1;zip(−→a )(M (F)) ⊢ R1⇝ Ξ̌2;M2(F);R0

Ξ̌ = Ξ̌1∪ Ξ̌2 M ′(F) = M1(F)∪M2(F)

dom(Ξ ′)∩dom(Ξ ,
−−−→
a d÷ τ ,Ξ1, Ξ̌) = /0 ρ = Ξ

′/Ξ̌ is a variable renaming

Ξ ⊢ H
−−−−−−→
(a,q)⇒u; Id⊗ Î;M (F)I⊜ Ξ

′,Ξ1, [ρ]−→ψ0;
{

ν : µF
∣∣ [ρ]M ′(F)

}
× [ρ]R0

HIdI
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−−−→
a d÷ τ = −→a d÷M (F) Premise

zip(
−→
β ′)(M ′(F)) ⊆ zip(

−−−−−−→
(a,q)⇒u)(M (F)) Given

zip(
−→
β ′)(M ′(F)) = zip(

−−−−−−−→
(a′,q′)⇒u′)(M ′(F)) Follows from line above

−→
a′ d÷M ′(F) ⊆ −→a d÷M (F) ′′

−−−−→
q′⇒u′ ⊆ −−−→q⇒u ′′

zip(
−→
a′)(M ′(F)) ⊆ zip(−→a )(M (F)) ′′

Ξ ,
−−−−−−→
a d÷ τ ,a Id ⊢ H−−−→q⇒u; Î;M (F)I⊜ Ξ1,−→ψ1;R1 Subderivation

Ξ ,
−−−−−−→
a d÷ τ ,a Id ⊢ H

−−−−→
q′⇒u′; Î;M ′(F)I⊜ dΘ

′
1;R′1 By i.h.

dΘ
′
1 ⊆ Ξ1,−→ψ1

′′

R′1 ⊆ R1
′′

Let
−−−→
a′ d÷ τ ′ =

−→
a′ d÷M ′(F).

Ξ ,
−−−−−−−→
a′ d÷ τ ′,a′ Id ⊢ H

−−−−→
q′⇒u′; Î;M ′(F)I⊜ dΘ

′
1;R′1 By strengthening

dΘ
′
1 = Ξ ′1,

−→
ψ ′1 By inversion

Ξ ′1 ⊆ Ξ1
′′

−→
ψ ′1 ⊆

−→
ψ1

′′

Ξ ,
−−−−−−−→
a′ d÷ τ ′,a′ Id ⊢ H

−−−−→
q′⇒u′; Î;M ′(F)I⊜ Ξ ′1,

−→
ψ ′1;R′1 By equality
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Ξ ;Ξ1;zip(−→a )(M (F)) ⊢−→ψ1 ⇝ Ξ̌1;M1(F);−→ψ0 Premise

Ξ ;Ξ1;zip(−→a )(M (F)) ⊢R1⇝ Ξ̌2;M2(F);R0 Premise

Ξ ;Ξ1;zip(
−→
a′)(M ′(F)) ⊢

−→
ψ ′1 ⇝ Ξ̌ ′1;M ′

1(F);
−→
ψ ′0 Straightforward

Ξ̌ ′1 ⊆ Ξ̌1
′′

M ′
1(F) ⊆M1(F) ′′

−→
ψ ′0 ⊆

−→
ψ0

′′

Ξ ;Ξ1;zip(
−→
a′)(M ′(F)) ⊢R′1⇝ Ξ̌ ′2;M ′

2(F);R′0 Straightforward

Ξ̌ ′2 ⊆ Ξ̌2
′′

M ′
2(F) ⊆M2(F) ′′

R′0 ⊆ R0
′′

Let Ξ̌ ′ = Ξ̌ ′1∪ Ξ̌ ′2.

Let M ′′(F) = M ′
1(F)∪M ′

2(F).

Let ρ ′ = ρ↾
Ξ̌ ′ .

Let Ξ ′′ = Ξ ′↾cod(ρ ′).

Z Ξ ′′,Ξ ′1, [ρ ′]
−→
ψ ′0 ⊆ Ξ ′,Ξ1, [ρ]−→ψ0 Follows from above

Z {ν : µF | [ρ ′]M ′′(F)}× [ρ ′]R′0 ⊆ {ν : µF | [ρ]M ′(F)}× [ρ]R0 Follows from above

Z Ξ ⊢ H
−−−−−−→
(a,q)⇒u; Id⊗ Î;M ′(F)I⊜ Ξ ′′,Ξ ′1, [ρ ′]

−→
ψ ′0;{ν : µF | [ρ ′]M ′′(F)}× [ρ ′]R′0 HIdI

It is straightforward to prove by induction, and by using Lemma C.62 (Subtyping

Reflexive), Lemma C.34 (Ix. Equiv. Reflexive), and Lemma C.27 (Prop. Truth Equiv.
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Relation), that if dΘ
′ ⊆ dΘ and R′ ⊆ R (as defined in the statement) and these are all

well-formed under Ξ then Ξ ⊢ ∃dΘ . R∧ dΘ ≤+ ∃dΘ ′. R′∧ dΘ
′.

• Case −→
t ′ @M (F)⊜−→ϕ

Ξ ⊢ H
−−−−→
()⇒ t ′; I;M (F)I⊜ −→ϕ︸︷︷︸

dΘ

; 1︸︷︷︸
R

HII

−→
t ′ @M (F) ⊜−→ϕ Premise

zip(
−→
β ′)(M ′(F)) ⊆ zip(

−−−−→
()⇒ t ′)(M (F)) Given

zip(
−→
β ′)(M ′(F)) = zip(

−−−−→
()⇒u)(M ′(F)) By inversion

−→u @M ′(F) ⊜
−→
ϕ ′ Straightforward

Z
−→
ϕ ′ ⊆ −→ϕ ′′

Ξ ⊢ H
−−−−→
()⇒u; I;M (F)I⊜

−→
ϕ ′;1 By HII

Z Ξ ⊢ H
−→
β ′; I;M (F)I⊜

−→
ϕ ′;1 By equality

Ξ ,−→ϕ ⊢ 1≤+ 1 By ≤+1

Ξ ,−→ϕ ⊢
−→
ϕ ′ true By Lemma C.29 (Consequence)

(repeated)

Ξ ,−→ϕ ⊢ 1≤+ 1∧
−→
ϕ ′ By ≤+∧R

Ξ ⊢ 1∧−→ϕ ≤+ 1∧
−→
ϕ ′ By ≤+∧L

(and permute)

Let dΘ
′
=
−→
ϕ ′ .

Let R′ = 1.

Z Ξ ⊢∃dΘ . R∧ dΘ ≤+ ∃dΘ ′. R′∧ dΘ
′ By equalities, defs.
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Lemma C.79 (Unroll Superlist).

If Ξ ⊢ H
−→
β ′;G;M ′(F)I⊜ dΘ

′;R′ and zip(
−→
β ′)(M ′(F))⊆ zip(

−→
β )(M (F))

then Ξ ⊢ H
−→
β ;G;M (F)I⊜ dΘ ;R and Ξ ⊢ ∃dΘ . R∧ dΘ ≤+ ∃dΘ ′. R′∧ dΘ

′

and if G = Î then dΘ
′ ⊆ dΘ and R′ ⊆ R where the latter (R′ ⊆ R) is defined by

• 1⊆ 1

• if R′ ⊆ R and M ′
1(F)⊆M1(F)

then {ν : µF |M ′
1(F)}×R′ ⊆ {ν : µF |M1(F)}×R

Proof. By structural induction on Ξ ⊢ H
−→
β ′;G;M ′(F)I ⊜ dΘ

′;R′. Similar to Lemma C.78

(Unroll Sublist).

Lemma C.80 (Subsumption Admissibility). Assume Θ ⊢ Γ ′ ≤+ Γ . Then:

(1) If Θ ;Γ ⊢ h⇒ P

then there exists P′ such that Θ ⊢ P′ ≤+ P and Θ ;Γ ′ ⊢ h⇒ P′.

Moreover, either (a) P′ = P or (b) P′ = R for some R.

(2) If Θ ;Γ ⊢ g⇒↑P

then there exists P′ such that Θ ⊢ ↑P′ ≤− ↑P and Θ ;Γ ′ ⊢ g⇒↑P′.

(3) If Θ ;Γ ⊢ v⇐ P and Θ ⊢ P≤+ P′ then Θ ;Γ ′ ⊢ v⇐ P′.

(4) If Θ ;Γ ⊢ e⇐ N and Θ ⊢ N ≤− N′ then Θ ;Γ ′ ⊢ e⇐ N′.

(5) If Θ ;Γ ; [P] ⊢ {ri⇒ ei}i∈I ⇐ N and Θ ⊢ N ≤− N′ and Θ ⊢ P′ ≤+ P

then Θ ;Γ ′; [P′] ⊢ {ri⇒ ei}i∈I ⇐ N′.

(6) If Θ ;Γ ; [N] ⊢ s⇒↑P and Θ ⊢ N′ ≤− N

then there exists P′ such that Θ ⊢ ↑P′ ≤− ↑P and Θ ;Γ ′; [N′] ⊢ s⇒↑P′.
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Proof. By lexicographic induction, first, on the height of the given typing derivation; sec-

ond, on the structure of the given principal subtyping judgment, that is, Θ ⊢ P≤+ P′ in part

(3), Θ ⊢ N ≤− N′ in part (4), Θ ⊢ P′ ≤+ P in part (5), and Θ ⊢ N′ ≤− N in part (6).

(1) • Case
(x : R) ∈ Γ

Θ ;Γ ⊢ x⇒ R
Decl⇒Var

(x : R) ∈Γ Premise

Θ ⊢Γ ′ ≤+ Γ Given

(x : R′) ∈Γ ′ By inversion

Z Θ ⊢R′ ≤+ R ′′

Z Θ ;Γ ′ ⊢ x⇒ R′ By Decl⇒Var

• Case
Θ ⊢ P type[ξ ] Θ ;Γ ⊢ v⇐ P

Θ ;Γ ⊢ (v : P)⇒ P
Decl⇒ValAnnot

Θ ⊢Γ ′ ≤+ Γ Given

Z Θ ⊢P≤+ P By Lemma C.62 (Subtyping Reflexive)

Θ ;Γ ⊢ v⇐ P Subderivation

Θ ;Γ ′ ⊢ v⇐ P By i.h. (smaller typing height)

Z Θ ;Γ ′ ⊢ (v : P)⇒ P By Decl⇒ValAnnot

(2) • Case
Θ ;Γ ⊢ h⇒↓N Θ ;Γ ; [N] ⊢ s⇒↑P

Θ ;Γ ⊢ h(s)⇒↑P
Decl⇒App
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Θ ⊢Γ ′ ≤+ Γ Given

Θ ;Γ ⊢ h⇒↓N Subderivation

By i.h., either (a) Θ ;Γ ′ ⊢ h⇒↓N; or

(b) there exists R such that Θ ⊢ R≤+ ↓N and Θ ;Γ ′ ⊢ h⇒ R.

Consider subcases (a) and (b):

– Case (a):

Θ ;Γ ; [N] ⊢ s⇒↑P Subderivation

Θ ⊢N ≤− N By Lemma C.62 (Subtyping Reflexive)

Θ ;Γ ′; [N] ⊢ s⇒↑P′ By i.h. (smaller typing height)

Z Θ ⊢ ↑P′ ≤− ↑P ′′

Z Θ ;Γ ′ ⊢ h(s)⇒↑P′ By Decl⇒App

– Case (b):

R = ↓N′ By inversion on ≤+↓

Θ ⊢ ↓N′ ≤+ ↓N Rewrite above

Θ ⊢N′ ≤− N By inversion on ≤+↓

Θ ;Γ ; [N] ⊢ s⇒↑P Subderivation

Θ ;Γ ′; [N′] ⊢ s⇒↑P′ By i.h. (smaller typing height)

Z Θ ⊢ ↑P′ ≤− ↑P ′′

Z Θ ;Γ ′ ⊢ h(s)⇒↑P′ By Decl⇒App
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• Case
Θ ⊢ P type[ξ ] Θ ;Γ ⊢ e⇐↑P

Θ ;Γ ⊢ (e : ↑P)⇒↑P
Decl⇒ExpAnnot

Θ ⊢Γ ′ ≤+ Γ Given

Z Θ ⊢ ↑P≤− ↑P By Lemma C.62 (Subtyping Reflexive)

Θ ;Γ ⊢ e⇐↑P Subderivation

Θ ;Γ ′ ⊢ e⇐↑P By i.h. (smaller typing height)

Z Θ ;Γ ′ ⊢ (e : ↑P)⇒↑P By Decl⇒ExpAnnot

(3) We first consider the ≤+∧R and ≤+∃R cases of the given subtyping, which are inde-

pendent of typing derivation structure. Then we case analyze the typing derivation.

• Case
Θ ⊢ R≤+ R′ Θ ⊢ −→ϕ true

Θ ⊢ R︸︷︷︸
P

≤+ R′∧−→ϕ︸ ︷︷ ︸
P′

≤+∧R

Θ ⊢Γ ′ ≤+ Γ Given

Θ ;Γ ⊢ v⇐ R Given

Θ ⊢P≤+ R′ Subderivation

Θ ;Γ ′ ⊢ v⇐ R′ By i.h. (same typing height; smaller subtyping)

Θ ⊢−→ϕ true Premise

Θ ;Γ ′ ⊢ v⇐ R′∧−→ϕ By Decl⇐∧

• Case
d÷Θ ⊢ σ : dΞ Θ ⊢ R≤+ [σ ]Q′

Θ ⊢ R≤+ ∃dΞ . Q′
≤+∃R
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Θ ⊢Γ ′ ≤+ Γ Given

Θ ;Γ ⊢ v⇐ R Given

Θ ⊢R≤+ [σ ]Q′ Premise

Θ ;Γ ′ ⊢ v⇐ [σ ]Q′ By i.h. (same typing height; smaller subtyping)

d÷Θ ⊢σ : dΞ Premise

Θ ;Γ ′ ⊢ v⇐∃dΞ . Q′ By Decl⇐∃

• Case
(x : R′) ∈ Γ Θ ⊢ R′ ≤+ R

Θ ;Γ ⊢ x⇐ R
Decl⇐Var

Θ ⊢R′ ≤+ R Premise

Θ ⊢R≤+ P′ Given

Θ ⊢R′ ≤+ P′ By Lemma C.63 (Subtyping Transitive)

(x : R′) ∈Γ Premise

Θ ⊢Γ ′ ≤+ Γ Given

(x : R′′) ∈Γ ′ By inversion

Θ ⊢R′′ ≤+ R′ ′′

Θ ⊢R′′ ≤+ P′ By Lemma C.63 (Subtyping Transitive)

Z Θ ;Γ ′ ⊢ x⇐ P′ By Decl⇐Var

• Case
d÷Θ ⊢ σ : dΞ Θ ;Γ ⊢ v⇐ [σ ]Q

Θ ;Γ ⊢ v⇐ (∃dΞ . Q)

Decl⇐∃
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– Case
Θ ,dΞ ⊢ Q≤+ P′

Θ ⊢ ∃dΞ . Q≤+ P′
≤+∃L

d÷Θ ⊢σ : dΞ Premise

Θ ,dΞ ⊢Q≤+ P′ Subderivation

Θ ⊢ [σ ]Q≤+ [σ ]P′ By Lemma C.59 (Sub. Syn. Subs)

Θ ⊢ [σ ]Q≤+ P′ FV(P′)∩dom(dΞ) = /0

Θ ;Γ ⊢ v⇐ [σ ]Q Subderivation

Θ ;Γ ′ ⊢ v⇐ P′ By i.h. (smaller typing height)

• Case
Θ ⊢ −→ϕ true Θ ;Γ ⊢ v⇐ R

Θ ;Γ ⊢ v⇐ R∧−→ϕ
Decl⇐∧

– Case
Θ ,−→ϕ ⊢ R≤+ P′

Θ ⊢ R∧−→ϕ ≤+ P′
≤+∧L

Θ ;Γ ⊢ v⇐ R Subderivation

Θ ,−→ϕ ;Γ ⊢ v⇐ R By Lemma C.41 (Ix.-Level Weakening)

(same height) ′′

Θ ,−→ϕ ⊢R≤+ P′ Subderivation

Θ ,−→ϕ ;Γ ′ ⊢ v⇐ P′ By i.h. (smaller typing height)

Θ ⊢−→ϕ true Premise

Θ ;Γ ′ ⊢ v⇐ P′ By repeated Lemma C.67 (Typing Consequence)



C.3. SUBSTITUTION LEMMA AND SUBSUMPTION ADMISSIBILITY 453

• Case
∄x. v′ =

−−−→iinjki

(−−−−→j⟨_ j,−⟩ x
)

M (F)⇝−→α ;−→τ
d÷Θ ⊢ H−→α ;F ;M (F)I⊜ d

Θ ;R Θ ;Γ ⊢ v′⇐∃dΘ . (R∧ d
Θ)

Θ ;Γ ⊢ into(v′)⇐{ν : µF |M (F)}
Decl⇐µ

– Case
Θ ⊢M (F)≥M ′(F ′)

Θ ⊢ {ν : µF |M (F)} ≤+
{

ν : µF ′
∣∣ M ′(F ′)

} ≤+µ

From Θ ⊢M (F)≥M ′(F ′)

we extract the M0(F)⊆M (F) such that Θ ⊢M0(F)≥≡M ′(F ′).

We extract M0(F)⇝−→α0;−→τ0 and M ′(F ′)⇝
−→
α ′;−→τ0

using the side judgment for Decl⇐µ (defined where the rule is).

d÷Θ ⊢ H−→α ;F ;M (F)I⊜ dΘ ;R Premise

d÷Θ ⊢ H−→α0;F ;M0(F)I⊜ dΘ 0;R0 By Lemma C.78 (Unroll Sublist)

Θ ⊢∃dΘ . R∧ dΘ ≤+ ∃dΘ 0. R0∧ dΘ 0
′′

· ⊢−→α0;F ≤−→
τ0

−→
α ′;F ′ By inversion

d÷Θ ⊢ H
−→
α ′;F ′;M ′(F ′)I⊜ dΘ

′;R′ By Lemma C.75 (Unroll to Supertype)

Θ ⊢∃dΘ 0. R0∧ dΘ 0 ≤+ ∃dΘ ′. R′∧ dΘ
′ ′′

Θ ⊢∃dΘ . R∧ dΘ ≤+ ∃dΘ ′. R′∧ dΘ
′ By Lemma C.63 (Subtyping Transitive)

Θ ;Γ ⊢ v′⇐∃dΘ . R∧ dΘ Subderivation

Θ ;Γ ′ ⊢ v′⇐∃dΘ ′. R′∧ dΘ
′ By i.h. (smaller typing hgt.)

Θ ;Γ ′ ⊢ into(v′)⇐{ν : µF ′ |M ′(F ′)} By Decl⇐µ
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• Case
Θ ;Γ ⊢ e⇐ N

Θ ;Γ ⊢ {e}⇐ ↓N
Decl⇐↓

– Case
Θ ⊢ N ≤− N′

Θ ⊢ ↓N ≤+ ↓N′
≤+↓

Θ ⊢Γ ′ ≤+ Γ Given

Θ ⊢N ≤− N′ Premise

Θ ;Γ ⊢ e⇐ N Subderivation

Θ ;Γ ′ ⊢ e⇐ N′ By i.h. (smaller typing hgt.)

Θ ;Γ ′ ⊢{e}⇐ ↓N′ By Decl⇐↓

• Case
Θ ;Γ ⊢ v′⇐ Pk

Θ ;Γ ⊢ injk v′⇐ P1 +P2

Decl⇐+k

– Case
Θ ⊢ P1 ≤+ P′1 Θ ⊢ P2 ≤+ P′2

Θ ⊢ P1 +P2 ≤+ P′1 +P′2

≤++

Θ ⊢Γ ′ ≤+ Γ Given

Θ ⊢Pk ≤+ P′k Premise

Θ ;Γ ⊢ v′⇐ Pk Subderivation

Θ ;Γ ′ ⊢ v′⇐ P′k By i.h. (smaller typing hgt.)

Θ ;Γ ′ ⊢ injk v′⇐ P′1 +P′2 By Decl⇐+k
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• Case Decl⇐×: Straightforward. Use i.h. (smaller typing height) for each

corresponding value typing and subtyping subderivation/premise, then reapply

Decl⇐×.

• Case Decl⇐1:

P′ = 1 By inversion on ≤+1

Θ ;Γ ′ ⊢ ⟨⟩ ⇐ 1 By Decl⇐1

(4) We first consider the cases of rule concluding the subtyping derivation that is in-

dependent of the program typing derivation, namely, ≤–∀R and ≤–⊃R. We then

analyze the expression typing derivation; each such case has exactly one correspond-

ing subcase for the concluding rule of the subtyping derivation, because the ≤–∀R

and ≤–⊃R subcases are already independently covered.

• Case
Θ ,−→ϕ ′ ⊢ N ≤− L′

Θ ⊢ N ≤− −→ϕ ′ ⊃ L′
≤–⊃R

Θ ;Γ ⊢ e⇐ N Given

Θ ,−→ϕ ′;Γ ⊢ e⇐ N By Lemma C.41 (Ix.-Level Weakening)

(same height) ′′

Θ ,−→ϕ ′ ⊢N ≤− L′ Subderivation

Θ ,−→ϕ ′;Γ ′ ⊢ e⇐ L′ By i.h. (same typing height; smaller subtyping)

Θ ;Γ ′ ⊢ e⇐−→ϕ ′ ⊃ L′ By Decl⇐⊃

• Case ≤–∀R: Similar to ≤–⊃R case.

• Case Decl⇐Unreachable: By Decl⇐Unreachable.
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We have now covered all the cases where N′ ̸= L′ (the two right rules for the

given subtyping). For the remaining cases we may assume N′ = L′.

• Case
Θ ;Γ ⊢ g⇒↑(∃dΞ . R∧−→ψ ) Θ ,dΞ ,−→ψ ;Γ ,x : R ⊢ e′⇐ L

D :: Θ ;Γ ⊢ let x=g; e′⇐ L
Decl⇐let

Θ ⊢Γ ′ ≤+ Γ Given

Θ ;Γ ⊢ g⇒↑(∃dΞ . R∧−→ψ ) Subderivation

Θ ;Γ ′ ⊢ g⇒↑(∃dΞ
′. R′∧−→ψ ′) By i.h. (smaller typing height)

Θ ⊢ ↑(∃dΞ
′. R′∧−→ψ ′)≤− ↑(∃dΞ . R∧−→ψ ) ′′

Θ ⊢∃dΞ
′. R′∧−→ψ ′ ≤+ ∃dΞ . R∧−→ψ By inversion

Θ ,dΞ
′,−→ψ ′ ⊢R′ ≤+ ∃dΞ . R∧−→ψ By inversion

Θ ,dΞ
′,−→ψ ′ ⊢R′ ≤+ [

−→t /dΞ ]R By inversion

d÷Θ ,dΞ
′ ⊢−→t /dΞ : dΞ ′′

Θ ,dΞ
′,−→ψ ′ ⊢ [−→t /dΞ ]−→ψ true ′′

Let σ =
−→t /dΞ .

Θ ,dΞ
′,−→ψ ′ ⊢σ : dΞ By weakening

Θ ,dΞ
′,−→ψ ′ ⊢Γ ′ ≤+ Γ By weakening

Θ ,dΞ
′,−→ψ ′ ⊢Γ ′,x : R′ ≤+ Γ ,x : [σ ]R Add entry
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D2 :: Θ ,dΞ ,−→ψ ;Γ ,x : R ⊢ e′⇐ L Subderivation

D ′2 :: Θ ,dΞ
′,−→ψ ′; [σ ](Γ ,x : R′) ⊢ [σ ]e′⇐ [σ ]L By cor. of Lemma C.68

hgt(D ′2) ≤ hgt(D2)
′′

< hgt(D) By def. of hgt(−)

D ′2 :: Θ ,dΞ
′,−→ψ ′; [σ ]Γ ,x : [σ ]R′ ⊢ [σ ]e′⇐ [σ ]L By def. of [−]−

D ′2 :: Θ ,dΞ
′,−→ψ ′;Γ ,x : [σ ]R′ ⊢ e′⇐ L dom(Θ)∩dom(dΞ) = /0

Θ ⊢L≤− N′ Given

Θ ⊢L≤− L′ By equality

Θ ,dΞ
′,−→ψ ′ ⊢L≤− L′ By weakening

Θ ,dΞ
′,−→ψ ′;Γ ′,x : R′ ⊢ e′⇐ L′ By i.h. (smaller typing height)

Θ ;Γ ′ ⊢ let x=g; e′⇐ L′ By Decl⇐let

• Case Decl⇐match: Straightforward (use i.h. at smaller typing height).

• Case
Θ ⊢ ∀a d÷N,dΞ . M ≤− L

Θ ,a÷N;Γ ,x : ↓∀a′ d÷N,dΞ . a′ < a⊃ [a′/a]M ⊢ e0⇐∀dΞ . M

Θ ;Γ ⊢ rec x : (∀a d÷N,dΞ . M). e0⇐ L
Decl⇐rec

Θ ⊢Γ ′ ≤+ Γ Given

Θ ,a÷N ⊢Γ ′ ≤+ Γ By weakening

By Lemma C.62 (Subtyping Reflexive),

Θ ,a÷N ⊢ ↓∀a′ d÷N,dΞ . a′ < a⊃ [a′/a]M ≤+ ↓∀a′ d÷N,dΞ . a′ < a⊃ [a′/a]M
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Add entry:

Θ ,a÷N ⊢Γ ′,x : ↓∀a′ d÷N,dΞ . a′ < a⊃ [a′/a]M

≤+ Γ ,x : ↓∀a′ d÷N,dΞ . a′ < a⊃ [a′/a]M

Θ ,a÷N ⊢∀dΞ . M ≤− ∀dΞ . M By Lemma C.62 (Subtyping Reflexive)

Θ ,a÷N;Γ ,x : ↓∀a′ d÷N,dΞ . a′ < a⊃ [a′/a]M ⊢ e0⇐∀dΞ . M Subderivation

Θ ,a÷N;Γ ′,x : ↓∀a′ d÷N,dΞ . a′ < a⊃ [a′/a]M ⊢ e0⇐∀dΞ . M By i.h.

(smaller typing hgt.)

Θ ⊢∀a d÷N,dΞ . M ≤− L Premise

Θ ⊢L≤− N′ Given

Θ ⊢∀a d÷N,dΞ . M ≤− N′ By Lemma C.63 (Subtyping Transitive)

Θ ;Γ ′ ⊢ rec x : (∀a d÷N,dΞ . M). e0⇐ L′ By Decl⇐rec

• Case
Θ ;Γ ,x : R ⊢ e0⇐ L

Θ ;Γ ⊢ λx.e0⇐ R→ L
Decl⇐λ

– Case
Θ ⊢ R′ ≤+ R Θ ⊢ L≤− L′

Θ ⊢ R→ L≤− R′→ L′
≤–→
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Θ ⊢R′ ≤+ R Premise

Θ ⊢Γ ′ ≤+ Γ Given

Θ ⊢Γ ′,x : R′ ≤+ Γ ,x : R Add entry

Θ ⊢L≤− L′ Premise

Θ ;Γ ,x : R ⊢ e0⇐ L Subderivation

Θ ;Γ ′,x : R′ ⊢ e0⇐ L′ By i.h.

(smaller typing height)

Θ ;Γ ′ ⊢ λx.e0⇐ R′→ L′ By Decl⇐λ

• Case
Θ ,dΞ ;Γ ⊢ e⇐M

Θ ;Γ ⊢ e⇐∀dΞ . M
Decl⇐∀

Θ ⊢∀dΞ . M ≤− L′ Given

Θ ⊢ [−→t /dΞ ]M ≤− L′ By inversion

d÷Θ ⊢−→t /dΞ : dΞ ′′

Θ ⊢−→t /dΞ : dΞ By weakening

Θ ,dΞ ;Γ ⊢ e⇐M Subderivation

Θ ; [−→t /dΞ ]Γ ⊢ [−→t /dΞ ]e⇐ [
−→t /dΞ ]M By cor. of Lemma C.68

hgt. does not increase ′′

Θ ;Γ ⊢ e⇐ [
−→t /dΞ ]M dom(Θ)∩dom(dΞ) = /0

Θ ⊢Γ ′ ≤+ Γ Given

Θ ;Γ ′ ⊢ e⇐ L′ By i.h. (smaller typing height)
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• Case
Θ ,−→ϕ ;Γ ⊢ e⇐ L

Θ ;Γ ⊢ e⇐−→ϕ ⊃ L
Decl⇐⊃

Θ ⊢−→ϕ ⊃ L≤− L′ Given

Θ ⊢L≤− L′ By inversion

Θ ⊢−→ϕ true ′′

Θ ,−→ϕ ;Γ ⊢ e⇐ L Subderivation

Θ ,−→ϕ ⊢L≤− L′ By weakening

Θ ,−→ϕ ;Γ ⊢ e⇐ L′ By i.h. (smaller typing height)

Θ ;Γ ⊢ e⇐ L′ By Lemma C.67 (Typing Consequence)

• Case
Θ ;Γ ⊢ v⇐ P

Θ ;Γ ⊢ returnv⇐↑P
Decl⇐↑

– Case
Θ ⊢ P≤+ P′

Θ ⊢ ↑P≤− ↑P′
≤–↑

Θ ⊢Γ ′ ≤+ Γ Given

Θ ⊢P≤+ P′ Premise

Θ ;Γ ⊢ v⇐ P Subderivation

Θ ;Γ ′ ⊢ v⇐ P′ By i.h. (smaller typing height)

Θ ;Γ ′ ⊢ returnv⇐↑P′ By Decl⇐↑

(5) We first consider cases for the concluding rule of the positive subtyping derivation

that is independent of the structure of P, i.e. ≤+∧L and ≤+∃L. Then we consider
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cases for the final rule of the typing derivation; each such case has exactly one cor-

responding subcase for the final rule of the subtyping derivation that’s determined

by the structure of P for the given case (the ≤+∧L and ≤+∃L cases already being

covered).

• Case
Θ ,−→ϕ ⊢ R≤+ P

Θ ⊢ R∧−→ϕ ≤+ P
≤+∧L

Θ ,−→ϕ ⊢R≤+ P Subderivation

Θ ;Γ ; [P] ⊢ {ri⇒ ei}i∈I ⇐ N Given

Θ ,−→ϕ ;Γ ; [P] ⊢ {ri⇒ ei}i∈I ⇐ N By Lemma C.41 (Ix.-Level Weakening)

(same height) ′′

Θ ,−→ϕ ;Γ ′; [R] ⊢ {ri⇒ ei}i∈I ⇐ N′ By i.h. (same typing height; smaller subtyping)

Θ ;Γ ′; [R∧−→ϕ ] ⊢ {ri⇒ ei}i∈I ⇐ N′ By DeclMatch∧

• Case ≤+∃L: Similar to ≤+∧L case.

• Case
Θ ,dΞ ;Γ ; [Q] ⊢ {ri⇒ ei}i∈I ⇐ N

Θ ;Γ ; [∃dΞ . Q] ⊢ {ri⇒ ei}i∈I ⇐ N
DeclMatch∃

– Case
Θ ⊢ R≤+ [

−→t /dΞ ]Q d÷Θ ⊢ −→t /dΞ : dΞ

Θ ⊢ R≤+ ∃dΞ . Q
≤+∃R
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Θ ,dΞ ;Γ ; [Q] ⊢ {ri⇒ ei}i∈I ⇐ N Subderivation

d÷Θ ⊢−→t /dΞ : dΞ Premise

Θ ⊢−→t /dΞ : dΞ By weakening

Θ ; [−→t /dΞ ]Γ ; [[−→t /dΞ ]Q] ⊢ [−→t /dΞ ]{ri⇒ ei}i∈I ⇐ [
−→t /dΞ ]N By Lemma C.68 cor.

(equal or lesser height) ′′

Θ ;Γ ; [[−→t /dΞ ]Q] ⊢ {ri⇒ ei}i∈I ⇐ N dom(Θ)∩dom(dΞ) = /0

Θ ⊢Γ ′ ≤+ Γ Given

Θ ⊢N ≤− N′ Given

Θ ⊢R≤+ [
−→t /dΞ ]Q Subderivation

Θ ;Γ ′; [R] ⊢ {ri⇒ ei}i∈I ⇐ N′ By i.h. (smaller typing hgt.)

• Case
Θ ,−→ϕ ;Γ ; [R] ⊢ {ri⇒ ei}i∈I ⇐ N

Θ ;Γ ; [R∧−→ϕ ] ⊢ {ri⇒ ei}i∈I ⇐ N
DeclMatch∧

– Case
Θ ⊢ R≤+ R′ Θ ⊢ −→ϕ true

Θ ⊢ R≤+ R′∧−→ϕ
≤+∧R

Similar to ≤+∃R subcase of DeclMatch∃ case, but using Lemma C.67

(Typing Consequence) rather than Lemma C.68 (Index-Level Substitution).

• Case
Θ ;Γ ⊢ e⇐ N

Θ ;Γ ; [1] ⊢ {⟨⟩⇒ e}⇐ N
DeclMatch1
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– Case

Θ ⊢ 1≤+ 1
≤+1

Θ ⊢Γ ′ ≤+ Γ Given

Θ ⊢N ≤− N′ Given

Θ ;Γ ⊢ e⇐ N Subderivation

Θ ;Γ ′ ⊢ e⇐ N′ By i.h. (smaller typing hgt.)

Θ ;Γ ′; [1] ⊢{⟨⟩⇒ e}⇐ N′ By DeclMatch1

• Case
Θ ;Γ ,x1 : R1,x2 : R2 ⊢ e0⇐ N

Θ ;Γ ; [R1×R2] ⊢ {⟨x1,x2⟩⇒ e0}⇐ N
DeclMatch×

– Case
Θ ⊢ R′1 ≤+ R1 Θ ⊢ R′2 ≤+ R2

Θ ⊢ R′1×R′2 ≤+ R1×R2

≤+×

Θ ⊢Γ ′ ≤+ Γ Given

Θ ⊢R′1 ≤+ R1 Subderivation

Θ ⊢R′2 ≤+ R2 Subderivation

Θ ⊢Γ ′,x1 : R′1,x2 : R′2 ≤+ Γ ,x1 : R1,x2 : R2 Add entries

Θ ;Γ ,x1 : R1,x2 : R2 ⊢ e0⇐ N Subderivation

Θ ;Γ ′,x1 : R′1,x2 : R′2 ⊢ e0⇐ N′ By i.h. (smaller typing height)

Θ ;Γ ′; [R′1×R′2] ⊢{⟨x1,x2⟩⇒ e0}⇐ N′ By DeclMatch×

• Case DeclMatch+: Similar to case DeclMatch× case.
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• Case

Θ ;Γ ; [0] ⊢ {}⇐ N
DeclMatch0

– Case

Θ ⊢ 0≤+ 0
≤+0

Θ ;Γ ′; [0] ⊢{}⇐ N′ By DeclMatch0

• Case
M (F)⇝−→α ;−→τ

d÷Θ ⊢ H−→α ;F ;M (F)I⊜ d
Θ ;R

Θ ,dΘ ;Γ ,x : R ⊢ e⇐ N

Θ ;Γ ; [{ν : µF |M (F)}] ⊢ {into(x)⇒ e}⇐ N
DeclMatchµ

– Case
Θ ⊢M ′(F ′)≥M (F)

Θ ⊢
{

ν : µF ′
∣∣ M ′(F ′)

}
≤+ {ν : µF |M (F)}

≤+µ

From Θ ⊢M ′(F ′)≥M (F)

we extract the M ′
0(F
′)⊆M ′(F)′ such that Θ ⊢M ′

0(F
′)≥≡M (F).

We extract M ′
0(F
′)⇝

−→
α ′0;
−→
τ ′0

using the side judgment for Decl⇐µ (defined where the rule is).
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d÷Θ ⊢ H−→α ;F ;M (F)I⊜ dΘ ;R Premise

· ⊢
−→
α ′0;F ′ ≤−→

τ

−→
α ;F By inversion

d÷Θ ⊢ H
−→
α ′0;F ′;M ′

0(F
′)I⊜ dΘ

′
0;R′0 By Lemma C.77 (Unroll to Subtype)

Θ ⊢∃dΘ ′0. R′0∧ dΘ
′
0 ≤ ∃dΘ . R∧ dΘ ′′

d÷Θ ⊢ H
−→
α ′;F ′;M ′(F ′)I⊜ dΘ

′;R′ By Lemma C.79 (Unroll Superlist)

Θ ⊢∃dΘ ′. R′∧ dΘ
′ ≤ ∃dΘ ′0. R′0∧ dΘ

′
0
′′

Θ ⊢∃dΘ ′. R′∧ dΘ
′ ≤ ∃dΘ . R∧ dΘ By Lemma C.63 (Subtyping Transitive)
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Let −→ϕ = dΘ −dom(dΘ).

Let −→ϕ ′ = dΘ
′−dom(dΘ

′
).

Θ ,dΘ ′,−→ϕ ′ ⊢R′ ≤ ∃dΘ . R∧ dΘ By inversion

Θ ,dΘ ′,−→ϕ ′ ⊢R′ ≤ [
−→t /dΘ ]R By inversion

d÷Θ ,dΘ ′ ⊢−→t /dΘ : dΘ ′′

Θ ,dΘ ′,−→ϕ ′ ⊢ [−→t /dΘ ]−→ϕ true ′′

Θ ⊢Γ ′ ≤+ Γ Given

Θ ,dΘ ′,−→ϕ ′ ⊢Γ ′ ≤+ Γ By weakening

Θ ,dΘ ′,−→ϕ ′ ⊢Γ ′,x : R′ ≤+ Γ ,x : [−→t /dΘ ]R Add entry

Let σ =
−→t /dΘ .

Θ ,dΘ ′,−→ϕ ′ ⊢−→t : dΘ By weakening

Θ ,dΘ ′,−→ϕ ′ ⊢σ : dΘ ,−→ϕ By repeated SubstProp

dΘ = dΘ ,−→ϕ By inspection

of unrolling rules

Θ ,dΘ ′,−→ϕ ′ ⊢σ : dΘ By equality

Θ ,dΘ ;Γ ,x : R ⊢ e⇐ N Subderivation

Θ ,dΘ ′,−→ϕ ′;Γ ,x : [σ ]R ⊢ e⇐ N By cor. of Lemma C.68

(lesser or equal hgt.) ′′

Θ ,dΘ ′,−→ϕ ′;Γ ′,x : R′ ⊢ e⇐ N′ By i.h.

(smaller typing height)

Θ ,dΘ ′;Γ ′,x : R′ ⊢ e⇐ N′ By inspection

of unrolling rules
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Θ ;Γ ′; [{ν : µF ′ |M ′(F ′)}] ⊢{into(x)⇒ e}⇐ N′ By DeclMatchµ

(6) We case analyze the rule concluding the subtyping derivation.

• Case
Θ ⊢ P′ ≤+ P

Θ ⊢ ↑P′ ≤− ↑P
≤–↑

– Case

Θ ;Γ ; [↑P] ⊢ · ⇒ ↑P
DeclSpineNil

Z Θ ⊢ ↑P′ ≤− ↑P Given

Θ ⊢ ↑P′ type[ξ ] Presupposed derivation

Z Θ ;Γ ′; [↑P′] ⊢ · ⇒ ↑P′ By DeclSpineNil

• Case
Θ ⊢ L′ ≤− N Θ ⊢ −→ϕ ′ true

Θ ⊢ −→ϕ ′ ⊃ L′ ≤− N
≤–⊃L

Θ ;Γ ; [N] ⊢ s⇒↑P Given

Θ ⊢Γ ′ ≤+ Γ Given

Θ ⊢L′ ≤− N Subderivation

Θ ;Γ ′; [L′] ⊢ s⇒↑P′ By i.h. (same typing height; smaller subtyping)

Z Θ ⊢ ↑P′ ≤− ↑P ′′

Θ ⊢−→ϕ ′ true Premise

Z Θ ;Γ ′; [−→ϕ ′ ⊃ L′] ⊢ s⇒↑P′ By DeclSpine⊃
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• Case ≤–∀L: Similar to ≤–⊃L case.

• Case
Θ ,−→ϕ ⊢ N′ ≤− L

Θ ⊢ N′ ≤− −→ϕ ⊃ L
≤–⊃R

– Case
Θ ⊢ −→ϕ true Θ ;Γ ; [L] ⊢ s⇒↑P

Θ ;Γ ; [−→ϕ ⊃ L] ⊢ s⇒↑P
DeclSpine⊃

Θ ,−→ϕ ⊢N′ ≤− L Subderivation

Θ ⊢Γ ′ ≤+ Γ Given

Θ ,−→ϕ ⊢Γ ′ ≤+ Γ By weakening

Θ ;Γ ; [L] ⊢ s⇒↑P Subderivation

Θ ,−→ϕ ;Γ ; [L] ⊢ s⇒↑P By Lemma C.41 (Ix.-Level Weakening)

(same height) ′′

Θ ,−→ϕ ;Γ ′; [N′] ⊢ s⇒↑P′ By i.h. (smaller typing hgt.)

Θ ,−→ϕ ⊢ ↑P′ ≤− ↑P ′′

Θ ⊢−→ϕ true Premise

Θ ;Γ ′; [N′] ⊢ s⇒↑P′ By Lemma C.67 (Typing Consequence)

Θ ⊢ ↑P′ ≤− ↑P By Lemma C.61 (Subtyping Consequence)

• Case
Θ ,dΞ ⊢ N′ ≤− M

Θ ⊢ N′ ≤− ∀dΞ . M
≤–∀R
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– Case
d÷Θ ⊢ −→t /dΞ : dΞ Θ ;Γ ; [[−→t /dΞ ]M] ⊢ s⇒↑P

Θ ;Γ ; [∀dΞ . M] ⊢ s⇒↑P
DeclSpine∀

Similar to DeclSpine⊃ subcase of ≤–⊃R case, but using Lemma C.68

(Index-Level Substitution) rather than the consequence lemmas.

• Case
Θ ⊢ R≤+ R′ Θ ⊢ L′ ≤− L

Θ ⊢ R′→ L′ ≤− R→ L
≤–→

– Case
Θ ;Γ ⊢ v⇐ R Θ ;Γ ; [L] ⊢ s0⇒↑P

Θ ;Γ ; [R→ L] ⊢ v,s0⇒↑P
DeclSpineApp

Θ ⊢Γ ′ ≤+ Γ Given

Θ ;Γ ⊢ v⇐ R Subderivation

Θ ⊢R≤+ R′ Premise

Θ ;Γ ′ ⊢ v⇐ R′ By i.h. (smaller typing height)

Θ ;Γ ; [L] ⊢ s0⇒↑P Subderivation

Θ ⊢L′ ≤− L Premise

Θ ;Γ ′; [L′] ⊢ s0⇒↑P′ By i.h. (smaller typing height)

Θ ⊢ ↑P′ ≤− ↑P ′′

Θ ;Γ ′; [R′→ L′] ⊢ v,s0⇒↑P′ By DeclSpineApp

Lemma C.81 (Id. Subst.).

If Θ0;Γ0 ⊢ σ : Θ ;Γ and O is the subject of derivation D under Θ ;Γ
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then for any Θ ′ and Γ ′ we have [σ ]O = [σ − idΘ ′;Γ ′]O . In particular, [Θ ;Γ /Θ ;Γ ]O = O .

Proof. By structural induction on D . Straightforward.

Lemma C.82 (Syntactic Substitution). Assume Θ0;Γ0 ⊢ σ : Θ ;Γ .

(1) If Θ ;Γ ⊢ h⇒ P

then there exists P′ such that Θ0 ⊢ P′ ≤+ [⌊σ⌋]P and Θ0;Γ0 ⊢ [σ ]hh⇒ P′.

Moreover, either (a) P′ = [⌊σ⌋]P or (b) P′ = R for some R.

(2) If Θ ;Γ ⊢ g⇒↑P

then there exists P′ such that Θ0 ⊢ ↑P′ ≤− [⌊σ⌋]↑P and Θ0;Γ0 ⊢ [σ ]g⇒↑P′.

(3) If Θ ;Γ ⊢ v⇐ P then Θ0;Γ0 ⊢ [σ ]v⇐ [⌊σ⌋]P.

(4) If Θ ;Γ ⊢ e⇐ N then Θ0;Γ0 ⊢ [σ ]e⇐ [⌊σ⌋]N.

(5) If Θ ;Γ ; [P] ⊢ {ri⇒ ei}i∈I ⇐ N

then Θ0;Γ0; [[⌊σ⌋]P] ⊢ [σ ]{ri⇒ ei}i∈I ⇐ [⌊σ⌋]N.

(6) If Θ ;Γ ; [N] ⊢ s⇒↑P then Θ0;Γ0; [[⌊σ⌋]N] ⊢ [σ ]s⇒ [⌊σ⌋]↑P.

Proof. By mutual induction on the structure of the given program typing derivation.

(1) • Case
(x : R) ∈ Γ

Θ ;Γ ⊢ x⇒ R
Decl⇒Var
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(x : R) ∈Γ By inversion on Decl⇒Var

Θ0;Γ0 ⊢σ : Θ ;Γ Given

Θ = Θ1,Θ2 By inversion

Γ = Γ1,x : R,Γ2
′′

σ = σ1,v1 : [⌊σ1⌋]R/x,σ2
′′

Θ0;Γ0 ⊢σ1 : Θ1;Γ1
′′

Θ0;Γ0 ⊢σ1,v1 : [⌊σ1⌋]R/x : Θ1;Γ1,x : R ′′

Θ0;Γ0 ⊢ v1⇐ [⌊σ1⌋]R ′′

Θ1 ⊢Γ1,x : R ctx Presupposed derivation

Θ1 ⊢R type[_] By inversion

FV(R) ⊆ dom(Θ1) Straightforward

(Θ1,Θ2) ctx Presupposed derivation

dom(Θ1)∩dom(Θ2) = /0 By inversion

FV(R)∩dom(Θ2) = /0 Follows from above

[⌊σ1⌋]R = [⌊σ⌋]R Because FV(R)∩dom(Θ2) = /0

– Case v1 = x:



C.3. SUBSTITUTION LEMMA AND SUBSUMPTION ADMISSIBILITY 472

Θ0;Γ0 ⊢ x⇐ [σ1]R Rewrite above

Θ0 ⊢R′ ≤ [⌊σ1⌋]R By inversion on Decl⇐Var

(x : R′) ∈Γ0
′′

Z Θ0 ⊢R′ ≤ [⌊σ⌋]R By equality

Θ0 ⊢Γ0 ctx Presupposed derivation

Θ0;Γ0 ⊢ x⇒ R′ By Decl⇒Var

Θ0;Γ0 ⊢ v1⇒ R′ By equality

Z Θ0;Γ0 ⊢ [σ ]hx⇒ R′ By def. of [−]h−

– Case v1 ̸= x:

Θ0;Γ0 ⊢ v1⇐ [⌊σ1⌋]R Above

Θ0;Γ0 ⊢ (v1 : [⌊σ1⌋]R)⇒ [⌊σ1⌋]R By Decl⇒ValAnnot

Θ0;Γ0 ⊢ [σ ]hx⇒ [⌊σ1⌋]R By def. of [−]h− (v1 ̸= x)

Θ0;Γ0 ⊢ [σ ]hx⇒ [⌊σ⌋]R By equality

• Case
Θ ⊢ P type[ξ ] Θ ;Γ ⊢ v⇐ P

Θ ;Γ ⊢ (v : P)⇒ P
Decl⇒ValAnnot

Θ0;Γ0 ⊢ [σ ]v⇐ [⌊σ⌋]P By i.h.

Θ0;Γ0 ⊢ ([σ ]v : [⌊σ⌋]P)⇒ [⌊σ⌋]P By Decl⇒ValAnnot

Θ0 ⊢ [⌊σ⌋]P type[_] Presupposed derivation

Z Θ0;Γ0 ⊢ [σ ](v : P)⇒ [⌊σ⌋]P By def. of [−]−

Z Θ0 ⊢ [⌊σ⌋]P≤ [⌊σ⌋]P By Lemma C.62 (Subtyping Reflexive)
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(2) • Case
Θ ;Γ ⊢ h⇒↓N Θ ;Γ ; [N] ⊢ s⇒↑P

Θ ;Γ ⊢ h(s)⇒↑P
Decl⇒App

Θ0;Γ0 ⊢σ : Θ ;Γ Given

Θ ;Γ ; [N] ⊢ s⇒↑P Subderivation

Θ0;Γ0; [[⌊σ⌋]N] ⊢ [σ ]s⇒ [⌊σ⌋]↑P By i.h.

Θ0;Γ0; [[⌊σ⌋]N] ⊢ [σ ]s⇒↑ [⌊σ⌋]P By def. of subst.

Θ ;Γ ⊢ h⇒↓N Subderivation

By i.h., either (a) Θ0;Γ0 ⊢ [σ ]hh⇒ [⌊σ⌋]↓N; or (b) there exists R

such that Θ0 ⊢ R≤+ [⌊σ⌋]↓N and Θ0;Γ0 ⊢ [σ ]h⇒ R.

Consider subcases (a) and (b):

– Case (a):

Θ0;Γ0 ⊢ [σ ]hh⇒↓ [⌊σ⌋]N By def. of subst.

Θ0;Γ0 ⊢ ([σ ]hh)([σ ]s)⇒↑ [⌊σ⌋]P By Decl⇒App

Z Θ0;Γ0 ⊢ [σ ](h(s))⇒ [⌊σ⌋]↑P By def. of subst.

Z Θ0 ⊢ [⌊σ⌋]↑P≤ [⌊σ⌋]↑P By Lemma C.62 (Subtyping Reflexive)

– Case (b):
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Θ0 ⊢R≤+ ↓ [⌊σ⌋]N By def. of subst.

R = ↓N′ By inversion

Θ0 ⊢N′ ≤+ [⌊σ⌋]N ′′

Θ0 ⊢Γ0 ≤+ Γ0 By repeated Lemma C.62

Θ0;Γ0; [N′] ⊢ [σ ]s⇒↑P′ By Lemma C.80

Z Θ0 ⊢ ↑P′ ≤+ ↑ [⌊σ⌋]P ′′

Z Θ0;Γ0 ⊢ [σ ](h(s))⇒↑P′ By Decl⇒App and def. of subst.

• Case
Θ ⊢ P type[ξ ] Θ ;Γ ⊢ e⇐↑P

Θ ;Γ ⊢ (e : ↑P)⇒↑P
Decl⇒ExpAnnot

Θ0;Γ0 ⊢σ : Θ ;Γ Given

Θ ;Γ ⊢ e⇐↑P Subderivation

Θ0;Γ0 ⊢ [σ ]e⇐ [⌊σ⌋]↑P By i.h.

Z Θ0;Γ0 ⊢ [σ ](e : ↑P)⇒ [⌊σ⌋]↑P By Decl⇒ExpAnnot and def. of subst.

Z Θ0 ⊢ [⌊σ⌋]↑P≤ [⌊σ⌋]↑P By Lemma C.62 (Subtyping Reflexive)

and def. of [−]−

(3) • Case
(x : R′) ∈ Γ Θ ⊢ R′ ≤+ R

Θ ;Γ ⊢ x⇐ R
Decl⇐Var
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(x : R′) ∈Γ Premise

Θ0;Γ0 ⊢σ : Θ ;Γ Given

Θ = Θ1,Θ2 By inversion

Γ = Γ1,x : R′,Γ2
′′

σ = σ1,v1 : [⌊σ1⌋]R′/x,σ2
′′

Θ0;Γ0 ⊢σ1 : Θ1;Γ1
′′

Θ0;Γ0 ⊢ v1⇐ [⌊σ1⌋]R′ ′′

[⌊σ1⌋]R′ = [⌊σ⌋]R′ Similarly to case Decl⇒Var of part (1)

Θ0;Γ0 ⊢ v1⇐ [⌊σ⌋]R′ By equality

Θ ⊢R′ ≤+ R Premise

Θ0 ⊢ [⌊σ⌋]R′ ≤+ [⌊σ⌋]R By Lemma C.59 (Sub. Syn. Subs)

Θ0 ⊢Γ0 ≤+ Γ0 By Lemma C.62 (Subtyping Reflexive)

Θ0;Γ0 ⊢ v1⇐ [⌊σ⌋]R By Lemma C.80 (Subsumption Admissibility)

Θ0;Γ0 ⊢ [σ ]x⇐ [⌊σ⌋]R By def. of [−]− (here, x is a value)

• Cases Decl⇐1, Decl⇐×, Decl⇐+k: Straightforward.

• Case
d÷Θ ⊢ −→t /dΞ : dΞ Θ ;Γ ⊢ v⇐ [

−→t /dΞ ]Q

Θ ;Γ ⊢ v⇐ (∃dΞ . Q)

Decl⇐∃
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d÷Θ0 ⊢σ↾d÷Θ
: d÷Θ By Lemma C.12 (Value-Det. Substitution)

Θ0;Γ0 ⊢ [σ ]v⇐ [⌊σ⌋][−→t /dΞ ]Q By i.h.

Θ0;Γ0 ⊢ [σ ]v⇐ [[⌊σ⌋]−→t /dΞ ]([⌊σ⌋]Q) By Lemma C.38 (Type/Functor Barendregt)

d÷Θ0 ⊢ [⌊σ⌋]
−→t /dΞ : dΞ By Lemma C.18 (Subst. on Substitution)

and properties of restriction and ⌊−⌋

Θ0;Γ0 ⊢ [σ ]v⇐ [⌊σ⌋](∃dΞ . Q) By Decl⇐∃ and def. of subst.

• Case
Θ ;Γ ⊢ v⇐ R Θ ⊢ −→ϕ true

Θ ;Γ ⊢ v⇐ R∧−→ϕ
Decl⇐∧

Θ0;Γ0 ⊢σ : Θ ;Γ Given

Θ ;Γ ⊢ v⇐ R Subderivation

Θ0;Γ0 ⊢ [σ ]v⇐ [⌊σ⌋]R By i.h.

Θ ⊢−→ϕ true Premise

Θ0 ⊢ [⌊σ⌋]−→ϕ true By repeated Lemma C.30 (Prop. Truth Syn. Subs)

Θ0;Γ0 ⊢ [σ ]v⇐ [⌊σ⌋](R∧−→ϕ ) By Decl⇐∧ and def. of subst.

• Case
∄x. v′ =

−−−→iinjki

(−−−−→j⟨_ j,−⟩ x
)

M (F)⇝−→α ;−→τ
d÷Θ ⊢ H−→α ;F ;M (F)I⊜ d

Θ ;R Θ ;Γ ⊢ v′⇐∃dΘ . (R∧ d
Θ)

Θ ;Γ ⊢ into(v′)⇐{ν : µF |M (F)}
Decl⇐µ

[⌊σ⌋](M (F))⇝ [⌊σ⌋]−→α ;−→τ Straightforward
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d÷Θ ⊢ H[⌊σ⌋]−→α ; [⌊σ⌋]F ; [⌊σ⌋]M ([⌊σ⌋]F)I⊜ [⌊σ⌋]dΘ ; [⌊σ⌋]R By Lemma C.57

with Lemma C.12

and subst. property

Θ0;Γ0 ⊢ [σ ]v′⇐ [⌊σ⌋](∃dΘ . (R∧ dΘ)) By i.h.

Θ0;Γ0 ⊢ [σ ]v′⇐∃dΘ . ([⌊σ⌋]R∧ [⌊σ⌋]dΘ) By def. of subst.

Θ0;Γ0 ⊢ [σ ]v′⇐∃[⌊σ⌋]dΘ . ([⌊σ⌋]R∧ [⌊σ⌋]dΘ) By def. of ∃Θ .−

Θ0;Γ0 ⊢ into([σ ]v′)⇐{ν : µ[⌊σ⌋]F | [⌊σ⌋]M ([⌊σ⌋]F)} By Decl⇐µ

Θ0;Γ0 ⊢ [σ ]into(v′)⇐ [⌊σ⌋]{ν : µF |M (F)} By def. of subst.

• Case Decl⇐↓: Straightforward.

(4) • Case Decl⇐↑: : Straightforward.

• Case
Θ ;Γ ⊢ g⇒↑(∃dΞ . R∧−→ψ ) Θ ,dΞ ,−→ψ ;Γ ,x : R ⊢ e′⇐ L

Θ ;Γ ⊢ let x=g; e′⇐ L
Decl⇐let

Θ0;Γ0 ⊢σ : Θ ;Γ Given

Θ ;Γ ⊢ g⇒↑(∃dΞ . R∧−→ψ ) Subderivation

Θ0;Γ0 ⊢ [σ ]g⇒↑P′ By i.h.

Θ0 ⊢ ↑P′ ≤− [⌊σ⌋]↑(∃dΞ . R∧−→ψ ) ′′

Θ0 ⊢ ↑P′ ≤− ↑∃dΞ . [⌊σ⌋]R∧ [⌊σ⌋]−→ψ By def. of subst.

Θ0,dΞ , [⌊σ⌋]−→ψ ;Γ0 ⊢σ ,dΞ/dΞ : Θ ,dΞ ,−→ψ ;Γ Lem. C.45

Θ0,dΞ , [⌊σ⌋]−→ψ ;Γ0,x : [⌊σ⌋]R ⊢σ ,dΞ/dΞ ,x : [⌊σ⌋]R/x : Θ ,dΞ ,−→ψ ;Γ ,x : R Lem. C.66
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Θ ,dΞ ,−→ψ ;Γ ,x : R ⊢ e′⇐ L Subderivation

Θ0,dΞ , [⌊σ⌋]−→ψ ;Γ0,x : [⌊σ⌋]R ⊢ [σ ]e′⇐ [⌊σ⌋]L By i.h.

(and identity subst.)

Θ0 ⊢P′ ≤+ ∃dΞ . [⌊σ⌋]R∧ [⌊σ⌋]−→ψ By inversion

P′ = ∃dΞ
′. R′∧−→ψ ′ Canonical form of P′

Θ0,dΞ
′,−→ψ ′ ⊢R′ ≤+ [

−→t /dΞ ][⌊σ⌋]R By inversion

d÷Θ0,dΞ
′ ⊢−→t /dΞ : dΞ ′′

Θ0,dΞ
′,−→ψ ′ ⊢ [−→t /dΞ ][⌊σ⌋]−→ψ true ′′

Let σ ′ =
−→t /dΞ .

Θ0,dΞ
′,−→ψ ′ ⊢σ ′ : dΞ , [⌊σ⌋]−→ψ By rules and weakening

Θ0,dΞ
′,−→ψ ′; [σ ′]Γ0,x : [σ ′]([⌊σ⌋]R) ⊢ [σ ′]([σ ]e′)⇐ [σ ′]([⌊σ⌋]L) By corollary of

Lemma C.68

and def. of subst

Θ0,dΞ
′,−→ψ ′;Γ0,x : [σ ′]([⌊σ⌋]R) ⊢ [σ ]e′⇐ [⌊σ⌋]L /0 = dom(Θ0)∩dom(dΞ)

Θ0 ⊢Γ0 ≤+ Γ0 By repeated Lemma C.62

Θ0,dΞ
′,−→ψ ′ ⊢Γ0 ≤+ Γ0 By repeated Lemma C.41

Θ0,dΞ
′,−→ψ ′ ⊢Γ0,x : R′ ≤+ Γ0,x : [σ ′][⌊σ⌋]R Add entry

Θ0 ⊢ [⌊σ⌋]L≤− [⌊σ⌋]L By Lemma C.62

Θ0,dΞ
′,−→ψ ′ ⊢ [⌊σ⌋]L≤− [⌊σ⌋]L By weakening
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Θ0,dΞ
′,−→ψ ′;Γ0,x : R′ ⊢ [σ ]e′⇐ [⌊σ⌋]L By Lemma C.80 (Subsumption Admissibility)

Θ0;Γ0 ⊢ [σ ](let x=g; e′)⇐ [⌊σ⌋]L By Decl⇐let and def. of subst.

• Case
Θ ;Γ ⊢ h⇒ P Θ ;Γ ; [P] ⊢ {ri⇒ ei}i∈I ⇐ L

Θ ;Γ ⊢match h {ri⇒ ei}i∈I ⇐ L
Decl⇐match

Θ0;Γ0 ⊢σ : Θ ;Γ Given

Θ ;Γ ; [P] ⊢ {ri⇒ ei}i∈I ⇐ L Subderivation

Θ0;Γ0; [[⌊σ⌋]P] ⊢ [σ ]{ri⇒ ei}i∈I ⇐ [⌊σ⌋]L By i.h.

Θ ;Γ ⊢ h⇒ P Subderivation

By i.h., either (a) Θ0;Γ0 ⊢ [σ ]hh⇒ [⌊σ⌋]P; or (b) there exists P′

such that Θ0 ⊢ P′ ≤+ [⌊σ⌋]P and Θ0;Γ0 ⊢ [σ ]hh⇒ P′.

Consider subcases (a) and (b):

– Case (a): Apply Decl⇐match, and use def. of substitution.

– Case (b):

Θ0 ⊢Γ0 ≤+ Γ0 By Lemma C.62

Θ0 ⊢ [⌊σ⌋]L≤+ [⌊σ⌋]L By Lemma C.62

Θ0;Γ0; [P′] ⊢ [σ ]{ri⇒ ei}i∈I ⇐ [⌊σ⌋]L By Lemma C.80

Θ0;Γ0 ⊢ [σ ](match h {ri⇒ ei}i∈I)⇐ [⌊σ⌋]L By Decl⇐match

and def. of subst.

• Case Decl⇐λ : Similar to Decl⇐let case, but simpler.
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• Case
Θ ⊢ ∀a d÷N,dΞ . M ≤− L

Θ ,a÷N;Γ ,x :

P′︷ ︸︸ ︷
↓∀a′ d÷N,dΞ . a′ < a⊃ [a′/a]M ⊢ e0⇐∀dΞ . M

Θ ;Γ ⊢ rec x : (∀a d÷N,dΞ . M). e0⇐ L
Decl⇐rec

Θ0;Γ0 ⊢σ : Θ ;Γ Given

Θ ⊢∀a d÷N,dΞ . M ≤− L Premise

Θ0 ⊢∀a d÷N,dΞ . [⌊σ⌋]M ≤− [⌊σ⌋]L By Lemma C.59 (Sub. Syn. Subs)

and def. of subst

Θ ,a÷N;Γ ,x : P′ ⊢ e0⇐∀dΞ . M Subderivation

By Lemma C.66 (Id. Subst. Extension) and Lemma C.43 (Index Id. Subs. Ex-

tension),

Θ0,a÷N;Γ0,x : [⌊σ⌋,a/a]P′ ⊢σ ,a/a,x : [⌊σ⌋,a/a]P′/x : Θ ,a÷N;Γ ,x : P′

By def. of [−]− and P′ and identity substitution,

Θ0,a÷N;Γ0,x : ↓∀a′ d÷N. a′ < a⊃ [⌊σ⌋]([a′/a]M) ⊢ σ ,a/a,x : [⌊σ⌋]P′/x

: Θ ,a÷N;Γ ,x : P′

By Lemma C.38 (Type/Functor Barendregt) and because a′ /∈ dom(Θ),

Θ0,a÷N;Γ0,x : ↓∀a′ d÷N. a′ < a⊃ [a′/a]([⌊σ⌋]M) ⊢ σ ,a/a,x : [⌊σ⌋]P′/x

: Θ ,a÷N;Γ ,x : P′
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Θ0,a÷N;Γ0,x : ↓∀a′ d÷N. a′ < a⊃ [a′/a]([⌊σ⌋]M) ⊢ [σ ]e0⇐ [⌊σ⌋]∀dΞ . M By i.h.

. . . and id. subst.

Θ0;Γ0 ⊢ rec x : (∀a d÷N,dΞ . [⌊σ⌋]M). [σ ]e0⇐ [⌊σ⌋]L By Decl⇐rec

Θ0;Γ0 ⊢ [σ ](rec x : (∀a d÷N,dΞ . M). e0)⇐ [⌊σ⌋]L By def. of subst.

• Cases Decl⇐∀, DeclChkExpImp: Similar to Decl⇐λ case.

• Case Decl⇐Unreachable: Use Lemma C.1 (Filter Out Prog. Vars. Syn) and

Lemma C.31 (Subst. Inconsistent).

(5) • Case DeclMatch∃: Straightforward. Use Lemma C.45 (Ix.-Level Id. Subs.

Extension).

• Case DeclMatch∧: Similar to DeclMatch∃ case.

• Case DeclMatch1: Straightforward.

• Case DeclMatch×: Straightforward. Use Lemma C.81 (Id. Subst), Lemma

C.66 (Id. Subst. Extension) (twice), and the fact that program variables x cannot

occur in types.

• Case DeclMatch+: Similar to DeclMatch× case.

• Case DeclMatch0: Straightforward.

• Case
M (F)⇝−→α ;−→τ

d÷Θ ⊢ H−→α ;F ;M (F)I⊜ d
Θ ;R

Θ ,dΘ ;Γ ,x : R ⊢ e⇐ N

Θ ;Γ ; [{ν : µF |M (F)}] ⊢ {into(x)⇒ e}⇐ N
DeclMatchµ
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We are given Θ0;Γ0 ⊢ σ : Θ ;Γ . By inversion and Lemma C.12 (Value-Det. Sub-

stitution), d÷Θ0; · ⊢ ⌊σ⌋↾d÷Θ
: d÷Θ ; ·. That [⌊σ⌋]M ([⌊σ⌋]F)⇝ [σ ]−→α ;−→τ follows

from premise M (F)⇝−→α ;−→τ and property of substitution/restriction.

Consider the premise:

d÷Θ ⊢ H−→α ;F ;M (F)I⊜ d
Θ ;R

By Lemma C.57 (Unrolling Syntactic Substitution) and property of substitu-

tion/restriction,

d÷Θ0 ⊢ H[⌊σ⌋]−→α ; [⌊σ⌋]F ; [⌊σ⌋]M ([⌊σ⌋]F)I⊜ [⌊σ⌋]dΘ ; [⌊σ⌋]R

By Lemma C.45 (Ix.-Level Id. Subs. Extension), Lemma C.66 (Id. Subst. Ex-

tension), and Lemma C.81 (Id. Subst),

Θ0, [⌊σ⌋]dΘ ;Γ0,x : [⌊σ⌋]R ⊢ σ ,dΘ/dΘ ,x : [⌊σ⌋]R/x : Θ ,dΘ ;Γ ,x : R

Consider the typing subderivation Θ ,dΘ ;Γ ,x : R ⊢ e⇐ N. By the induction

hypothesis and Lemma C.81,

Θ , [⌊σ⌋]dΘ ;Γ0,x : [⌊σ⌋]R ⊢ [σ ]e⇐ [⌊σ⌋]N

By DeclMatchµ ,

Θ0;Γ0; [{ν : µ[⌊σ⌋]F | [⌊σ⌋]M ([⌊σ⌋]F)}] ⊢ {into(x)⇒ [σ ]e}⇐ [⌊σ⌋]N
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By definition of substitution,

Θ0;Γ0; [[⌊σ⌋](M (F))] ⊢ [σ ]{into(x)⇒ e}⇐ [⌊σ⌋]N

(6) • Case DeclSpine∀: Straightforward. Use Lemma C.38 (Type/Functor Baren-

dregt) and Lemma C.17 (Ix. Syntactic Substitution).

• Case DeclSpine⊃: Straightforward. Use Lemma C.30 (Prop. Truth Syn.

Subs).

• Cases DeclSpineApp, DeclSpineNil: Straightforward.
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Appendix D

Unrefined System and Erasure

Lemma D.1 (Unrefined Syntactic Substitution). Assume Γ0 ⊢ σ : Γ .

(1) If Γ ⊢ h⇒ P then Γ0 ⊢ [σ ]h⇒ P.

(2) If Γ ⊢ g⇒↑P then Γ0 ⊢ [σ ]g⇒↑P.

(3) If Γ ⊢ v⇐ P then Γ0 ⊢ [σ ]v⇐ P.

(4) If Γ ⊢ e⇐ N then Γ0 ⊢ [σ ]e⇐ N.

(5) If Γ ; [P] ⊢ {ri⇒ ei}i∈I ⇐ N then Γ0; [P] ⊢ [σ ]{ri⇒ ei}i∈I ⇐ N.

(6) If Γ ; [N] ⊢ s⇒↑P then Γ0; [N] ⊢ [σ ]s⇒↑P.

Proof. Similar to Lemma C.82 (Syntactic Substitution), but simpler.

It is straightforward to prove by structural induction on unrefined functor well-formedness

that if ⊢ F functor then JFK is an endofunctor on the category of sets and µ JFK is a set (as

is any number of applications of JFK to a set). We leave these lemmas implicit. We later

prove JFK is an endofunctor on the category of cpos and µ JFK is a cpo.
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Lemma D.2 (Functor Apps. Commute). If F : C→ D is a functor and n ∈ N and m ∈ N

then Fn(Fm(X)) = Fm(Fn(X)) for any object X ∈ C; and similarly for any morphism f

from Y to Z in C.

Proof. By induction on n.

Lemma D.3 (Functor Monotone). If ⊢ F functor and X ,Y ∈ Set and X ⊆ Y

then JFK X ⊆ JFKY .

Proof. By structural induction on F .

Lemma D.4. If ⊢ F functor and n ∈ N then JFKn /0⊆ JFKn+1 /0.

Proof. By induction on n, using Lemma D.3 (Functor Monotone) in the inductive step.

Lemma D.5 (Repeated Monotonicity). If m,n ∈ N and m≤ n and ⊢ F functor

then JFKm /0⊆ JFKn /0.

Proof. Follows from Lemma D.4 (and reflexivity of ⊆).

Lemma D.6 (Mu Superset). If ⊢ F functor and n ∈ N then JFKn /0⊆ µ JFK.

Proof.

JFKn /0 ⊆ ∪k∈N JFKk /0 Set theory

= µ JFK By def.

Lemma D.7 (Reverse Mu Superset).

If ⊢F functor and ⊢ F functor and V ∈ JF K (µ JFK)

then there exists n ∈ N such that V ∈ JF K (JFKn /0).

Proof.
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• Case F = I:

By def., JIK (µ JFK) = {•}, so V = •, which is in {•}= JIK (JFKn /0) for all n ∈ N.

• Case F = P:

By def., JPK (µ JFK) = JPK, so V ∈ JPK. But JPK = JPK (JFKn /0) for all n ∈ N.

• Case F = Id:

By def., JIdK (µ JFK) = µ JFK, so V ∈ µ JFK. By def., µ JFK = ∪k∈N JFK /0, so there

exists n ∈ N such that V ∈ JFKn /0 = JIdK (JFKn /0).

• Case F = B̂⊗ P̂:

By def.,
q

B̂⊗ P̂
y
(µ JFK)=

q
B̂
y
(µ JFK)×

q
P̂
y
(µ JFK), so there exist V1 ∈

q
B̂
y
(µ JFK)

and V2 ∈
q

P̂
y
(µ JFK) such that V = (V1,V2). By i.h., there exists n1 such that

V1 ∈
q

B̂
y
(JFKn1 /0). By i.h., there exists n2 such that V2 ∈

q
P̂
y
(JFKn2 /0). Let n =

max{n1,n2}. By Lemma D.5 (Repeated Monotonicity), V1 ∈
q

B̂
y
(JFKn /0) and V2 ∈

q
P̂
y
(JFKn /0). Therefore, V =(V1,V2)∈

q
B̂
y
(JFKn /0)×

q
P̂
y
(JFKn /0)=

q
B̂⊗ P̂

y
(JFKn /0),

as desired.

• Case F = F1⊕F2:

By def., JF1⊕F2K (µ JFK) = JF1K (µ JFK)⊎ JF2K (µ JFK), so there exist j ∈ {1,2}

and V ′ ∈
q

Fj
y
(µ JFK) such that V = ( j,V ′). By i.h., there exists n such that V ′ ∈

q
Fj

y
(JFKn /0). Therefore V =( j,V ′)∈ JF1K (JFKn /0)⊎JF2K (JFKn /0)= JF1⊕F2K (JFKn /0).

Lemma D.8 (Mu is Fixed Point). If ⊢ F functor then µ JFK = JFK (µ JFK).

Proof.
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• “⊆”

Suppose V ∈ µ JFK. Then there exists n > 0 such that V ∈ JFKn /0. By Lemma D.6

(Mu Superset), JFKn−1 /0⊆ µ JFK. Now,

JFKn /0 = JFKn−1 (JFK /0) By def.

= JFK (JFKn−1 /0) By Lemma D.2 (Functor Apps. Commute)

⊆ JFK (µ JFK) By Lemma D.3 (Functor Monotone)

• “⊇”

Suppose V ∈ JFK µ JFK. By Lemma D.7 (Reverse Mu Superset), there exists n ∈ N

such that V ∈ JFK (JFKn /0). But

JFK (JFKn /0) = JFKn (JFK /0) By Lemma D.2 (Functor Apps. Commute)

= JFKn+1 /0 By def.

⊆ µ JFK By Lemma D.6 (Mu Superset)

Definition D.1 (Predomain). A complete partial order (cpo) or predomain is a poset (D,⊑)

that is chain-complete, i.e., such that every chain d0⊑ d1⊑ ·· · in D has a least upper bound

(lub) ⊔k∈Ndk ∈ D. We often write ⊑D for the partial order of a predomain with set D.

Definition D.2 (Domain). A complete pointed partial order (cppo) or domain is a triple

(D,⊑,⊥) where (D,⊑) is a predomain, ⊥ ∈ D, and ⊥ ⊑ d for all d ∈ D. We often write

⊥D for the bottom element ⊥ of a domain with set D.

Definition D.3 (Continuous). A function f : D→ E of predomains (or domains) is contin-

uous if f is monotone (that is, if d ⊑D d′, then f (d) ⊑E f (d′)) and preserves least upper

bounds (that is, if d0 ⊑ d1 ⊑ ·· · is a chain in D, then ⊔k∈N f (dk) = f (⊔k∈Ndk)).

Lemma D.9 (Predomains and Domains are Cats).
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(1) Predomains and continuous functions form a category Cpo.

(2) Domains and continuous functions form a category Cppo.

Proof. The composition of continuous functions is continuous, the identity function is con-

tinuous, and function composition is associative.

Definition D.4 (Cpo). Define the category of predomains Cpo to have cpos as objects and

continuous functions as morphisms.

Definition D.5 (Cppo). Define the category of domains Cppo to have cppos as objects and

continuous functions as morphisms.

Lemma D.10 (Predomain Constructions).

(1) The empty set /0 with empty ordering /0 is a predomain.

(2) A singleton {d} with ordering d ⊑ d is a predomain.

(3) If D and E are predomains

then D×E with component-wise ordering ⊑D×E is a predomain.

(4) If D and E are predomains

then D⊎E with injection-wise ordering ⊑D⊎E is a predomain.

(5) If D and E are predomains

then D⇒ E = { f : D→ E | f is continuous}

with pointwise ordering ⊑D⇒E is a predomain.

Proof. Each part is straightforward.

Lemma D.11 (Least Fixed Point). If D ∈ Cppo and f : D→ D is continuous

then f has a least fixed point ⊔k∈N f k(⊥D) in D.
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Proof. See proof of Theorem 4.12 in the textbook of Gunter [1993].

Lemma D.12. If ⊢F functor and ⊢ F functor and d ⊑JF K(JFKm /0) d′

then for all n > m, we have d ⊑JF K(JFKn /0) d′.

Proof. By lexicographic induction, first, on m and, second, on the structure of F .

Lemma D.13 (Mu Chain-Complete). If ⊢F functor and ⊢ F functor

and JF K : Cpo→ Cpo and JFK : Cpo→ Cpo

and d0 ⊑JF K(JFKn0 /0) d1 ⊑JF K(JFKn1 /0) · · ·dk ⊏JF K(JFKnk /0) · · ·

then there exists a least upper bound ⊔k∈Ndk in JF K (µ JFK).

Proof. By lexicographic induction, first, on min{nk | k ∈ N} and, second, on F structure.

For all k, let Dk = JFKnk /0.

• Case F = I:

By def., for all k ∈ N, we have JIK Dk = {•}; so dk = • for all k. then ⊔kdk = •.

• Case F = Q:

For all k, we have
q

Q
y

Dk = JQK; so dk ∈ JQK for all k. By Lemma D.10 (Predomain

Constructions), /0 ∈ Cpo. Therefore, by def. of J−K and because JF K : Cpo→ Cpo,

we have JQK =
q

Q
y

/0 ∈ Cpo. Therefore, the chain d0 ⊑ ·· · has a least upper bound

⊔kdk in JQK =
q

Q
y
(µ JFK).

• Case F = Id:

By def., for all k, we have JIdK Dk = Dk = JFKnk /0 = JFK (JFKnk−1 /0). For all k,

we have nk > 0 (otherwise dk would not exist), so nk − 1 ∈ N for all k. Now,

min{nk−1 | k ∈ N} < min{nk | k ∈ N}, and we are given JFK : Cpo→ Cpo, so by
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the i.h., the chain d0 ⊑ ·· · has a least upper bound ⊔kdk in JFK (µ JFK); and the lat-

ter equals µ JFK by Lemma D.8 (Mu is Fixed Point), which equals JIdK (µ JFK) by

definition.

• Case F = B̂⊗ P̂:

By def., for all k, we have
q

B̂⊗ P̂
y

Dk =
q

B̂
y

Dk×
q

P̂
y

Dk; so for all k, there exist

dk1 ∈
q

B̂
y

Dk and dk2 ∈
q

P̂
y

Dk such that dk = (dk1,dk2). By i.h., chain d01 ⊑ ·· · has

a least upper bound ⊔kdk1 in
q

B̂
y
(µ JFK). By i.h., chain d02 ⊑ ·· · has a least upper

bound ⊔kdk2 in
q

P̂
y
(µ JFK). Then ⊔kdk = (⊔kdk1,⊔kdk2) is the least upper bound

for chain dk ⊑ ·· · in
q

B̂
y
(µ JFK)×

q
P̂
y
(µ JFK) =

q
B⊗ P̂

y
(µ JFK).

• Case F = F1⊕F2:

By def., for all k, we have JF1⊕F2K Dk = JF1K Dk⊎ JF2K Dk; so for all k, there exists

d′k ∈
q

Fj
y

Dk such that dk = ( j,d′k). By i.h., the chain d′0 ⊑ ·· · has a least upper

bound ⊔kd′k in
q

Fj
y
(µ JFK). Then ⊔kdk = ( j,⊔kd′k) is the least upper bound for

chain dk ⊑ ·· · in JF1K (µ JFK)⊎ JF2K (µ JFK) = JF1⊕F2K (µ JFK).

Lemma D.14 (Repeated Cpo Functor). If F : Cpo→ Cpo and X ∈ Cpo

then for all k ∈ N, we have Fk(X) ∈ Cpo.

Proof. By induction on k.

Lemma D.15 (Unref. Type Denotations).

(1) If ⊢ P type then JPK ∈ Cpo.

(2) If ⊢ N type then JNK ∈ Cppo.

(3) If ⊢F functor then JF K is a Cpo endofunctor.
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Proof. By mutual induction on the structure of P, N or F .

(1) • Case P = 0:

J0K = /0 By def.

∈Cpo By Lemma D.10 (Predomain Constructions)

• Case P = P1 +P2:

JP1K ∈Cpo By i.h.

JP2K ∈Cpo By i.h.

JP1 +P2K = (JP1K⊎ JP2K ,⊑JP1K⊎JP2K) By def.

∈Cpo By Lemma D.10 (Predomain Constructions)

• Case P = 1:

Similar to P = 0 case.

• Case P = P1×P2:

Similar to P = P1 +P2 case.

• Case P = ↓N:

J↓NK = (JNK ,⊑JNK) By def.

∈Cpo By i.h.

• Case P = µF :

We first show that (JµFK ,⊑JµFK) is a poset.

Suppose V ∈ JµFK. Then there exists l ∈ N such that V ∈ JFKl /0. By Lemma

D.10 (Predomain Constructions), /0 ∈ Cpo. By i.h. (part (3)), JFK : Cpo→

Cpo. By Lemma D.14 (Repeated Cpo Functor), JFKl /0 ∈ Cpo; therefore (by

reflexivity), V ⊑JFKl /0 V . By def., V ⊑JµFK V , so ⊑JµFK is reflexive.
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Suppose V1 ⊑JµFK V2 and V2 ⊑JµFK V3. Then there exist l1 and l2 such that

V1 ⊑JFKl1 /0 V2 and V2 ⊑JFKl2 /0 V3. Let l = max(l1, l2). By Lemma D.12, V1 ⊑JFKl /0

V2 and V2 ⊑JFKl /0 V3. By Lemma D.10 (Predomain Constructions), /0 ∈ Cpo.

By i.h. (part (3)), JFK : Cpo→ Cpo. By Lemma D.14 (Repeated Cpo Func-

tor), JFKl /0 ∈ Cpo; therefore (by transitivity of ⊑JFKl /0), V1 ⊑JFKl /0 V3. By def.,

V1 ⊑JµFK V3, so ⊑JµFK is transitive.

Similarly, ⊑JµFK is antisymmetric, so JµFK is a poset.

To conclude, we show that JµFK is chain-complete. Suppose d0⊑ ·· · is a chain

in JµFK. By def., for all k, there exists nk such that dk ⊑JFKnk+1 /0 dk+1. Above,

we have JFK : Cpo→ Cpo. By Lemma D.13 (Mu Chain-Complete), the chain

d0 ⊑ ·· · has a least fixed point ⊔kdk in JFK (µ JFK); and the latter equals µ JFK

by Lemma D.8 (Mu is Fixed Point), which equals JµFK by definition.

(2) • Case N = ↑P:

By def.,

J↑PK =(JPK⊎{⊥↑},
{
((1,d),(1,d′))

∣∣∣ d ⊑JPK d′
}
∪
{
((2,⊥↑),d)

∣∣ d ∈ J↑PK
}

,(2,⊥↑))

By i.h. (part (1)), JPK ∈ Cpo. This together with the definition of ⊑J↑PK above,

that is,

{
((1,d),(1,d′))

∣∣∣ d ⊑JPK d′
}
∪
{
((2,⊥↑),d)

∣∣ d ∈ J↑PK
}

implies that J↑PK is a poset. The definition also implies that ⊥J↑PK = (2,⊥↑) is

the bottom element of J↑PK.

To conclude this case, we show that J↑PK is chain-complete. Suppose d0 ⊑ ·· ·
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is a chain in J↑PK. If for all k, dk = (2,⊥↑), then ⊔kdk = (2,⊥↑). Else, if there

exist j and d′j such that d j = (1,d′j), then, by definition of ⊑J↑PK (above), for all

m > j, there exists d′m ∈ JPK such that dm = (1,d′m) and d′m ⊑JPK d′m+1; by the

i.h., JPK ∈ Cpo, hence chain-complete, so the chain d′j ⊑ ·· · has a least upper

bound ⊔k≥ jd′k in JPK; then ⊔kdk = (1,⊔k≥ jd′k) is the least upper bound of chain

d0 ⊑ ·· · in JPK⊎{⊥↑}= J↑PK.

• Case N = P→ N0:

By def., JP→ N0K is the set JPK⇒ JN0K of continuous functions from JPK to

JN0K. By i.h., JPK ∈ Cpo. By i.h., JN0K ∈ Cppo; therefore JN0K ∈ Cpo. By

Lemma D.10 (Predomain Constructions), JPK ⇒ JN0K (with pointwise order-

ing) is a Cpo.

To conclude this case, we show⊥JP→N0K ⊑ f for all f ∈ JP→ N0K. To this end,

suppose f ∈ JP→ N0K and x ∈ JPK. Then:

⊥JP→N0K x = ⊥JN0K By def.

⊑ f (x) By i.h., JN0K ∈ Cppo

(3) For each case below, X is an arbitrary predomain (Cpo), and f ∈ HomCpo(X ,Y ) is

an arbitrary continuous function.

• Case F = I:

JIK X = {•} By def.

∈Cpo By Lemma D.10 (Predomain Constructions)

Further, JIK f = id{•} is continuous because identity functions are continuous.

• Case F = Q:
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q
Q

y
X = JQK By def.

∈Cpo By i.h.

Further,
q

Q
y

f = idJQK is continuous because identity functions are continuous.

• Case F = Id:

JIdK X = X By def.

∈Cpo Given

Further, JIdK f = f is continuous.

• Case F = B̂⊗ P̂:

X ∈Cpo Given
q

B̂
y

X ∈Cpo By i.h.
q

P̂
y

X ∈Cpo By i.h.
q

B̂⊗ P̂
y

X =
q

B̂
y

X×
q

P̂
y

X By def.

∈Cpo By Lemma D.10 (Predomain Constructions)

Further,
q

B̂⊗ P̂
y

f = ((
q

B̂
y

f )◦π1,(
q

P̂
y

f )◦π2) is continuous by two uses of

the i.h., by the fact that projections πk are continuous, by the fact that the com-

position of continuous functions is continuous, and by the fact that the universal

pair (g1,g2) of continuous functions g1 and g2 is continuous.

• Case F = F1⊕F2:



495

X ∈Cpo Given

JF1K X ∈Cpo By i.h.

JF2K X ∈Cpo By i.h.

JF1⊕F2K X = JF1K X ⊎ JF2K X By def.

∈Cpo By Lemma D.10 (Predomain Constructions)

Further, JF1⊕F2K f = [inj1 ◦ (JF1K f ), inj2 ◦ (JF2K f )] is continuous by two uses

of the i.h., by the fact that injections injk are continuous, by the fact that the

composition of continuous functions is continuous, and by the fact that the uni-

versal copair [g1,g2] of continuous functions g1 and g2 is continuous.

Lemma D.16 (Unref. Unroll Sound). If ⊢ G[µF ]⊜ P then JGK (µ JFK) = JPK.

Proof. By structural induction on the derivation of ⊢ G[µF ]⊜ P.

Definition D.6 (Directed Poset). A subset D ⊆ P of a poset P is directed if every finite

subset E ⊆ D of it has an upper bound in D.

Lemma D.17 (Exchange).

If D1 and D2 are directed posets, E is a predomain,

and f : D1×D2→ E is a monotone function

then ⊔x1∈D1 ⊔x2∈D2 f (x1,x2) = ⊔x2∈D2 ⊔x1∈D1 f (x1,x2)

Proof. See Lemma 4.9 (Exchange) in the textbook of Gunter [1993].

Lemma D.18 (Diagonal). If D is a directed poset and E is a predomain

and f : D×D→ E is a monotone function

then ⊔x∈D⊔y∈D f (x,y) = ⊔x∈D f (x,x).
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Proof. This is Lemma 4.16 (Diagonal) in the textbook of Gunter [1993].

Lemma D.19 (Application Diagonal). If D and E are predomains

and f0 ⊑ f1 ⊑ ·· · is a chain in D⇒ E and x0 ⊑ x1 ⊑ ·· · is a chain in D

then ⊔k∈N⊔ j∈N fkx j = ⊔k∈N fkxk.

Proof. Define the function g :N×N→ E by (k, j) 7→ fkx j. The poset N×N (with compo-

nentwise ordering where N has usual order ≤) is directed and the function g is monotone,

so the goal follows by Lemma D.18 (Diagonal).

Lemma D.20 (App. lub Distributes). If D and E are predomains

and f0 ⊑ f1 ⊑ ·· · is a chain in D⇒ E and x0 ⊑ x1 ⊑ ·· · is a chain in D

then ⊔k∈N fkxk = (⊔k∈N fk)(⊔k∈Nxk).

Proof.

⊔k∈N fkxk = ⊔k∈N⊔ j∈N fkx j By Lemma D.19 (Application Diagonal)

= ⊔k∈N fk(⊔ j∈Nx j) For all k, we have fk continuous

= (⊔k∈N fk)(⊔k∈Nxk) By def.

Lemma D.21 (Cut lub). If D is a predomain and d0 ⊑ d1 ⊑ ·· · is a chain in D

then for all m ∈ N, we have ⊔k∈Ndk = ⊔k≥mdk.

Proof. Straightforward.

The following two lemmas (Lemma D.22 (Continuous Maps) and Lemma D.23 (Unre-

fined Typing Soundness)) are mutually recursive.

Lemma D.22 (Continuous Maps). Suppose ⊢ δ1 : Γ1 and ⊢ δ2 : Γ2 and (Γ1,y : Q,Γ2) ctx.

(1) If Γ1,y : Q,Γ2 ⊢ h⇒ P

then the function JQK→ JPK defined by d 7→ JhK
δ1,d/y,δ2

is continuous.
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(2) If Γ1,y : Q,Γ2 ⊢ g⇒↑P

then the function JQK→ J↑PK defined by d 7→ JgK
δ1,d/y,δ2

is continuous.

(3) If Γ1,y : Q,Γ2 ⊢ v⇐ P

then the function JQK→ JPK defined by d 7→ JvK
δ1,d/y,δ2

is continuous.

(4) If Γ1,y : Q,Γ2 ⊢ e⇐ N

then the function JQK→ JNK defined by d 7→ JeK
δ1,d/y,δ2

is continuous.

(5) If Γ1,y : Q,Γ2; [P] ⊢ {ri⇒ ei}i∈I ⇐ N

then the function JQK→ JNK

defined by d 7→ J{ri⇒ ei}i∈IKδ1,d/y,δ2
is continuous.

(6) If Γ1,y : Q,Γ2; [N] ⊢ s⇒↑P

then the function JQK→ JNK→ J↑PK defined by d 7→ JsK
δ1,d/y,δ2

is continuous.

Proof. By mutual induction on structure of the given typing derivation. Note that we im-

plicitly use Lemma C.7 (Ix. J−K Weak. Invariant) when extending semantic substitutions.

We use the mutually recursive Lemma D.23 (Unrefined Typing Soundness) below to

obtain the fact that subderivations (program subterms) denote continuous and hence mono-

tone functions (e.g., in the Unref⇒App of part (2)).

(1) Straightforward.

(2) Use Lemma D.20 (App. lub Distributes) in the Unref⇒App case. Otherwise straight-

forward.

(3) All cases are straightforward.
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(4) • Case
Γ1,y : Q,Γ2 ⊢ g⇒↑P Γ1,y : Q,Γ2,x : P ⊢ e0⇐ N

Γ1,y : Q,Γ2 ⊢ let x=g; e0⇐ N
Unref⇐let

Consider cases of whether or not ⊔k∈N JgK
δ1,dk/y,δ2

= (2,⊥↑). The former case

is easy. In the latter case, there exist a minimal m and Vm ∈ JPK
δ1,dm/y,δ2

such

that JgK
δ1,dm/y,δ2

= (1,Vm) and, for all j ≥ m, there are Vj ∈ JPK
δ1,d j/y,δ2

such

that JgK
δ1,d j/y,δ2

= (1,Vj); use Lemma D.18 (Diagonal) and Lemma D.21 (Cut

lub).

• Case Unref⇐match: Use Lemma D.20 (App. lub Distributes).

• Case Unref⇐rec: Use Lemma D.17 (Exchange).

• The remaining cases are straightforward.

(5) Straightforward.

(6) Use Lemma D.20 (App. lub Distributes) in the UnrefSpineApp case. Otherwise

straightforward.

Lemma D.23 (Unrefined Typing Soundness). Assume ⊢ δ : Γ .

(1) If Γ ⊢ h⇒ P then JΓ ⊢ h⇒ PK
δ
∈ JPK.

(2) If Γ ⊢ g⇒↑P then JΓ ⊢ g⇒↑PK
δ
∈ J↑PK.

(3) If Γ ⊢ v⇐ P then JΓ ⊢ v⇐ PK
δ
∈ JPK.

(4) If Γ ⊢ e⇐ N then JΓ ⊢ e⇐ NK
δ
∈ JNK.

(5) If Γ ; [P] ⊢ {ri⇒ ei}i∈I ⇐ N then JΓ ; [P] ⊢ {ri⇒ ei}i∈I ⇐ NK
δ
∈ JPK⇒ JNK.

(6) If Γ ; [N] ⊢ s⇒↑P then JΓ ; [N] ⊢ s⇒↑PK
δ
∈ JNK⇒ J↑PK.
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Proof. By mutual induction on structure of the given typing derivation. Straightforward.

Uses the mutually recursive Lemma D.22 (Continuous Maps) above to obtain the continuity

of maps denoted by program subterms (e.g., in the Unref⇐λ case of part (4)). Also uses

Lemma D.15 (Unref. Type Denotations).

The Unref⇐µ and UnrefMatchµ cases use Lemma D.8 (Mu is Fixed Point) and Lemma

D.16 (Unref. Unroll Sound).

The Unref⇐rec case uses Lemma D.11 (Least Fixed Point).

Lemma D.24 (Unrefined Substitution Typing Soundness).

If Γ0 ⊢ σ : Γ then ⊢ JσK
δ

: Γ for all ⊢ δ : Γ0.

Proof. Similar to Lemma E.28 (Substitution Typing Soundness), but simpler: there’s no

corresponding SubstIx or SubstProp case, and the UnrefValσ case uses Lemma D.23 (Un-

refined Typing Soundness) and has no need for an unrefined version of Lemma E.18 (Type

WF Substitution Soundness).

Lemma D.25 (Unrefined Substitution Soundness). Assume Γ0 ⊢ σ : Γ and ⊢ δ : Γ0.

(1) If D :: Γ ⊢ h⇒ P then
q

Γ0 ⊢ [σ ]hh⇒ P
y

δ
= JΓ ⊢ h⇒ PKJσK

δ
.

(2) If D :: Γ ⊢ g⇒↑P then JΓ0 ⊢ [σ ]g⇒↑PK
δ
= JΓ ⊢ g⇒↑PKJσK

δ
.

(3) If D :: Γ ⊢ v⇐ P then JΓ0 ⊢ [σ ]v⇐ PK
δ
= JΓ ⊢ v⇐ PKJσK

δ
.

(4) If D :: Γ ⊢ e⇐ N then JΓ0 ⊢ [σ ]e⇐ NK
δ
= JΓ ⊢ e⇐ NKJσK

δ
.

(5) If D :: Γ ; [P] ⊢ {ri⇒ ei}i∈I ⇐ N

then JΓ0; [P] ⊢ [σ ]{ri⇒ ei}i∈I ⇐ NK
δ
= JΓ ; [P] ⊢ {ri⇒ ei}i∈I ⇐ NKJσK

δ
.

(6) If D :: Γ ; [N] ⊢ s⇒↑P then JΓ0; [N] ⊢ [σ ]s⇒↑PK
δ
= JΓ ; [N] ⊢ s⇒↑PKJσK

δ
.
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Proof. Note that by Lemma D.24 (Unrefined Substitution Typing Soundness), ⊢ JσK
δ

: Γ .

For each part in the lemma statement, we are universally quantifying over “substituted”

derivations; at the beginning of each part we assume such a derivation is given.

Proceed by mutual induction on the structure of the program term. For each part, we

consider cases for the rule concluding D . While the denotations of program terms are only

defined when those terms are well-typed (i.e., have a typing derivation), the denotations

themselves are defined merely on the syntax of the program terms. Keeping this in mind,

whenever the i.h. is used, the necessary “substituted” subderivations are obtained by inver-

sion on the given “substituted” derivation (the unrefined program typing rules are syntax

directed).

(1) • Case
(x : P) ∈ Γ

Γ ⊢ x⇒ P
Unref⇒Var

(x : P) ∈ Γ Premise

Γ0 ⊢ σ : Γ Given

Γ0 ⊢ v⇐ P By inversion

σ = σ1,v : P/x,σ2
′′

Γ0 ⊢ σ1 : Γ1
′′

– Case v = x
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JΓ ⊢ x⇒ PKJσK
δ

= JσK
δ
(x) By def. of denotation

= JΓ0 ⊢ v⇐ PK
δ

By def. of JσK
δ

= JΓ0 ⊢ x⇐ PK
δ

v = x

= δ (x) By def. of J−K

= JΓ0 ⊢ x⇒ PK
δ

By def. of J−K

=
r

Γ0 ⊢ [σ ]hx⇒ P
z

δ
By def. of [−]h−

– Case v ̸= x

JΓ ⊢ x⇒ PKJσK
δ

= JσK
δ
(x) By def. of denotation

= JΓ0 ⊢ v⇐ PK
δ

By def. of JσK
δ

= JΓ0 ⊢ (v : P)⇐ PK
δ

By def. of J−K

=
r

Γ0 ⊢ [σ ]hx⇒ P
z

δ
By def. of [−]h−

• Case
Γ ⊢ v⇐ P

Γ ⊢ (v : P)⇒ P
Unref⇒ValAnnot
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JΓ ⊢ (v : P)⇒ PKJσK
δ

= JΓ ⊢ v⇐ PKJσK
δ

By def. of J−K

= JΓ0 ⊢ [σ ]v⇐ PK
δ

By i.h.

= JΓ0 ⊢ ([σ ]v : P)⇒ PK
δ

By def. of J−K

=
r

Γ0 ⊢ [σ ]h(v : P)⇒ P
z

δ
By def. of [−]h−

(2) • Case
Γ ⊢ h⇒↓N Γ ; [N] ⊢ s⇒↑P

Γ ⊢ h(s)⇒↑P
Unref⇒App

Straightforward: Suppose Γ0 ⊢ [σ ](h(s))⇒↑P. Then

JΓ ⊢ h(s)⇒↑PKJσK
δ
= Jh(s)KJσK

δ
By def.

= JsKJσK
δ
JhKJσK

δ
By def.

= J[σ ]sK
δ
J[σ ]hK

δ
By i.h.

= J([σ ]h)([σ ]s)K
δ

By def.

= J[σ ](h(s))K
δ

By def.

= JΓ0 ⊢ [σ ](h(s))⇒↑PK
δ

By def.

• Case Unref⇒ExpAnnot: Straightforward.

(3) • Case
(x : P) ∈ Γ

Γ ⊢ x⇐ P
Unref⇐Var
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(x : P) ∈ Γ Premise

Γ0 ⊢ σ : Γ Given

Γ0 ⊢ v⇐ P By inversion

σ = σ1,v : P/x,σ2
′′

JΓ ⊢ x⇐ PKJσK
δ
= JσK

δ
(x) By def. of J−K

= JΓ0 ⊢ v⇐ PK
δ

By def. of JσK
δ

= JΓ0 ⊢ [σ ]x⇐ PK
δ

By def. of [−]−

(Note that x in the last line is a value variable.)

• Case Unref⇐1: Straightforward.

• Case Unref⇐×: Straightforward.

• Case Unref⇐+k: Straightforward.

• Case
⊢ F [µF ]⊜ P Γ ⊢ v0⇐ P

Γ ⊢ into(v0)⇐ µF
Unref⇐µ
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Straightforward:

Jinto(v0)KJσK
δ
= Jv0KJσK

δ
By def.

= J[σ ]v0Kδ
By i.h.

= Jinto([σ ]v0)Kδ
By def.

= J[σ ]into(v0)Kδ
By def.

• Case Unref⇐↓: Straightforward.

(4) • Case Unref⇐↑: Straightforward.

• Case
Γ ⊢ g⇒↑P Γ ,x : P ⊢ e0⇐ N

Γ ⊢ let x=g; e0⇐ N
Unref⇐let

Γ0 ⊢ σ : Γ Given

Γ ⊢ g⇒↑P Subderivation

⊢ δ : Γ Given

But

JgKJσK
δ
= J[σ ]gK

δ
By i.h.

∈ J↑PK By Lemma D.23 (Unrefined Typing Soundness)

= JPK⊎{⊥↑} By def.
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– Case JgKJσK
δ
= (2,⊥↑): By def. of J−K and by JgKJσK

δ
= J[σ ]gK

δ
,

Jlet x=g; e0KJσK
δ
=⊥JNK = J[σ ](let x=g; e0)Kδ

– Case JgKJσK
δ
= (1,V ):

⊢ δ ,J[σ ]gK
δ
/x : Γ0,x : P By above and UnrefValδ

⊢ JσK
δ

,JgKJσK
δ
/x : Γ ,x : P By above

Further,

Γ0,x : P ⊢ σ ,x : P/x : Γ ,x : P By (unrefined version of) Lemma C.66

Therefore,

J[σ ](let x=g; e0)Kδ
= Jlet x= [σ ]g; [σ ]e0Kδ

By def.

= J[σ ]e0Kδ ,J[σ ]gK
δ
/x By def.

= J[σ ]e0Kδ ,JgKJσK
δ
/x By i.h. (as seen above)

= J[σ ,x : P/x]e0Kδ ,JgKJσK
δ
/x Lemma C.81 (unrefined version)

= Je0KJσ ,x:P/xK
δ ,JgKJσK

δ
/x

By i.h.

= Je0K(
JσK

δ ,JgKJσK
δ
/x

)
,JgKJσK

δ
/x

By def.

= Je0KJσK
δ

,JgKJσK
δ
/x Because x /∈ dom(Γ0)

= Jlet x=g; e0KJσK
δ

By def.

• Case Unref⇐match: Straightforward.

• Case Unref⇐Diverge: Follows from Lemma D.15 (Unref. Type Denotations)
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and definition of denotation.

• Case Unref⇐λ : Similar to case for Unref⇐let, but simpler.

• Case
Γ ,x : ↓N ⊢ e0⇐ N

Γ ⊢ rec x. e0⇐ N
Unref⇐rec

By definition, Jrec x. [σ ]e0Kδ
=⊔k∈Ndk where d0 =⊥JNK and dn+1 = J[σ ]e0Kδ ,dn/x.

By definition, Jrec x. e0KJσK
δ
=⊔k∈Nd′k where d′0 =⊥JNK and d′n+1 = Je0KJσK

δ
,d′n/x.

Therefore, it suffices to show dk = d′k for all k ∈ N, which we will do by induc-

tion on k. Clearly, d0 = ⊥ = d′0. Suppose dn = d′n. It now suffices to show

dn+1 = d′n+1.

Γ0,x : ↓N ⊢ σ ,x : ↓N/x : Γ ,x : ↓N By Lemma C.66

(unrefined version)

dn+1 = J[σ ]e0Kδ ,dn/x By def.

= J[σ ,x : ↓N/x]e0Kδ ,dn/x Identity substitution

= Je0KJσ ,x:↓N/xK
δ ,dn/x

By i.h.

= Je0KJσK
δ

,dn/x By def.

= Je0KJσK
δ

,d′n/x Above supposition

= d′n+1 By def.

(5) • Case UnrefMatch1: Straightforward.

• Case UnrefMatch×: Similar to case for Unref⇐λ .

• Case UnrefMatch+: Similar to case for Unref⇐λ .

• Case UnrefMatch0: Both sides are the empty function.
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• Case
⊢ F [µF ]⊜ P Γ ,x : P ⊢ e⇐ N

Γ ; [µF ] ⊢ {into(x)⇒ e}⇐ N
UnrefMatchµ

V ∈ µ JFK Suppose

µ JFK = JFK (µ JFK) By Lemma D.8 (Mu is Fixed Point)

JFK (µ JFK) = JPK By Lemma D.16 (Unref. Unroll Sound)

V ∈ JPK Follows from above

⊢ δ : Γ0 Given

⊢ δ ,V/x : Γ0,x : P By UnrefValδ

⊢ JσK
δ

: Γ Above

⊢ JσK
δ

,V/x : Γ ,x : P By UnrefValδ

Γ0 ⊢ σ : Γ Given

Γ0,x : P ⊢ σ ,x : P/x : Γ ,x : P By (unrefined version of) Lemma C.66

Therefore,

JΓ0; [µF ] ⊢ [σ ]{into(x)⇒ e}⇐ NK
δ

V

= JΓ0; [µF ] ⊢ {into(x)⇒ [σ ]e}⇐ NK
δ

V By def.

= JΓ0,x : P ⊢ [σ ]e⇐ NK
δ ,V/x By def.

= JΓ0,x : P ⊢ [σ ,x : P/x]e⇐ NK
δ ,V/x Identity substitution

= JΓ ,x : P ⊢ e⇐ NKJσ ,x:P/xK
δ ,V/x

By i.h.

= JΓ ,x : P ⊢ e⇐ NKJσK
δ

,V/x By def.

= JΓ ; [µF ] ⊢ {into(x)⇒ e}⇐ NKJσK
δ

V By def.
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• Case Unref⇐Diverge: Straightforward.

(6) • Case UnrefSpineApp: Straightforward.

• Case

Γ ; [↑P] ⊢ · ⇒ ↑P
UnrefSpineNil

Both sides are idJ↑PK .

Lemma D.26 (Refinement Subset of Erasure). Assume ⊢ δ : Ξ .

(1) If Ξ ⊢ A type[ξ ] then JAK
δ
⊆ J|A|K.

(2) If Ξ ⊢F functor[ξ ] and X ∈ Set then JF K
δ

X ⊆ J|F |K X.

Proof. By mutual induction on the structure of the given type or functor well-formedness

derivation.

Lemma D.27 (Refined and Unrefined fmap Agree). If Ξ ⊢F functor[ξ ] and f is a function

from set X to set Y and ⊢ δ : Ξ then JF K
δ

f = J|F |K f on JF K
δ

X.

Proof. By structural induction on the derivation of Ξ ⊢F functor[ξ ].

Lemma D.28 (Erasure Subst. Invariant). Assume Ξ0 ⊢ σ : Ξ .

(1) If Ξ ⊢ A type[ξ ] then |[σ ]A|= |A|.

(2) If Ξ ⊢F functor[ξ ] then |[σ ]F |= |F |.

Proof. By mutual induction on the structure of A and F .

Lemma D.29 (Subtyping Erases to Equality).

(1) If Θ ⊢ A≤± B then |A|= |B|.
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(2) If Θ ⊢ α;F ≤τ β ;G then |F |= |G|.

(3) If Θ ⊢M ′(F ′)≥M (F) then |F ′|= |F |.

Proof. By mutual induction on the structure of the given derivation, using the definition

of erasure. The ≤+∃R, ≤–∀L, and Meas≤∃R cases use Lemma D.28 (Erasure Subst.

Invariant).

Lemma D.30 (Unrolling Erasure).

If Ξ ⊢ H
−→
β ;G;M (F)I⊜ dΘ ;R then ⊢ |G|[µ|F |]⊜ |R|.

Proof. By structural induction on the derivation of the given refined unrolling judgement,

using the definition of erasure.

Lemma D.31 (Erasure of Typing).

(1) If Θ ;Γ ⊢ h⇒ P then |Γ | ⊢ |h| ⇒ |P|.

(2) If Θ ;Γ ⊢ g⇒↑P then |Γ | ⊢ |g| ⇒ |↑P|.

(3) If Θ ;Γ ⊢ v⇐ P then |Γ | ⊢ |v| ⇐ |P|.

(4) If Θ ;Γ ⊢ e⇐ N then |Γ | ⊢ |e| ⇐ |N|.

(5) If Θ ;Γ ; [P] ⊢ {ri⇒ ei}i∈I ⇐ N then |Γ |; [|P|] ⊢ |{ri⇒ ei}i∈I| ⇐ |N|.

(6) If Θ ;Γ ; [N] ⊢ s⇒↑P then |Γ |; [|N|] ⊢ |s| ⇒ |↑P|.

Proof. By mutual structural induction on the given refined typing derivation, considering

cases for its concluding rule. The Decl⇐Var case of part (3) and the Decl⇐rec case of

part (4) use Lemma D.29 (Subtyping Erases to Equality). The Decl⇐rec case of part

(4) and the Decl⇐∃ (DeclSpine∀) case of part (3) (part (6)) uses Lemma D.28 (Erasure
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Subst. Invariant). The Decl⇐µ (DeclMatchµ) case of part (3) (part (5)) uses Lemma D.30

(Unrolling Erasure).

Lemma D.32 (Erasure and Substitution Commute). Assume Θ0;Γ0 ⊢ σ : Θ ;Γ .

(1) If Θ ;Γ ⊢ h⇒ P then |[σ ]hh|= [|σ |]h|h|.

(2) If Θ ;Γ ⊢ g⇒↑P then |[σ ]g|= [|σ |]|g|.

(3) If Θ ;Γ ⊢ v⇐ P then |[σ ]v|= [|σ |]|v|.

(4) If Θ ;Γ ⊢ e⇐ N then |[σ ]e|= [|σ |]|e|.

(5) If Θ ;Γ ; [P] ⊢ {ri⇒ ei}i∈I ⇐ N then |[σ ]{ri⇒ ei}i∈I|= [|σ |]|{ri⇒ ei}i∈I|.

(6) If Θ ;Γ ; [N] ⊢ s⇒↑P then |[σ ]s|= [|σ |]|s|.

Proof. By structural induction on the given typing derivation. The proof is straightforward:

apply the i.h. as needed, follow the definitions of substitution and erasure, and use Lemma

D.28 (Erasure Subst. Invariant), Lemma C.43 (Index Id. Subs. Extension), and Lemma

C.66 (Id. Subst. Extension) as needed. We only show the first part.

• Case
(x : R) ∈ Γ

Θ ;Γ ⊢ x⇒ R
Decl⇒Var
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Θ0;Γ0 ⊢σ : Θ ;Γ Given

(x : R) ∈Γ Premise

Θ = Θ1,Θ2 By inversion

Γ = Γ1,Γ2
′′

σ = σ1,v : [⌊σ1⌋]R/x,σ2
′′

Θ0;Γ0 ⊢σ1 : Θ1;Γ1
′′

|σ | = |σ1|, |v| : |[⌊σ1⌋]R|/x, |σ2| By def. of erasure

– Case v = x

|σ | = |σ1|, |v| : |[⌊σ1⌋]R|/x, |σ2| Above

= |σ1|, |x| : |[⌊σ1⌋]R|/x, |σ2| By equality

= |σ1|,x : |[⌊σ1⌋]R|/x, |σ2| By def. of erasure

|[σ ]hx|= x By def. of [−]h−

= [|σ |]hx By def. of [−]h−

= [|σ |]h|x| By def. of erasure

– Case v ̸= x
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|[σ ]hx|= |(v : [⌊σ1⌋]R)| By def. of substitution (at heads)

= (|v| : |[⌊σ1⌋]R|) By definition of [−]−

= [|σ |]hx By def. of [−]h−

= [|σ |]h|x| By def. of erasure

• Case
Θ ⊢ P type[ξ ] Θ ;Γ ⊢ v⇐ P

Θ ;Γ ⊢ (v : P)⇒ P
Decl⇒ValAnnot

|[σ ]h(v : P)|= |([σ ]v : [σ ]P)| By def. of substitution (at heads)

= (|[σ ]v| : |[σ ]P|) By def. of erasure

= ([|σ |]|v| : |[σ ]P|) By i.h.

= ([|σ |]|v| : |P|) By Lemma D.28 (Erasure Subst. Invariant)

= ([|σ |]|v| : [|σ |]|P|) No variables in |P|

= [|σ |]h(|v| : |P|) By def. of substitution (at heads)

= [|σ |]h|(v : P)| By def. of erasure

Lemma D.33 (Erasure of Substitution Typing).

(1) If Θ0;Γ0 ⊢ σ : Θ ;Γ then |Γ0| ⊢ |σ | : |Γ |.

(2) If ⊢ δ : Θ ;Γ then ⊢ |δ | : |Γ |.

Proof.
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(1) By structural induction on the derivation of Θ0;Γ0 ⊢σ :Θ ;Γ , considering cases for its

concluding rule, and using the definition of erasure. The SubstVal case uses Lemma

D.31 (Erasure of Typing) and Lemma D.28 (Erasure Subst. Invariant) and Lemma

D.32 (Erasure and Substitution Commute).

(2) By structural induction on the derivation of ⊢ δ : Θ ;Γ , considering cases for its

concluding rule, and using the definition of erasure. The Valδ case uses Lemma

D.26 (Refinement Subset of Erasure).

Lemma D.34 (|−| and J−K Commute).

If Θ0;Γ0 ⊢ σ : Θ ;Γ and ⊢ δ : Θ0;Γ0 then |JσK
δ
|= J|σ |K|δ |.

Proof. By structural induction on the derivation of Θ0;Γ0 ⊢ σ : Θ ;Γ , considering cases for

its concluding rule.
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Appendix E

Semantic Metatheory of Declarative (Refined) System

Definition E.1 (Fold). In Figure A.49, we informally define fold. Given Θ ⊢ F functor[_]

and Θ ⊢ α : F(τ)⇒ τ and ⊢ δ : Θ , we define the function foldJFK
δ
JαK

δ
: µ JFK

δ
→ JτK as

follows. If µ JFK
δ

is empty, then define it to be the empty function. If µ JFK
δ

is not empty,

then for each V ∈ µ JFK
δ

, choose n > 0 such that V ∈ JFKn
δ

/0 (such an n exists because

µ JFK
δ
= ∪k∈N JFKk

δ
/0 by definition) and define (foldJFK

δ
JαK

δ
) V by (foldn

JFK
δ

JαK
δ
) V

where fold0
JFK

δ

JαK
δ

: /0→ JτK is the empty function and foldk+1
JFK

δ

JαK
δ

: JFKk+1
δ

/0→ JτK is

defined by foldk+1
JFK

δ

JαK
δ
= JαK

δ
◦(JFK

δ
(foldk

JFK
δ

JαK
δ
)). The function fold is well-defined

because the choice of n does not matter.

In Lemma E.6 (Fold Membership), we prove membership foldJFK
δ
JαK

δ
: µ JFK

δ
→ JτK

of Def. E.1 (the definition’s other memberships are proved in order to prove Lemma E.6).

In Lemma E.9 (Semantic Fold), we prove the equality that informally defines fold in Figure

A.49.

For each sort τ , we give it the discrete order d ⊑ d for all d ∈ JτK.

Lemma E.1 (Index Cpo). For any sort τ , the pair (JτK ,⊑JτK), where ⊑JτK is the discrete

order d ⊑JτK d for all d ∈ JτK, is a predomain.
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Proof. By structural induction on τ . Straightforward.

Lemma E.2 (Equal Functor Mu). Assume F and G are functors from Set to Set such that

F = G. Then µF = µG.

Proof. Since F = G, we know FX = GX for all X ∈ Set. If k = 0, then Fk /0 = /0 = Gk /0.

Assume Fk /0 = Gk /0 for fixed k ≥ 0; then Fk+1 /0 = F(Fk /0) = G(Gk /0) = Gk+1 /0. Therefore,

µF = ∪k∈NFk /0 = ∪k∈NGk /0 = µG.

Lemma E.3 (Equal Func. Alg. Mu). Assume F and G are endofunctors on Set. Let X ∈ Set.

Assume α : FX → X and β : GX → X are algebras.

If F = G and α = β then foldF α = foldG β .

Proof. Note that foldF α : µF→ X and foldG β : µG→ X . By Lemma E.2 (Equal Functor

Mu), µF = µG, i.e., these functions have equal domain. By definition, µF = ∪k∈NFk /0.

Denote by fk and gk the kth level functions foldF α and foldG β from Fk /0 to X , respectively.

It suffices to prove that fk = gk for all k ∈N. If k = 0, then both fk and gk equal the unique

empty function. If k = n+1 then:

fn+1 = α ◦F fn By def.

= β ◦G fn Because F = G and α = β

= β ◦Ggn By i.h.

= gn+1 By def.

Lemma E.4 (Filter Out Program Vars.). If ⊢ δ : Θ ;Γ then ⊢ ⌊δ⌋ : Θ .

Proof. By structural induction on the given semantic substitution derivation.
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Lemma E.5 (J−K Weakening Invariant).

Assume ⊢ δ : Ξ and ⊢ δ ′ : Ξ ′ and Ξ ⊆ Ξ ′ and δ ′↾Ξ = δ .

(1) If Ξ ⊢ A type[ξ ]

then JΞ ⊢ A type[ξ ]K
δ
= JΞ ′ ⊢ A type[ξ ]K

δ ′ .

(2) If Ξ ⊢F functor[ξ ] then JΞ ⊢F functor[ξ ]K
δ
= JΞ ′ ⊢F functor[ξ ]K

δ ′ .

(3) If Ξ ⊢ α : F(τ)⇒ τ then JΞ ⊢ α : F(τ)⇒ τK
δ
= JΞ ′ ⊢ α : F(τ)⇒ τK

δ ′ .

Proof. By mutual structural induction on the given type, functor or algebra well-formedness

derivation. Use Lemma C.7 (Ix. J−K Weak. Invariant), Lemma E.2, and Lemma E.3. Use

Lemma C.41 (Ix.-Level Weakening).

Lemma E.6 (Fold Membership). If F is a Set endofunctor and τ is a set and α : F(τ)→ τ

is an algebra then foldF α : µF → τ .

Proof. Suppose V ∈ µF . By Def. E.1, (foldF α) V = (foldn
F α) V where n ∈ N satisfies

V ∈ Fn /0. It is straightforward to show, by induction on n, and by using Def. E.1, that

foldn
F α : Fn /0→ τ . Therefore, (foldF α)V = (foldn

F α)V ∈ τ .

Lemma E.7 (Type WF Sound). Assume ⊢ δ : Ξ .

(1) If Ξ ⊢ A type[ξA] then JAK
δ
∈ rCpo.

(2) If Ξ ⊢F functor[ξF ] then JF K
δ

is a functor from rCpo to rCpo.

(3) If Ξ ⊢ α : F(τ)⇒ τ then JαK
δ

: JFK
δ
JτK→ JτK.

(4) If Ξ ⊢M (F)msmts[ξM ] then JM (F)K
δ
∈ { /0,{•}}.

Proof. By mutual induction on the structure of the given formation derivation.
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(1) Use Lemma D.15 (Unref. Type Denotations) and Lemma D.26 (Refinement Subset

of Erasure). Also use Lemma E.6 (Fold Membership) and Lemma C.21 (Sorting

Soundness) in the DeclTpµ case.

(2) Use Lemma D.15 (Unref. Type Denotations) and Lemma D.26 (Refinement Subset

of Erasure) and Lemma D.27 (Refined and Unrefined fmap Agree) and (unstated

refined version of) Lemma D.3 (Functor Monotone).

(3) • Case
d÷Ξ ⊢ t : τ

Ξ ⊢ ()⇒ t : I(τ)⇒ τ

DeclAlgI

Assume V ∈ JIK
δ
JτK. The latter equals {•} by definition, so V = •.

d÷Ξ ⊢ t : τ Premise

⊢ δ : Ξ Given

⊢ δ↾d÷Ξ
: d÷Ξ By property of restriction

Now,

J()⇒ tK
δ

V = J()⇒ tK
δ
•

= JtK
δ↾d÷Ξ

By def. of denotation

∈ JτK By Lemma C.21 (Sorting Soundness)

• Case
α ◦ inj1 ⊜ α1

α ◦ inj2 ⊜ α2

D1 :: Ξ ⊢ α1 : F1(τ)⇒ τ

D2 :: Ξ ⊢ α2 : F2(τ)⇒ τ

Ξ ⊢ α : (F1⊕F2)(τ)⇒ τ

DeclAlg⊕

Assume V ∈ JF1⊕F2Kδ
JτK. By definition, the latter equals JF1Kδ

JτK⊎JF2Kδ
JτK,
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so there exists j ∈ {1,2} such that V = ( j,Vj) and Vj ∈
q

Fj
y

δ
JτK. By the in-

duction hypothesis for subderivation D j,
q

α j
y

δ
:
q

Fj
y

δ
JτK→ JτK. Therefore,

JαK
δ

V = JαK
δ
( j,Vj) =

q
α j

y
δ

Vj ∈ JτK.

• Case
D1 :: Ξ ,a d÷ τ ,a Id ⊢ q⇒ t : Î(τ)⇒ τ

Ξ ⊢ (a,q)⇒ t : (Id⊗ Î)(τ)⇒ τ

DeclAlgId

Assume V ∈
q
Id⊗ Î

y
δ
JτK. By definition, the latter equals JτK×

q
Î
y

δ
JτK, so

there exist d ∈ JτK and V ′ ∈
q

Î
y

δ
JτK such that V = (d,V ′). By Ixδ Id, ⊢ δ ,d/a :

Ξ ,a d÷τ ,a Id By the i.h. for subderivation D1, Jq⇒ tK
δ ,d/a :

q
Î
y

δ ,d/a JτK→ JτK.

Therefore, J(a,q)⇒ tK
δ
(d,V ′) = Jq⇒ tK

δ ,d/aV ′ ∈ JτK.

• Case
D1 :: Ξ ⊢ q⇒ t : P̂(τ)⇒ τ Ξ ⊢ Q type[_]

Ξ ⊢ (⊤,q)⇒ t : (Q⊗ P̂)(τ)⇒ τ

DeclAlgConst

Assume V ∈
q

Q⊗ P̂
y

δ
JτK. By definition, the latter equals JQK

δ
×

q
P̂
y

δ
JτK.

Therefore, there exist V1 ∈ JQK
δ

and V2 ∈
q

P̂
y

δ
JτK such that V = (V1,V2). By

the i.h. for subderivation D1, Jq⇒ tK
δ

:
q

P̂
y

δ
JτK→ JτK. Therefore, J(⊤,q)⇒ tK

δ
V =

J(⊤,q)⇒ tK
δ
(V1,V2) = Jq⇒ tK

δ
V2 ∈ JτK.

• Case
D1 :: Ξ ,dΞ

′ ⊢ (⊤,q)⇒ t : (Q⊗ P̂)(τ)⇒ τ

Ξ ⊢ (pk(dΞ
′
,⊤),q)⇒ t : (∃dΞ

′
. Q⊗ P̂)(τ)⇒ τ

DeclAlg∃

We want to show that

r
(pk(dΞ

′
,⊤),q)⇒ t

z

δ
:
r
∃dΞ

′
. Q⊗ P̂

z

δ
JτK→ JτK

Suppose V is an element of the domain. Then, by definition of denotation, there

exist V1 ∈
{

V ∈ J|Q|K
∣∣∣ ∃δ ′ ∈ r

dΞ
′
z

.V ∈ JQK
δ ,δ ′

}
and V2 ∈

q
P̂
y

δ
JτK such that
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V = (V1,V2). Now, by definition,

r
(pk(dΞ

′
,⊤),q)⇒ t

z

δ
(V1,V2) = J(⊤,q)⇒ tK

δ ,δ ′ (V1,V2)

where δ ′ ∈
r
dΞ
′
z

is fixed such that V1 ∈ JQK
δ ,δ ′ (that V1 inhabits the set above

implies such a δ ′ exists). By the i.h. for subderivation D1 (and by defini-

tion of denotation), J(⊤,q)⇒ tK
δ ,δ ′ : JQK

δ ,δ ′ ×
q

P̂
y

δ ,δ ′ JτK → JτK. Because

dom(dΞ
′
) is disjoint from FV(P̂), we have

q
P̂
y

δ ,δ ′ JτK =
q

P̂
y

δ
JτK. Therefore,

J(⊤,q)⇒ tK
δ ,δ ′ (V1,V2) ∈ JτK, as desired.

Lemma E.8. If Ξ ⊢F functor[_] and Ξ ⊢ F functor[_] and Ξ ⊢ α : F(τ)⇒ τ

and ⊢ δ : Ξ and n ∈ N and V ∈ JF K
δ
(JFKn

δ
/0)

then (JF K
δ
(foldn

JFK
δ

JαK
δ
))V = (JF K

δ
(foldJFK

δ
JαK

δ
))V

Proof. By structural induction on F .

Lemma E.9 (Semantic Fold).

If Ξ ⊢ F functor[_] and Ξ ⊢ α : F(τ)⇒ τ and ⊢ δ : Ξ

then foldJFK
δ
JαK

δ
= JαK

δ
◦ (JFK

δ
(foldJFK

δ
JαK

δ
)).

Proof. By Lemma E.6 (Fold Membership) and Lemma E.7 (Type WF Sound), both sides

of the equality are elements of µ JFK
δ
→ JτK. Suppose V ∈ µ JFK

δ
. By Def. E.1, there

exists n ∈ N such that V ∈ JFKn
δ

/0 and (foldJFK
δ
JαK

δ
)V = (foldn

JFK
δ

JαK
δ
)V . Continuing,

(foldn
JFK

δ

JαK
δ
)V = JαK

δ
((JFK

δ
(foldn−1

JFK
δ

JαK
δ
))V ) By Def. E.1 (n > 0 since V ∈ JFKn

δ
/0)

= JαK
δ
((JFK

δ
(foldJFK

δ
JαK

δ
))V ) By Lemma E.8

The goal follows by function extensionality.
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Lemma E.10 (Ref. Equal Functor Mu).

If Ξ ⊢ F functor[ξ ] then µ JFK
δ
= JFK

δ
(µ JFK

δ
) for all ⊢ δ : Ξ .

Proof. Similar to Lemma D.8 (Mu is Fixed Point).

Lemma E.11 (Semantic Unroll). If Ξ ⊢ {ν : µF |M (F)} type[ξ ] and δ ∈ JΞK

then the set

{
V ∈ JFK

δ
(µ JFK

δ
)
∣∣∣ JtK

δ
(JαK

δ
(JFK

δ
(foldJFK

δ
JαK

δ
)V )) = JtK

δ
for all LαMF ν t=τ t ∈M (F)

}

is equal to the set

{V ∈ µ JFK
δ
| JM (F)K

δ
V = {•}}

Proof. This follows from Lemma E.10 (Ref. Equal Functor Mu) and Lemma E.9 (Semantic

Fold) and definitions.

Lemma E.12. If δ1↾ξ1
= δ2↾ξ1

and δ1↾ξ2
= δ2↾ξ2

then δ1↾ξ1∪ξ2
= δ2↾ξ1∪ξ2

.

Proof. By structural induction on δ1↾ξ2
= δ2↾ξ2

. Straightforward.

Lemma E.13. If δ1↾ξ ′ = δ2↾ξ ′ and ξ ⊆ ξ ′ then δ1↾ξ = δ2↾ξ .

Proof. By structural induction on δ1↾ξ ′ = δ2↾ξ ′ . Straightforward.

Lemma E.14.

If (δ1,δ )↾ξ = (δ2,δ )↾ξ and ⊢ δ1,δ : Ξ ,dΞ and ⊢ δ2,δ : Ξ ,dΞ and ⊢ δ : dΞ

then δ1↾ξ−dΞ = δ2↾ξ−dΞ .

Proof. Suppose (D�a) ∈ (ξ − dΞ). Then there exists D′ such that D′�a ∈ ξ and a /∈

dom(dΞ) and D′− dΞ =D. Assume δ1↾D = δ2↾D. It suffices to show δ1(a) = δ2(a). By

inversion on the given (δ1,δ ′1)↾ξ = (δ2,δ ′2)↾ξ we know that if (δ1,δ ′1)↾D′ = (δ2,δ ′2)↾D′ then
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(δ1,δ ′1)(a) = (δ2,δ ′2)(a) that is δ1(a) = δ2(a). Therefore, it suffices to show (δ1,δ ′1)↾D′ =

(δ2,δ ′2)↾D′ . But this follows from δ ′1 = δ ′2 (given) and δ1↾D′ = δ2↾D′ , which follows

from a property of restriction with D′− dΞ = D (above) and δ1↾D = δ2↾D (above) and

dom(δ1) = dom(δ2) = dom(Ξ) which is disjoint from dom(dΞ) (by inversion on the pre-

supposed (Ξ ,dΞ) ctx).

Lemma E.15 (Dependency Agreement Closure).

If δ1↾ξ = δ2↾ξ and δ1↾Ξ = δ2↾Ξ and ξ −Ξ ⊢ dΞ 0 det

and ⊢ δ1 : Ξ ,dΞ and ⊢ δ2 : Ξ ,dΞ and dΞ 0 ⊆ dΞ and FV(ξ )⊆ dom(d÷Ξ ,dΞ)

then δ1↾dΞ 0
= δ2↾dΞ 0

.

Proof. By induction on the number of elements in dom(dΞ 0). We implicitly use Lemma

B.4 (Equivalence of cl and det). Assume a ∈ dom(dΞ 0). It suffices to show δ1(a) = δ2(a).

There exists (D−Ξ)�a ∈ ξ −Ξ such that D−Ξ ⊆ cl(ξ −Ξ)( /0) and a /∈ (D−Ξ). By

definition of subtraction, D�a∈ ξ . But δ1↾ξ = δ2↾ξ so δ1↾D= δ2↾D implies δ1(a)= δ2(a).

But D=(D−Ξ)∪(D∩Ξ) and δ1↾Ξ = δ2↾Ξ hence δ1↾D∩Ξ = δ2↾D∩Ξ so it suffices to show

δ1↾D−Ξ = δ2↾D−Ξ . But this follows from the i.h. with dΞ 0↾D−Ξ as dΞ 0 (the set dΞ 0↾D−Ξ

loses at least the a relative to dom(dΞ 0)).

Lemma E.16 (Val.-Det. Indexes Sound (Prop.)).

If ⊢ δ1 : Ξ and δ2 : Ξ and Ξ ⊢ ϕ : τ [ξ ] and JϕK
δ1
= {•}= JϕK

δ2
then δ1↾ξ = δ2↾ξ .

Proof. By structural induction on Ξ ⊢ ϕ : B [ξ ]. Use Lemma E.12 in the Ix∧ case. Use

Lemma E.13 in the IxSub case. In the Ix=, Ix=L, Ix=R, Ix=LR, Ix=× cases, use the given

JϕK
δ1
= {•}= JϕK

δ2
and the definition of denotation.

Lemma E.17 (Soundness of Value-Determined Dependencies).

Assume ⊢ δ1 : Ξ and δ2 : Ξ .
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(1) If Ξ ⊢ P type[ξ ] and V ∈ JPK
δ1

and V ∈ JPK
δ2

then δ1↾ξ = δ2↾ξ .

(2) If Ξ ⊢F functor[ξ ] and X1 and X2 are sets and V ∈ JF K
δ1

X1 and V ∈ JF K
δ2

X2

then δ1↾ξ = δ2↾ξ .

(3) If Ξ ⊢M (F)msmts[ξ ] and V ∈ µ JFK· and JM (F)K
δ1

V = {•}= JM (F)K
δ2

V

then δ1↾ξ = δ2↾ξ .

Proof. By induction on structure of the given well-formedness derivation. Parts (1) and (2)

are mutually recursive. We elide reasoning about restrictions and weakening (for example,

uses of Lemma C.7 (Ix. J−K Weak. Invariant)).

(1) • Case

Ξ ⊢ 0 type[·]
DeclTp0

By a rule, δ1↾· = δ2↾·.

• Cases DeclTp1, DeclTp+, DeclTp↓: Similar to DeclTp0 case.

• Case
Ξ ⊢ R1 type[ξ1] Ξ ⊢ R2 type[ξ2]

Ξ ⊢ R1×R2 type[ξ1∪ξ2]

DeclTp×

Assume V ∈ JR1×R2Kδk
for k = 1,2. By definition of denotation, JR1×R2Kδk

=

JR1Kδk
×JR2Kδk

for k = 1,2, so there exist V1 and V2 such that Vj ∈
q

R j
y

δk
for all

j ∈ {1,2} and k ∈ {1,2}. By the i.h. (twice), we have δ1↾ξk
= δ2↾ξk

for k = 1,2.

By Lemma E.12, δ1↾ξ1∪ξ2
= δ2↾ξ1∪ξ2

.

• Case
Ξ ,dΞ ⊢ Q type[ξQ] ξQ− d÷Ξ ⊢ d

Ξ det

Ξ ⊢ ∃dΞ . Q type[ξQ− d
Ξ ]

DeclTp∃
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Assume V ∈
q
∃dΞ . Q

y
δk

for k = 1,2. By definition of denotation, there ex-

ist δ ′1 ∈
q
dΞ

y
and δ ′2 ∈

q
dΞ

y
such that V ∈ JQK

δk,δ ′k
for k = 1,2. By i.h.,

(δ1,δ ′1)↾ξQ
= (δ2,δ ′2)↾ξQ

. By Lemma E.15 (Dependency Agreement Closure),

δ ′1 = δ ′2. By Lemma E.14, δ1↾ξQ−dΞ = δ2↾ξQ−dΞ .

• Case
Ξ ⊢ R type[ξR] Ξ ⊢ −→ϕ : B [ξ−→

ϕ
]

Ξ ⊢ R∧−→ϕ type[ξR∪ξ−→
ϕ
]

DeclTp∧

Assume V ∈
q

R∧−→ϕ
y

δk
for k = 1,2. By definition of denotation, we have

V ∈ JRK
δk

for k = 1,2. By the i.h., δ1↾ξR
= δ2↾ξR

. By repeated Lemma E.12

and Lemma E.16 (Val.-Det. Indexes Sound (Prop.)), δ1↾ξ−→
ϕ
= δ2↾ξ−→

ϕ
. By Lemma

E.12, δ1↾ξR∪ξ−→
ϕ
= δ2↾ξR∪ξ−→

ϕ
.

• Case
Ξ ⊢M (F)msmts[ξ ]

Ξ ⊢ {ν : µF |M (F)} type[ξ ]
DeclTpµ

Assume V ∈ J{ν : µF |M (F)}K
δk

for k = 1,2.

By inversion, V ∈ µ JFK· and JM (F)K
δ1

V = {•} and JM (F)K
δ2

V = {•}.

The goal follows by part (3).

(2) • Case
Ξ ⊢ P type[ξ ]

Ξ ⊢ P functor[ξ ]

DeclFuncConst

Assume V ∈ JPK
δk

Xk for k = 1,2. By definition of denotation, JPK
δk

Xk = JPK
δk

for k = 1,2. Therefore, V ∈ JPK
δk

for k = 1,2. By the i.h. (part (1)) for sub-

derivation Ξ ⊢ P type[ξ ], we have δ1↾ξ = δ2↾ξ .
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• Case

Ξ ⊢ Id functor[ ·︸︷︷︸
Ξ

]

DeclFuncId

By a rule, δ1↾· = δ2↾·.

• Case DeclFuncI: Similar to DeclFuncId case.

• Case
Ξ ⊢ B̂ functor[ξ1] Ξ ⊢ P̂ functor[ξ2]

Ξ ⊢ B̂⊗ P̂ functor[ξ1∪ξ2︸ ︷︷ ︸
ξ

]

DeclFunc⊗

Assume V ∈
q

B̂⊗ P̂
y

δk
Xk for k= 1,2. By definition of denotation,

q
B̂⊗ P̂

y
δk

Xk =
q

B̂
y

δk
Xk×

q
P̂
y

δk
Xk for k = 1,2. By the i.h. for subderivation Ξ ⊢ B̂ functor[ξ1],

we have δ1↾ξ1
= δ2↾ξ1

. By the i.h. for subderivation Ξ ⊢ P̂ functor[ξ2], we have

δ1↾ξ2
= δ2↾ξ2

. By Lemma E.12 we have δ1↾ξ1∪ξ2
= δ2↾ξ1∪ξ2

.

• Case
Ξ ⊢ F1 functor[ξ1] Ξ ⊢ F2 functor[ξ2]

Ξ ⊢ F1⊕F2 functor[ ·︸︷︷︸
ξ

]

DeclFunc⊕

Similar to DeclFuncI case.

(3) It suffices to show that,

for all (foldF α)ν t=τ b ∈M (F), if δ1↾FV(t) = δ2↾FV(t) then δ1(b) = δ2(b).

Assume (foldF α)ν t=τ b ∈M (F).

By definition, for all k ∈ {1,2}, we have V ∈ µ JFK
δk

and

δk(b) = JtK
δk
((foldJFK

δk
JαK

δk
)V ) (A)

Assume δ1↾FV(t) = δ2↾FV(t).
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By (A), it suffices to show

JtK
δ1
((foldJFK

δ1
JαK

δ1
)V ) = JtK

δ2
((foldJFK

δ2
JαK

δ2
)V )

Because δ1↾FV(t) = δ2↾FV(t), we have JtK
δ1
= JtK

δ2
, and it therefore suffices to show

(foldJFK
δ1

JαK
δ1
)V = (foldJFK

δ2
JαK

δ2
)V

But this follows from the fact that F and α are closed.

Lemma E.18 (Type WF Substitution Soundness).

Assume ⊢ δ : Ξ0 and Ξ0; · ⊢ σ : Ξ ; ·.

(1) If Ξ ⊢ A type[ξ ] then J[σ ]AK
δ
= JAKJσK

δ
.

(2) If Ξ ⊢F functor[ξ ] then J[σ ]F K
δ
= JF KJσK

δ
.

(3) If Ξ ⊢ α : F(τ)⇒ τ then J[σ ]αK
δ
= JαKJσK

δ
.

(4) If Ξ ⊢M (F)msmts[ξ ] then J[σ ]M (F)K
δ
= JM (F)KJσK

δ
.

Proof. By mutual induction on the structure of the given derivation. Use Lemma C.25

(Index Subst. Typing Sound), Lemma C.45 (Ix.-Level Id. Subs. Extension), Lemma D.28,

Lemma C.24 (Index Substitution Soundness), Lemma E.2 (Equal Functor Mu), Lemma E.3

(Equal Func. Alg. Mu), Lemma D.28, Lemma C.12, Lemma C.51 (WF Syn. Substitution),

and Lemma C.81 as needed.

Lemma E.19 (liftapps Sound).

If Ξ ;Ξ ′′;
−−−−−−−−−−−−−−−→
(a,(foldF α)ν _ =τ _) ⊢ O ⇝ Ξ̌ ;M ′(F);O ′ and ⊢ δ ,δ2,δ1 : Ξ ,Ξ ′′,

−−−→
a d÷ τ

and dom(δ2)= dom(Ξ ′′) and dom(δ1)= dom(
−−−→
a d÷ τ)=−→a = π1

(
unzip

(−−−−−−−−−−−−−−−→
(a,(foldF α)ν _ =τ _)

))
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then FV(O ′)∩dom(
−−−→
a d÷ τ) = /0 and JOK

δ ,δ2,δ1
= JO ′K

δ ,δ2,JΞ̌Kfix
δ ,δ2,δ1

;

moreover, if V ∈ µ JFK
δ

then:

dk = (foldJFK
δ
JαkKδ

)V for all (dk/ak,(foldF αk)ν _ =τk _) ∈ zip(δ1)(
−−−−−−−−−−−−→
(foldF α)ν _ =τ _)

implies JM ′(F)K
δ ,δ2,JΞ̌Kfix

δ ,δ2,δ1

V holds.

Proof. By structural induction on Ξ ,Ξ ′′;
−−−−−−−−−−−−−−−→
(a,(foldF α)ν _ =τ _) ⊢O⇝ Ξ̌ ;M ′(F);O ′. Use

weakening and the fact that weakened derivations are semantically equivalent when inter-

preted (weakening invariance). Use Lemma C.54 (liftapps WF).

Lemma E.20 (Unrolling Soundness). If Ξ ⊢ H
−→
β ;G;M (F)I⊜ dΘ ;R and ⊢ δ : Ξ

then the set of all semantic values V ∈ JGK
δ
(µ JFK

δ
) such that

∀(β ,LαMF ν t=τ t) ∈ zip(
−→
β )(M (F)). JtK

δ
(Jβ K

δ
(JGK

δ
(foldJFK

δ
JαK

δ
)V )) = JtK

δ

is equal to the set
q
∃dΘ . R∧ dΘ

y
δ

.

Proof. By structural induction on the given unrolling derivation. We implicitly use Lemma

C.54 (liftapps WF). We may elide uses of Lemma C.21 (Sorting Soundness) and weaken-

ing/restriction reasoning such as Lemma C.6 and Lemma C.7. We only show one case; the

other cases are straightforward.
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• Case −−−→
a d÷ τ =−→a d÷M (F)

Ξ ,
−−−−−−→
a d÷ τ ,a Id ⊢ H

−−−→
q⇒ t ′; Î;M (F)I⊜ Ξ

′′,
−−→
ψ
′′;R′′

Ξ ;Ξ
′′;zip(−→a )(M (F)) ⊢

−−→
ψ
′′ ⇝ Ξ̌1;M1(F);

−→
ψ
′

Ξ ;Ξ
′′;zip(−→a )(M (F)) ⊢ R′′⇝ Ξ̌2;M2(F);R′

Ξ̌ = Ξ̌1∪ Ξ̌2 M ′(F) = M1(F)∪M2(F)

dom(Ξ ′)∩dom(Ξ ,
−−−→
a d÷ τ ,Ξ ′′, Ξ̌) = /0 ρ = Ξ

′/Ξ̌ is a variable renaming

Ξ ⊢ H
−−−−−−→
(a,q)⇒ t ′; Id⊗ Î;M (F)I⊜ Ξ

′,Ξ ′′, [ρ]
−→
ψ
′;
{

ν : µF
∣∣ [ρ]M ′(F)

}
× [ρ]R′

HIdI

– (⊆) Assume V is in the left-hand side.

Unpacking definitions, there exist V1 and V2

such that V = (V1,V2) and V1 ∈ µ JFK
δ

and V2 ∈
q

Î
y

δ
(µ JFK

δ
)

and for all ((a,q)⇒ t ′,(foldF α)ν t=τ t) ∈ zip(
−−−−−−→
(a,q)⇒ t ′)(M (F)) we have

JtK
δ
(
q

q⇒ t ′
y

δ ,d/a (
q

Î
y

δ
(foldJFK

δ
JαK

δ
)V2)) = JtK

δ

where d = (foldJFK
δ

JαK
δ
) V1 which is in JτK by Lemma E.6 (Fold Member-

ship).

Thus we have a ⊢ δ1 :
−−−−−−→
a d÷ τ ,a Id such that each d/a ∈ δ1 has the above proper-

ties. Therefore,

JtK
δ
(
q

q⇒ t ′
y

δ ,δ1
(
q

Î
y

δ
(foldJFK

δ
JαK

δ
)V2)) = JtK

δ

for all (q⇒ t ′,LαMF ν t=τ t) ∈ zip(
−−−→
q⇒ t ′)(M (F)) and we label this (**).

By definitions and Lemma D.26 (Refinement Subset of Erasure), it suffices to
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show there exists δ ′ ∈ JΞ ′,Ξ ′′K such that

(V1,V2) ∈
q{

ν : µF
∣∣ [ρ]M ′(F)

}
× [ρ]R′

y
δ ,δ ′

and Jψ ′K
δ ,δ ′ = {•} for all ψ ′ ∈ [ρ]

−→
ψ ′ .

We already have V1 ∈ µ JFK
δ
= µ JFK

δ ,δ ′ .

By i.h. (and definitions and weakening invariance),

the set of elements V ∈
q

Î
y

δ
(µ JFK

δ
) such that

for all (q⇒ t ′,LαMF ν t=τ t) ∈ zip(
−−−→
q⇒ t ′)(M (F)),

JtK
δ
(
q

q⇒ t ′
y

δ ,δ1
(
q

Î
y

δ
(foldJFK

δ
JαK

δ
)V )) = JtK

δ

is equal to the set
r
∃Ξ ′′. R′′∧

−−→
ψ ′′

z

δ ,δ1
.

This with (**) gives V2 ∈
r
∃Ξ ′′. R′′∧

−−→
ψ ′′

z

δ ,δ1
.

By def. of denotation, there exists δ2 ∈ JΞ ′′K

such that V2 ∈ JR′′K
δ ,δ1,δ2

and Jψ ′′K
δ ,δ1,δ2

= {•} for all ψ ′′ ∈
−−→
ψ ′′ .

By two uses of Lemma E.19 (liftapps Sound) (including its “moreover”)

and weakening invariance it follows that

JR′′K
δ ,δ2,δ1

= JR′K
δ ,δ2,JΞ̌Kfix

δ ,δ2,δ1

and
r−−→

ψ ′′
z

δ ,δ2,δ1
=

r−→
ψ ′

z

δ ,δ2,JΞ̌Kfix
δ ,δ2,δ1

and JM ′(F)K
δ ,δ2,JΞ̌Kfix

δ ,δ2,δ1

V1.

By Lemma E.18 (Type WF Substitution Soundness) and Lemma C.24 (In-

dex Substitution Soundness) and definitions and [ρ−1]ρ = id
Ξ̌

it follows that(q
ρ−1y

JΞ̌Kfix
δ ,δ2,δ1

,δ2

)
meets the requirements for δ ′ (where ρ−1 is defined by

·−1 = · and (ρ ,b/ǎb(u))−1 = ρ−1, ǎb(u)/b).

– (⊇) Assume V ∈
r
∃Ξ ′,Ξ ′′. ({ν : µF | [ρ]M ′(F)}× [ρ]R′)∧ [ρ]

−→
ψ ′

z

δ
.
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By def. of denotation,

there exist δ0 ∈ JΞ ′,Ξ ′′K, V1 ∈ µ JFK
δ

, and V2 ∈ J[ρ]R′K
δ ,δ0

such that V = (V1,V2) and J[ρ]M ′(F)K
δ ,δ0

V1

and Jψ ′K
δ ,δ0

= {•} for all ψ ′ ∈ [ρ]
−→
ψ ′ .

Let δ2 = δ0↾Ξ ′′ . Let δ ′1 = δ0↾Ξ ′ .

Let δ1 be defined similarly to the δ1 of the other direction (⊆).

By Lemma E.18 (Type WF Substitution Soundness)

and Lemma C.24 (Index Substitution Soundness),

V2 ∈ JR′K
δ ,δ2,JρK

δ ′1
and JM ′(F)K

δ ,δ2,JρK
δ ′1

V1

and Jψ ′K
δ ,δ2,JρK

δ ′1
= {•} for all ψ ′ ∈

−→
ψ ′ .

By (two uses of) Lemma E.19 (liftapps Sound) (including its “moreover”)

and weakening invariance it follows that

JR′′K
δ ,δ2,δ1

= JR′K
δ ,δ2,JΞ̌Kfix

δ ,δ2,δ1

and
r−−→

ψ ′′
z

δ ,δ2,δ1
=

r−→
ψ ′

z

δ ,δ2,JΞ̌Kfix
δ ,δ2,δ1

and JM ′(F)K
δ ,δ2,JΞ̌Kfix

δ ,δ2,δ1

V1.

It follows

from Lemma E.17 (Soundness of Value-Determined Dependencies)

and Lemma E.15 (Dependency Agreement Closure)

(with ξM ′− (Ξ ,Ξ ′′) ⊢ Ξ̌ det from Lemma C.54 and Lemma B.4),

that JρK
δ ′1
=

q
Ξ̌

yfix
δ ,δ2,δ1

.

Therefore, V2 ∈
r
∃Ξ ′′. R′′∧

−−→
ψ ′′

z

δ ,δ2
,

and the goal follows straightforwardly by the i.h. and definitions.

Lemma E.21 (µ Subset). If Ξ ⊢ F functor[_] and Ξ ⊢ G functor[_] and ⊢ δ : Ξ

and JFK
δ

X ⊆ JGK
δ

X for all X ∈ Set

then µ JFK
δ
⊆ µ JGK

δ
.
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Proof. It suffices to show JFKn
δ

/0⊆ JGKn
δ

/0 for all n ∈ N by induction on n.

The n = 0 case is trivial. Assume n > 0.

JFKn
δ
= JFKn−1

δ
(JFK

δ
/0) By def.

= JFK
δ
(JFKn−1

δ
/0) By Lemma D.2 (Functor Apps. Commute)

⊆ JFK
δ
(JGKn−1

δ
/0) By i.h. and (refined version of) Lemma D.3 (Functor Monotone)

⊆ JGK
δ
(JGKn−1

δ
/0) Given

= JGKn
δ

/0 By def., Lemma D.2

Lemma E.22 (Fold Subset). If Ξ ⊢ α : F(τ)⇒ τ and Ξ ⊢ β : G(τ)⇒ τ and ⊢ δ : Ξ

and JαK
δ
= Jβ K

δ
on JFK

δ
JτK and JFK

δ
X ⊆ JGK

δ
X for all X ∈ Set

then foldJFK
δ
JαK

δ
= foldJGK

δ
Jβ K

δ
on µ JFK

δ
.

Proof. Follows from Lemma E.6 (Fold Membership), Lemma E.9 (Semantic Fold), Lemma

E.21 (µ Subset), and the given information.

Lemma E.23 (Subtyping Soundness).

(1) If Θ ⊢ A≤± B and δ ∈ JΘK then JAK
δ
⊆ JBK

δ
.

(2) If Ξ ⊢ α;F ≤τ β ;G and δ ∈ JΞK then JFK
δ

X ⊆ JGK
δ

X for any X ∈ Set.

(3) If Ξ ⊢ α;F ≤τ β ;G and δ ∈ JΞK then JαK
δ
= Jβ K

δ
on JFK

δ
JτK.

(4) If Θ ⊢M ′(F ′)≥M (F) and δ ∈ JΘK

then for all V we know JM ′(F ′)K
δ

V implies JM (F)K
δ

V .

Proof. By mutual induction on the given subtyping/submeasuring derivation, case analyz-

ing its concluding rule. We only show parts (1) and (4); parts (2) and (3) are similar but part
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(3) also uses Lemma C.33 (Ix. Equiv. Sound) in the Meas≤I case, as well as Lemma E.17

(Soundness of Value-Determined Dependencies) and Lemma E.15 (Dependency Agree-

ment Closure) in the Meas≤∃R case, and the latter (Meas≤∃R) is otherwise similar to the

≤+∃R case of part (1). We elide uses of Lemma E.5 (J−K Weakening Invariant).

• Case

Θ ⊢ 0≤+ 0
≤+0

J0K
δ
= /0⊆ /0 = J0K

δ

• Case

Θ ⊢ 1≤+ 1
≤+1

J1K
δ
= {•} ⊆ {•}= J1K

δ

• Case
Θ ⊢ R1 ≤+ R′1 Θ ⊢ R2 ≤+ R′2

Θ ⊢ R1×R2 ≤+ R′1×R′2

≤+×

JR1×R2Kδ
= JR1Kδ

× JR2Kδ
By def. of denotation

⊆
q

R′1
y

δ
×

q
R′2

y
δ

By i.h. (twice) and set theory

=
q

R′1×R′2
y

δ
By def. of denotation

• Case
Θ ⊢ P1 ≤+ P′1 Θ ⊢ P2 ≤+ P′2

Θ ⊢ P1 +P2 ≤+ P′1 +P′2

≤++
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Θ ⊢Pk ≤+ P′k Subderivations

JPkKδ
⊆

q
P′k

y
δ

By i.h. (twice)

JP1 +P2Kδ
= JP1Kδ

⊎ JP2Kδ
By def. of denotation

= JP′1Kδ
⊎ JP′2Kδ

By above ⊆

= JP′1 +P′2Kδ
By def. of denotation

• Case
Θ ,−→ϕ ⊢ R≤+ P

Θ ⊢ R∧−→ϕ ≤+ P
≤+∧L

Suppose V ∈
q

R∧−→ϕ
y

δ
. By definition of denotation, V ∈ JRK

δ
and JϕK

δ
= {•} for

all ϕ ∈ −→ϕ . By repeated Propδ , ⊢ δ : Θ ,−→ϕ . By i.h., V ∈ JPK
δ

.

• Case
Θ ,dΞ ⊢ Q≤+ P

Θ ⊢ ∃dΞ . Q≤+ P
≤+∃L

Similar to ≤+∧L case.

• Case
Θ ⊢ R≤+ Q Θ ⊢ −→ϕ true

Θ ⊢ R≤+ Q∧−→ϕ
≤+∧R



533

V ∈ JΘ ⊢ R type[ξ ]K
δ

Suppose

Θ ⊢R≤+ Q Subderivation

JΘ ⊢ R type[ξ ]K
δ
⊆ JΘ ⊢ Q type[ξ ′]K

δ
By i.h.

V ∈ JΘ ⊢ Q type[ξ ′]K
δ

Follows from above

JΘ ⊢ Q type[ξ ′]K
δ
⊆ J|Q|K By Lemma D.26 (Refinement Subset of Erasure)

V ∈ J|Q|K Follows from above

Θ ⊢−→ϕ true Premise

By inversion on PropTrue, JϕK
δ
= {•} for all ϕ ∈ −→ϕ . Therefore,

V ∈
{

V ∈ J|Q|K
∣∣V ∈ JQK

δ
∧ JϕK

δ
= {•} for all ϕ ∈ −→ϕ

}
Follows from above

=
q

Q∧−→ϕ
y

δ
By def. of denotation

• Case
d÷Θ ⊢ −→t /dΞ

′
: dΞ

′
Θ ⊢ R≤+ [

−→t /dΞ
′
]Q

Θ ⊢ R≤+ ∃dΞ
′
. Q

≤+∃R

V ∈ JRK
δ

Suppose

Θ ⊢R≤+ [
−→t /dΞ

′
]Q Subderivation

JRK
δ
⊆

r
[
−→t /dΞ

′
]Q

z

δ
By i.h.

d÷Θ ⊢−→t /dΞ
′ : dΞ

′ Premise
r−→t /dΞ

′
z

δ
∈

r
dΞ
′
z

By repeated Lemma C.21 (Sorting Soundness)
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But

r
[
−→t /dΞ

′
]Q

z

δ
=

r
[Θ/Θ ,−→t /dΞ

′
]Q

z

δ
Identity substitution

= JQKJΘ/Θ ,−→t /dΞ
′K

δ

Lemma E.18 (Type WF Substitution Soundness)

= JQK
δ ,JσK

δ
By def. of denotation

Therefore, V ∈ JQK
δ ,JσK

δ
. Further:

JQK
δ ,JσK

δ
⊆ J|Q|K By Lemma D.26 (Refinement Subset of Erasure)

V ∈ J|Q|K Follows from above

Therefore,

V ∈
{

V ∈ J|Q|K
∣∣∣ ∃δ ′ ∈ r

d
Ξ
′z

.V ∈ JQK
δ ,δ ′

}
Follows from above (set δ

′ = JσK
δ

)

=
r
∃dΞ

′
. Q

z

δ
By def. of denotation

• Case
Θ ⊢M ′(F ′)≥M (F)

Θ ⊢
{

ν : µF ′
∣∣ M ′(F ′)

}
≤+ {ν : µF |M (F)}

≤+µ

By definitions and i.h., part (4).

• Case
Θ ⊢ N ≤− N

Θ ⊢ ↓N ≤+ ↓N
≤+↓

Straightforward (use i.h. for subderivation Θ ⊢ N ≤− N′ and the definition of deno-

tation).

• Case ≤–↑: Similar to case for dual rule ≤+↓.
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• Cases ≤–⊃R, ≤–∀R: Similar to cases for dual rules ≤+∧L and ≤+∃L.

• Case ≤–⊃L: Similar to case for dual rule ≤+∧R.

• Case ≤–∀L: Similar to case for dual rule ≤+∃R.

• Case
Θ ⊢ R′ ≤+ R Θ ⊢ L≤− L′

Θ ⊢ R→ L≤− R′→ L′
≤–→

Suppose f ∈ JR→ LK
δ

. We want to show that f ∈ JR′→ L′K
δ

.

By def. of denotation, f ∈ J|R→ L|K and for all V ∈ JRK
δ

, we have f (V ) ∈ JLK
δ

.

By def. of denotation, it suffices to show that f ∈ J|R′→ L′|K and that for all V ∈

JR′K
δ

, we have f (V ) ∈ JL′K
δ

. The former follows form Lemma D.29 (Subtyping

Erases to Equality). To prove the latter, suppose V ∈ JR′K
δ

. By the i.h. for the

positive subtyping subderivation, V ∈ JRK
δ

. Therefore, f (V ) ∈ JLK
δ

. By the i.h. for

the negative subtyping subderivation, f (V ) ∈ JL′K
δ

.

As for part (4), the case where M (F) = ·F holds vacuously,

and the other case follows from the i.h. and the following:
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· ⊢α ′;F ′ ≤τ α;F Subderivation

Θ ⊢α ′;F ′ ≤τ α;F By weakening

JF ′K
δ

X ⊆ JFK
δ

X for all X ∈ Set By i.h.

Jα ′K
δ
= JαK

δ
on JF ′K

δ
JτK ′′

µ JF ′K
δ
⊆ µ JGK

δ
By Lemma E.21 (µ Subset)

foldJF ′K
δ
Jα ′K

δ
= foldJFK

δ
JαK

δ
on µ JF ′K

δ
By Lemma E.22 (Fold Subset)

d÷Θ ; [τ] ⊢ t′ ≡ t : κ Premise

Jt′K
δ
= JtK

δ
By Lemma C.33 (Ix. Equiv. Sound)

d÷Θ ⊢ t ′ = t true Premise

Jt ′K
δ
= JtK

δ
By inversion on PropTrue

Lemma E.24 (Fold Continuous). Assume ⊢ δ : Ξ and Ξ ⊢ α : F(τ)⇒ τ .

(1) If JαK
δ

is monotone then foldJFK
δ
JαK

δ
is monotone.

(2) If JαK
δ

respects least upper bounds

then foldJFK
δ
JαK

δ
respects least upper bounds.

(3) If JαK
δ

is continuous then foldJFK
δ
JαK

δ
is continuous.

Proof. We only show part (1). Part (2) is similar. Part (3) follows from parts (1) and (2)

and the definition of continuous.

By definition of fold (Def. E.1), it suffices to show that foldk
JFK

δ

JαK
δ

is monotone for

all k ∈ N.
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The empty function fold0
JFK

δ

JαK
δ

vacuously is monotone.

For the inductive step, we assume foldn
JFK

δ

JαK
δ

is monotone and prove foldn+1
JFK

δ

JαK
δ

is monotone. By definition,

foldn+1
JFK

δ

JαK
δ
= JαK

δ
◦ (JFK

δ
(foldn

JFK
δ
JαK

δ
))

By i.h., foldn
JFK

δ

JαK
δ

is monotone. It is straightforward to check that JFK
δ

takes monotone

functions to monotone functions. Therefore, JFK
δ
(foldn

JFK
δ

JαK
δ
) is monotone. We are

given that JαK
δ

is monotone. Because the composition of monotone functions is monotone,

JαK
δ
◦ (JFK

δ
(foldn

JFK
δ

JαK
δ
)) is monotone, which concludes the proof.

Lemma E.25. If Ξ ⊢F functor[_] and Ξ ⊢F functor[_] and k∈N and V ∈ J|F |K (J|F |Kk /0)

and ⊢ δ : Ξ and V ∈ JF K
δ
(µ JFK

δ
), then V ∈ JF K

δ
(JFKk

δ
/0).

Proof. By lexicographic induction, first, on k, and, second, on the structure of F .

Lemma E.26 (Upward Closure). Assume ⊢ δ : Ξ .

(1) If Ξ ⊢ α : F(τ)⇒ τ then JαK
δ

is monotone.

(2) If Ξ ⊢F functor[_] and Ξ ⊢ F functor[_] and k ∈ N

and V ∈ JF K
δ
(JFKk

δ
/0) and V ⊑J|F |K(J|F |Kk /0) V ′

then V ′ ∈ JF K
δ
(JFKk

δ
/0).

(3) If Ξ ⊢ A type[_] and V ∈ JAK
δ

and V ⊑J|A|K V ′ then V ′ ∈ JAK
δ

.

Proof. By lexicographic induction, first, on the structure of A or F (parts (1), (2) and (3),

mutually), and, second, on ⟨k,F structure⟩ (part (2)), where ⟨. . .⟩ denotes lexicographic

order.
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(1) By Lemma E.7 (Type WF Sound), JαK
δ

: JFK
δ
JτK→ JτK. We case analyze the given

algebra well-formedness derivation.

• Case
Ξ ,dΞ

′ ⊢ (⊤,q)⇒ t : (Q⊗ P̂)(τ)⇒ τ

Ξ ⊢ (pk(dΞ
′
,⊤),q)⇒ t : (∃dΞ

′
. Q⊗ P̂)(τ)⇒ τ

DeclAlg∃

Suppose V ⊑J∃dΞ
′. Q⊗P̂K

δ
JτK V ′. By def. of J−K,

r
∃dΞ

′. Q⊗ P̂
z

δ
JτK =

r
∃dΞ

′. Q
z

δ
×

q
P̂
y

δ
JτK. Therefore, there exist V1 and V ′1 in J∃ξ ′. QK

δ
and V2 and V ′2 in

q
P̂
y

δ
JτK such that V = (V1,V2) and V ′ = (V ′1,V ′2) and V1 ⊑J∃dΞ

′. QK
δ

V ′1 and

V2 ⊑JP̂K
δ
JτK V ′2.

On one hand,

Ξ ,dΞ
′ ⊢ (⊤,q)⇒ t : (Q⊗ P̂)(τ)⇒ τ Subderivation

By def., there exists δ ′ ∈
r
dΞ
′
z

such that V1 ∈ JQK
δ ,δ ′ and

r
(pk(dΞ

′,⊤),q)⇒ t
z

δ
(V1,V2) = J(⊤,q)⇒ tK

δ ,δ ′ (V1,V2)

⊑ J(⊤,q)⇒ tK
δ ,δ ′ (V

′
1,V ′2) By i.h.

On the other hand, by def., there exists δ ′′ ∈
r
dΞ
′
z

such that V ′1 ∈ JQK
δ ,δ ′′ and

r
(pk(dΞ

′,⊤),q)⇒ t
z

δ
(V ′1,V ′2) = J(⊤,q)⇒ tK

δ ,δ ′′ (V
′
1,V ′2)

By def. of V1⊑J∃dΞ
′. QK

δ

V ′1, we have V1⊑J|Q|K V ′1. Above, we have V1 ∈ JQK
δ ,δ ′ .

By i.h. (part (3)), V ′1 ∈ JQK
δ ,δ ′ . But (above) V ′1 ∈ JQK

δ ,δ ′′ , so, by Lemma

E.17 (Soundness of Value-Determined Dependencies) and Lemma E.15 (De-

pendency Agreement Closure), δ ′ = δ ′′, which concludes this case.

• The remaining cases are straightforward.
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(2) We case analyze F .

• Case F = I:

JIK (J|F |Kk /0) = {•} By def.

V ⊑{•}V ′ Rewrite given

V ′ ∈{•} By def. of ⊑

= JIK
δ
(JFKk

δ
/0) By def.

• Case F = Id:

JIdK (J|F |Kk /0) = J|F |Kk /0 By def.

V ⊑J|F |K(J|F |Kk−1 /0) V ′ Rewrite given

V ∈ JFK
δ
(JFKk−1

δ
/0) Rewrite given similarly

V ′ ∈ JFK
δ
(JFKk−1

δ
/0) By i.h.

= JIdK
δ
(JFKk

δ
/0) By def.

• Case F = P:

JPK (J|F |Kk /0) = JPK By def.

V ⊑JPK V ′ Rewrite given

V ∈ JPK
δ

Rewrite given similarly

V ′ ∈ JPK
δ

By i.h.

= JPK
δ
(JFKk

δ
/0) By def.

• Case F = B̂⊗ P̂:
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q
|B̂|⊗ |P̂|

y
(J|F |Kk /0) =

q
|B̂|

y
(J|F |Kk /0)×

q
|P̂|

y
(J|F |Kk /0) By def.

V ⊑J|B̂|K(J|F |Kk /0)×J|P̂|K(J|F |Kk /0) V ′ Rewrite given

V ∈
q

B̂
y

δ
(JFKk

δ
/0)×

q
P̂
y

δ
(JFKk

δ
/0) Rewrite given

(similarly)

V = (V1,V2) By inversion

V1 ∈
q

B̂
y

δ
(JFKk

δ
/0) ′′

V2 ∈
q

P̂
y

δ
(JFKk

δ
/0) ′′

V ′ ∈
q
|B̂|

y
(J|F |Kk /0)×

q
|P̂|

y
(J|F |Kk /0) By def. of ⊑×

V ′ = (V ′1,V ′2)
′′

V ′1 ∈
q
|B̂|

y
(J|F |Kk /0) ′′

V ′2 ∈
q
|P̂|

y
(J|F |Kk /0) ′′

V1 ⊑J|B̂|K(J|F |Kk /0) V ′1
′′

V2 ⊑J|P̂|K(J|F |Kk /0) V ′2
′′

V ′1 ∈
q

B̂
y

δ
(JFKk

δ
/0) By i.h.

V ′2 ∈
q

P̂
y

δ
(JFKk

δ
/0) By i.h.

V ′ = (V ′1,V ′2) Above

∈
q

B̂
y

δ
(JFKk

δ
/0)×

q
P̂
y

δ
(JFKk

δ
/0) By set theory

=
q

B̂⊗ P̂
y

δ
(JFKk

δ
/0) By def.

• Case F = F1⊕F2: Similar to F = B̂⊗ P̂ case.

(3) We case analyze A.
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• Case A = {ν : µF |M (F)}:

V ∈ J{ν : µF |M (F)}K
δ

Given

= {V ∈ µ J|F |K |V ∈ µ JFK
δ

and JM (F)K
δ

V = {•}} By def.

V ∈ µ JFK
δ

By set theory

By def., JtK
δ
((foldJFK

δ
JαK

δ
)V ) = JtK

δ
for all (foldF α)ν t=τ t ∈M (F).

V ⊑Jµ|F |K V ′ Given

V ⊑J|F |K(J|F |Kn /0) V ′ By def. of ⊑, there exists such an n

V ∈ J|F |K (J|F |Kn /0) ′′

V ∈ µ JFK
δ

Above

= JFK
δ
(µ JFK

δ
) By Lemma E.10 (Ref. Equal Functor Mu)

V ∈ JFK
δ
(JFKn

δ
/0) By Lemma E.25

V ′ ∈ JFK
δ
(JFKn

δ
/0) By i.h.

⊆ ∪k∈N JFKk
δ

/0 By set theory

= µ JFK
δ

By def.

⊆ µ J|F |K By Lemma D.26 (Refinement Subset of Erasure) . . .

. . . and def. of µ

Ξ ⊢{ν : µF |M (F)} type[_] Given

By i.h. with algebra formations subderivations,

for all (foldF α)ν t=τ t ∈M (F), we have the following:
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JαK
δ

monotone By i.h.

JαK
δ

: JFK
δ
JτK→ JτK By Lemma E.7 (Type WF Sound)

(foldJFK
δ
JαK

δ
) monotone By Lemma E.24 (Fold Continuous)

V ⊑Jµ|F |K V ′ Above

(foldJFK
δ
JαK

δ
)V ⊑JτK (foldJFK

δ
JαK

δ
)V ′ By def. of monotone

JtK
δ
= JtK

δ
((foldJFK

δ
JαK

δ
)V ) Above

= JtK
δ
((foldJFK

δ
JαK

δ
)V ′) JτK has discrete order

V ′ ∈ J{ν : µF |M (F)}K
δ

Follows from above

• The remaining cases are straightforward.

Appendix E.1 Refined Type and Substitution Soundness

Theorem E.1 (Program Typing Soundness). Assume ⊢ δ : Θ ;Γ .

(1) If Θ ;Γ ⊢ h⇒ P then JhK
δ
∈ JPK⌊δ⌋.

(2) If Θ ;Γ ⊢ g⇒↑P then JgK
δ
∈ J↑PK⌊δ⌋.

(3) If Θ ;Γ ⊢ v⇐ P then JvK
δ
∈ JPK⌊δ⌋.

(4) If Θ ;Γ ⊢ e⇐ N then JeK
δ
∈ JNK⌊δ⌋.

(5) If Θ ;Γ ; [P] ⊢ {ri⇒ ei}i∈I ⇐ N then J{ri⇒ ei}i∈IKδ
∈ JPK⌊δ⌋⇒ JNK⌊δ⌋.

(6) If Θ ;Γ ; [N] ⊢ s⇒↑P then JsK
δ
∈ JNK⌊δ⌋⇒ J↑PK⌊δ⌋.
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Proof. By mutual induction on the structure of the given typing derivation. Note that,

throughout the proof, we implicitly use Lemma E.4 (Filter Out Program Vars), Lemma

D.32 (Erasure and Substitution Commute), and Lemma C.2 (Filter Out Propositions). By

Lemma D.23 (Unrefined Typing Soundness), we only need to show that the denotation of

the program term is in the refined set (as stated in the theorem).

(1) • Case
(x : R) ∈ Γ

Θ ;Γ ⊢ x⇒ R
Decl⇒Var

JxK
δ
= J|x|K|δ | By def. of J−K

= JxK|δ | By def. of |−|

=(|δ |)(x) By def. of J−K

= δ (x) By def. of |−|

∈ JRK⌊δ⌋ By inversion on ⊢ δ : Θ ;Γ and (x : R) ∈ Γ ,

using Lemma E.5 (J−K Weakening Invariant) if needed

• Case
Θ ⊢ P type[ξ ] Θ ;Γ ⊢ v⇐ P

Θ ;Γ ⊢ (v : P)⇒ P
Decl⇒ValAnnot
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⊢ δ : Θ ;Γ Given

Θ ;Γ ⊢ v⇐ P Subderivation

J(v : P)K
δ
= J|(v : P)|K|δ | By def. of J−K

= J(|v| : |P|)K|δ | By def. of |−|

= J|v|K|δ | By def. of J−K

= JvK
δ

By def. of J−K

∈ JPK⌊δ⌋ By i.h.

(2) • Case
Θ ;Γ ⊢ h⇒↓N Θ ;Γ ; [N] ⊢ s⇒↑P

Θ ;Γ ⊢ h(s)⇒↑P
Decl⇒App
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⊢ δ : Θ ;Γ Given

Θ ;Γ ⊢ h⇒↓N Subderivation

JhK
δ
∈ J↓NK⌊δ⌋ By i.h.

= JNK⌊δ⌋ By def. of J−K

Θ ;Γ ; [N] ⊢ s⇒↑P Subderivation

JsK
δ
∈ JNK⌊δ⌋⇒ J↑PK⌊δ⌋ By i.h.

Jh(s)K
δ
= J|h(s)|K|δ | By def. of J−K

= J|h|(|s|)K|δ | By def. of |−|

= J|s|K|δ | J|h|K|δ | By def. of J−K

= JsK
δ
JhK

δ
By def. of J−K

∈ J↑PK⌊δ⌋ Function application

• Case
Θ ⊢ P type[ξ ] Θ ;Γ ⊢ e⇐↑P

Θ ;Γ ⊢ (e : ↑P)⇒↑P
Decl⇒ExpAnnot

Similar to the Decl⇒ValAnnot case of part (1).

(3) • Case
(x : R′) ∈ Γ Θ ⊢ R′ ≤+ R

Θ ;Γ ⊢ x⇐ R
Decl⇐Var
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⊢ δ : Θ ;Γ Given

JxK
δ
= J|x|K|δ | By def. of J−K

= JxK|δ | By def. of |−|

=(|δ |)(x) By def. of J−K

= δ (x) By def. of |−|

∈ JR′K⌊δ⌋ By inversion on ⊢ δ : Θ ;Γ and premise (x : R′) ∈ Γ ,

using Lemma E.5 (J−K Weakening Invariant) if needed

⊆ JR′K⌊δ⌋ By Lemma E.23 (Subtyping Soundness)

with premise Θ ⊢ R′ ≤+ R

• Case Decl⇐1: Straightforward.

• Case Decl⇐×: Straightforward.

• Case Decl⇐+k: Straightforward.

• Case
Θ ;Γ ⊢ v⇐ [

−→t /dΞ
′
]Q d÷Θ ⊢ −→t /dΞ

′
: dΞ

′

Θ ;Γ ⊢ v⇐ (∃dΞ
′
. Q)

Decl⇐∃
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d÷Θ ⊢−→t /dΞ
′ : dΞ

′ Premise

Let σ =
−→t /dΞ

′.

JσK⌊δ⌋ ∈
r
dΞ
′
z

By repeated Lemma C.21

JvK
δ
= J|v|K|δ | By def. of J−K

= JΘ ;Γ ⊢ v⇐ [σ ]QK
δ

By def. of J−K

∈ J[σ ]QK⌊δ⌋ By i.h.

= J[idΘ ,σ ]QK⌊δ⌋ By Lemma C.81

= JQKJidΘ ,σK⌊δ⌋
By Lemma E.18

= JQK⌊δ⌋,JσK⌊δ⌋
By def. of J−K

⊆
{

V ∈ J|Q|K
∣∣∣ ∃δ ′ ∈ r

dΞ
′
z

.V ∈ JQK⌊δ⌋,δ ′
}

By Lemma D.26

(and JσK⌊δ⌋ ∈
r
dΞ
′
z

)

=
r
∃dΞ

′. Q
z

⌊δ⌋
By def. of J−K

• Case Decl⇐∧: Similar to case for Decl⇐∃.

• Case
∄x. v0 =

−−−→iinjki

(−−−−→j⟨_ j,−⟩ x
)

M (F)⇝−→α ;−→τ
d÷Θ ⊢ H−→α ;F ;M (F)I⊜ d

Θ ;R Θ ;Γ ⊢ v0⇐∃dΘ . R∧ d
Θ

Θ ;Γ ⊢ into(v0)⇐{ν : µF |M (F)}
Decl⇐µ

By definition of J−K and |−|, by the i.h., and by Lemma E.20 (Unrolling Sound-

ness), Lemma E.11 (Semantic Unroll), and Lemma D.26 (Refinement Subset of

Erasure).

• Case Decl⇐↓: Straightforward.
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(4) • Case Decl⇐↑: Straightforward.

• Case
Θ ;Γ ⊢ g⇒↑(∃dΞ . R∧−→ψ ) Θ ,dΞ ,−→ψ ;Γ ,x : R ⊢ e0⇐ L

Θ ;Γ ⊢ let x=g; e0⇐ L
Decl⇐let

Θ ;Γ ⊢ g⇒↑(∃dΞ . R∧−→ψ ) Subderivation

JgK
δ
∈

q
↑(∃dΞ . R∧−→ψ )

y
⌊δ⌋ By i.h.

=
{
(1,V )

∣∣∣V ∈
q
∃dΞ . R∧−→ψ

y
⌊δ⌋

}
By def. of J−K

Therefore, there exist δ ′ ∈
r
dΞ
′
z

and V such that V ∈ JRK⌊δ⌋,δ ′ and JψK⌊δ⌋,δ ′ =

{•} for all ψ ∈ −→ψ and JgK
δ
= (1,V ). By definition, JgK

δ
= J|g|K|δ |. By transi-

tivity, J|g|K|δ | = (1,V ).

⊢ δ : Θ ;Γ Given

⊢ δ ,δ ′,V/x : Θ ,dΞ
′;Γ ,x : R By rules

Θ ,dΞ
′,−→ψ ;Γ ,x : R ⊢ e0⇐ L Subderivation

Jlet x=g; e0Kδ
= J|let x=g; e0|K|δ | By def. of J−K

= Jlet x= |g|; |e0|K|δ | By def. of |−|

= J|e0|K|δ |,V/x By def. of J−K

= J|e0|K|δ ,δ ′,V/x| By def. of |−|

= Je0Kδ ,δ ′,V/x By def. of J−K

∈ JLK⌊δ ,δ ′,V/x⌋ By i.h.

= JLK⌊δ⌋,δ ′ By def. of ⌊−⌋

= JLK⌊δ⌋ FV(L)∩dom(dΞ
′
) = /0

• Case Decl⇐match: Straightforward.
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• Case Decl⇐λ : Similar to Decl⇐let case, but simpler.

• Case
Θ ⊢ ∀a d÷N,dΞ . M ≤− L

Θ ,a÷N;Γ ,x : ↓∀a′ d÷N,dΞ . a′ < a⊃ [a′/a]M ⊢ e0⇐∀dΞ . M

Θ ;Γ ⊢ rec x : (∀a d÷N,dΞ . M). e0⇐ L
Decl⇐rec

For each k ∈ N, define Xk =
q
↓∀a′ d÷N,dΞ . a′ < a⊃ [a′/a]M

y
⌊δ⌋,k/a.

For all k ∈ N,

Xk =
q
↓∀a′ d÷N,dΞ . a′ < a⊃ [a′/a]M

y
⌊δ⌋,k/a By Xk def.

=
q
∀a′ d÷N,dΞ . a′ < a⊃ [a′/a]M

y
⌊δ⌋,k/a By J−K def.

=
{

f ∈ J|[a′/a]M|K
∣∣∣ ∀n < k,δ ′ ∈

q
dΞ

y
. f ∈ J[a′/a]MK⌊δ⌋,k/a,n/a′,δ ′

}
By J−K def.

=
{

f ∈ J|M|K
∣∣∣ ∀n < k,δ ′ ∈

q
dΞ

y
. f ∈ J[a′/a]MK⌊δ⌋,k/a,n/a′,δ ′

}
Lemma D.28

=
{

f ∈ J|M|K
∣∣∣ ∀n < k,δ ′ ∈

q
dΞ

y
. f ∈ J[a′/a]MK⌊δ⌋,n/a′,δ ′

}
Lemma E.5

=
{

f ∈ J|M|K
∣∣∣ ∀n < k,δ ′ ∈

q
dΞ

y
. f ∈ JMK⌊δ⌋,n/a,δ ′

}
Lemma E.18

Define g : J|M|K → J|M|K by V 7→ J|e0|K|δ |,V/x (well-defined by Lemma D.23

(Unrefined Typing Soundness)). By Lemma D.22 (Continuous Maps), g is con-

tinuous (i.e., g is monotone and respects lubs).

For each k ∈ N, define gk as follows:

g0 =⊥J|M|K

g j+1 = g(g j)

Because g0 is the bottom element of J|M|K and g : J|M|K→ J|M|K is monotone,

we know gk ⊑J|M|K gk+1 for all k ∈ N.
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By definition of J−K and |−|,

r
rec x : (∀a d÷N,dΞ . M). e0

z

δ
= Jrec x. |e0|K|δ |

=
⊔

k∈N
gk

Therefore, to complete this case, it suffices to show that ⊔k∈Ngk ∈ JLK⌊δ⌋.

To this end, we show that gk ∈ Xk for all k ∈ N by induction on k. Now, g0 =

⊥J|M|K ∈ J|M|K because J|M|K ∈ Cppo by Lemma D.15 (Unref. Type Denota-

tions). For the inductive step, we assume gm ∈ Xm and will prove gm+1 ∈ Xm+1.

Now,

gm+1 = g(gm) By def. of gk

= J|e0|K|δ |,gm/x By def. of g

= Je0Kδ ,m/a,gm/x By def. of J−K

∈
q
∀dΞ . M

y
⌊δ⌋,m/a By i.h. and def. of ⌊−⌋

⊆ J|M|K By Lemma D.26 (Refinement Subset of Erasure)

gm ⊑J|M|K gm+1 Above

gm ∈Xm Above

gm+1 ∈Xm By Lemma E.26 (Upward Closure)
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gm+1 ∈Xm∩
q
∀dΞ . M

y
⌊δ⌋,m/a Set theory

=
{

f ∈ J|M|K
∣∣∣ ∀n < m,δ ′ ∈ dΞ . f ∈ JMK⌊δ⌋,n/a,δ ′

}
∩

q
∀dΞ . M

y
⌊δ⌋,m/a Above

=
{

f ∈ J|M|K
∣∣∣ ∀n < m+1,δ ′ ∈

q
dΞ

y
. f ∈ JMK⌊δ⌋,n/a,δ ′

}
Set theory

and J−K def.

= Xm+1 Above

We have just proved that gk ∈ Xk for all k ∈ N.

Because J|M|K ∈ Cppo, it is chain-complete. But g0 ⊑ g1 ⊑ ·· · is a chain in

J|M|K, so it has a lub ⊔k∈Ngk in J|M|K (by chain-completeness).

Next, we show that ⊔k∈Ngk ∈
q
∀dΞ . M

y
⌊δ⌋, j/a for all j ∈ N. Suppose j ∈ N.

Then:

g j+1 ⊑J|M|K ⊔k∈Ngk By def. of lub

g j+1 ∈X j+1 Above

=
{

f ∈ J|M|K
∣∣∣ ∀n < j+1,δ ′ ∈

q
dΞ

y
. f ∈ JMK⌊δ⌋,n/a,δ ′

}
Above

⊆
q
∀dΞ . M

y
⌊δ⌋, j/a Straightforward

⊔k∈Ngk ∈
q
∀dΞ . M

y
⌊δ⌋, j/a By Lemma E.26 (Upward Closure)

Therefore, ⊔k∈Ngk ∈
q
∀dΞ . M

y
⌊δ⌋, j/a for all j ∈ N, and we have:

⊔k∈Ngk ∈
⋂

j∈N
q
∀dΞ . M

y
⌊δ⌋, j/a By def. of intersection

=
q
∀a d÷N,dΞ . M

y
⌊δ⌋ By def. of J−K, set theory, and Lemma D.26

⊆ JLK⌊δ⌋ By Lemma E.23 (Subtyping Soundness)

(with premise Θ ⊢ ∀a d÷N,dΞ . M ≤− L)
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That completes this case.

• Case
Θ ,dΞ ;Γ ⊢ e⇐M

Θ ;Γ ⊢ e⇐∀dΞ . M
Decl⇐∀

Assume δ ′ ∈
q
dΞ

y
.

JeK
δ
= JeK

δ ,δ ′ FV(e)⊆ dom(Θ ;Γ )

∈ JMK
δ ,δ ′ By i.h.

JeK
δ
∈

q
∀dΞ . M

y
δ

By def. of J−K

• Case Decl⇐⊃: Similar to Decl⇐∀ case.

• Case Decl⇐Unreachable: Straightforward. Use Lemma D.15 (Unref. Type

Denotations).

(5) • Case DeclMatch∃: Similar to Decl⇐∀ case of part (4).

• Case DeclMatch∧: Similar to DeclMatch∃ case.

• Case DeclMatchµ: Similar to Decl⇐µ case of part (3).

• The remaining cases are straightforward or similar to previous cases.

(6) • Case DeclSpine∀: Similar to case for dual rule Decl⇐∃ of part (3).

• Cases DeclSpine⊃: Similar to DeclSpine∀ case.

• Case DeclSpineApp: Straightforward.

• Case DeclSpineNil: Straightforward.
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Lemma E.27 (⌊−⌋ and J−K Commute). If Θ0;Γ0 ⊢ σ : Θ ;Γ and ⊢ δ : Θ0;Γ0

then ⌊JσK
δ
⌋= J⌊σ⌋K⌊δ⌋.

Proof. By structural induction on Θ0;Γ0 ⊢ σ : Θ ;Γ .

Lemma E.28 (Substitution Typing Soundness).

If Θ0;Γ0 ⊢ σ : Θ ;Γ then ⊢ JσK
δ

: Θ ;Γ for all ⊢ δ : Θ0;Γ0,

Proof. By structural induction on the given substitution typing derivation. Consider cases

for the rule concluding it:

• Case

Θ0;Γ0 ⊢ · : ·; ·
SubstEmpty

⊢ · : ·; · By Emptyδ

• Case
Θ0;Γ0 ⊢ σ

′ : Θ
′;Γ Θ0 ⊢ t : τ a /∈ dom(Θ ′)

Θ0;Γ0 ⊢ σ
′, t/a : Θ

′,a÷ τ;Γ
SubstIx

Θ0;Γ0 ⊢σ ′ : Θ ′;Γ Subderivation

⊢ Jσ ′K
δ

: Θ ′;Γ By i.h.

Θ0 ⊢ t : τ Premise

JtK⌊δ⌋ ∈ JτK By Lemma C.21

⊢
q

σ
′y

δ
,JtK⌊δ⌋ /a︸ ︷︷ ︸
JσK

δ

: Θ ′,a÷ τ;Γ By Ixδ and Def. C.2

• Case SubstIxDet: Similar to SubstIx case.
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• Case
Θ0;Γ0 ⊢ σ : Θ

′;Γ Θ0 ⊢ [⌊σ⌋]ϕ true

Θ0;Γ0 ⊢ σ : Θ
′,ϕ;Γ

SubstProp

Θ0;Γ0 ⊢σ : Θ ′;Γ Subderivation

⊢ JσK
δ

: Θ ′;Γ By i.h.

⊢ ⌊δ⌋ : Θ0 By Lemma E.4 (Filter Out Program Vars)

Θ0 ⊢ ⌊σ⌋ : Θ ′ By Lemma C.1 (Filter Out Prog. Vars. Syn)

Θ0 ⊢ [⌊σ⌋]ϕ true Premise

{•} = J[⌊σ⌋]ϕK⌊δ⌋ By inversion on PropTrue

= JϕKJ⌊σ⌋K⌊δ⌋ By Lemma C.24 (Index Substitution Soundness)

= JϕK⌊JσK
δ
⌋ By Lemma E.27 (⌊−⌋ and J−K Commute)

⊢ JσK
δ

: Θ ′,ϕ;Γ By Propδ

• Case
Θ0;Γ0 ⊢ σ

′ : Θ ;Γ ′ Θ0;Γ0 ⊢ v⇐ [⌊σ ′⌋]R x /∈ dom(Γ ′)

Θ0;Γ0 ⊢ σ
′,v : [⌊σ ′⌋]R/x : Θ ;Γ ′,x : R

SubstVal

Θ0;Γ0 ⊢σ ′ : Θ ;Γ ′ Subderivation

⊢ Jσ ′K
δ

: Θ ;Γ ′ By i.h.

JvK
δ
∈ J[⌊σ ′⌋]RK⌊δ⌋ By Theorem E.1

= JRKJ⌊σ ′⌋K⌊δ⌋ By Theorem E.18

= JRK⌊Jσ ′K
δ
⌋ By Lemma E.27 (⌊−⌋ and J−K Commute)

⊢ Jσ ′K
δ

,JvK
δ
/x : Θ ;Γ ′,x : R By Valδ

⊢ Jσ ′,v/xK
δ

: Θ ;Γ ′,x : R By def. of J−K
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Theorem E.2 (Soundness of Substitution).

Assume ⊢ δ : Θ0;Γ0 and Θ0;Γ0 ⊢ σ : Θ ;Γ .

(1) If Θ ;Γ ⊢ h⇒ P

then for all Q such that Θ0 ⊢ Q≤+ [⌊σ⌋]P and Θ0;Γ0 ⊢ [σ ]h⇒ Q

we have JΘ0;Γ0 ⊢ [σ ]h⇒ QK
δ
= JΘ ;Γ ⊢ h⇒ PKJσK

δ
.

(2) If Θ ;Γ ⊢ g⇒↑P

then for all Q such that Θ0 ⊢ ↑Q≤− [⌊σ⌋]↑P and Θ0;Γ0 ⊢ [σ ]g⇒↑Q

we have JΘ0;Γ0 ⊢ [σ ]g⇒↑QK
δ
= JΘ ;Γ ⊢ g⇒↑PKJσK

δ
.

(3) If Θ ;Γ ⊢ v⇐ P then JΘ0;Γ0 ⊢ [σ ]v⇐ [⌊σ⌋]PK
δ
= JΘ ;Γ ⊢ v⇐ PKJσK

δ
.

(4) If Θ ;Γ ⊢ e⇐ N then JΘ0;Γ0 ⊢ [σ ]e⇐ [⌊σ⌋]NK
δ
= JΘ ;Γ ⊢ e⇐ NKJσK

δ
.

(5) If Θ ;Γ ; [P] ⊢ {ri⇒ ei}i∈I ⇐ N then

JΘ0;Γ0; [[⌊σ⌋]P] ⊢ {ri⇒ [σ ]ei}i∈I ⇐ [⌊σ⌋]NK
δ
= JΘ ;Γ ; [P] ⊢ {ri⇒ ei}i∈I ⇐ NKJσK

δ

(6) If Θ ;Γ ; [N] ⊢ s⇒↑P

then JΘ0;Γ0; [[⌊σ⌋]N] ⊢ [σ ]s⇒↑ [⌊σ⌋]PK
δ
= JΘ ;Γ ; [N] ⊢ s⇒↑PKJσK

δ
.

Proof. Note that by Lemma E.28 (Substitution Typing Soundness), ⊢ JσK
δ

: Θ ;Γ .

The proof of each part is similar. The first two parts are the most complicated, but also

similar to each other. So, we will show only part (1):

We are given a derivation Θ ;Γ ⊢ h⇒ P. Suppose Θ0 ⊢ Q ≤+ [⌊σ⌋]P and Θ0;Γ0 ⊢

[σ ]h⇒ Q. By Lemma D.31 (Erasure of Typing), |Γ | ⊢ |h| ⇒ |P| and |Γ0| ⊢ |[σ ]h| ⇒ |Q|.
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Further,

|Q|= |[⌊σ⌋]P| By Lemma D.29 (Subtyping Erases to Equality)

= |P| By Lemma D.28 (Erasure Subst. Invariant)

We are also given derivations Θ0;Γ0 ⊢ σ : Θ ;Γ and ⊢ δ : Θ0;Γ0. By Lemma D.33

(Erasure of Substitution Typing), |Γ0| ⊢ |σ | : |Γ | and ⊢ |δ | : |Γ0|.

Therefore,

JΘ0;Γ0 ⊢ [σ ]h⇒ QK
δ

= J|Γ0| ⊢ |[σ ]h| ⇒ |Q|K|δ | By def. of J−K

= J|Γ0| ⊢ [|σ |]|h| ⇒ |Q|K|δ | By Lemma D.32 (Erasure and Substitution Commute)

= J|Γ | ⊢ |h| ⇒ |Q|KJ|σ |K|δ | By Lemma D.25 (Unrefined Substitution Soundness)

= J|Γ | ⊢ |h| ⇒ |Q|K|JσK
δ
| By Lemma D.34 (|−| and J−K Commute)

= J|Γ | ⊢ |h| ⇒ |P|K|JσK
δ
| Above (|Q|= |P|)

= JΘ ;Γ ⊢ h⇒ PKJσK
δ

By def. of J−K
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Appendix F

Basic Properties of Algorithmic System

Algorithmic contexts are always a logical context followed by entries for existential vari-

ables and (possibly) their solutions. In the algorithmic system, we therefore add universal

variables to the left of algorithmic contexts, against the norm of growing contexts right-

ward. Algorithmic context well-formedness is maintained by weakening solutions and

propositions as needed. We leave these details implicit in the algorithmic metatheory.

We often implicitly use the following lemmas.

Lemma F.1 (Right-hand Subst.).

(1) If Ξ̂ ▷ t : τ [ξ ] then Ξ̂ ▷ [Ξ̂ ]t : τ [d[Ξ̂ ]ξ ].

(2) If Ξ̂ ; [τ]▷ t : κ then Ξ̂ ; [τ]▷ [Ξ̂ ]t : κ .

(3) If ∥Ξ̂∥▷u : ω [_] and Ξ̂ ; [ω]▷ t : κ then Ξ̂ ▷ ⟨u | t⟩ : κ [_].

(4) If Ξ̂ ▷A type[ξ ] then Ξ̂ ▷ [Ξ̂ ]A type[d[Ξ̂ ]ξ ].

(5) If Ξ̂ ▷F functor[ξ ] then Ξ̂ ▷ [Ξ̂ ]F functor[d[Ξ̂ ]ξ ].

(6) If Ξ̂ ▷α : F(τ)⇒ τ then Ξ̂ ▷ [Ξ̂ ]α : ([Ξ̂ ]F)(τ)⇒ τ .
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(7) If Ξ̂ ▷M (F)msmts[ξ ] then Ξ̂ ▷ [Ξ̂ ]M ([Ξ̂ ]F)msmts[[Ξ̂ ]ξ ].

Similar statements hold for constraint well-formedness.

Proof. Similar to proof of Lemma C.17 (Ix. Syntactic Substitution) (parts (1) through (3))

and proof of Lemma C.51 (WF Syn. Substitution) (parts (4) through (7)).

Lemma F.2 (Right-hand Subst. (Unroll)).

If Ξ̂ ▷ H
−→
β ;G;M (F)I⊜ dΘ ;R then Ξ̂ ▷ H[Ξ̂ ]

−→
β ; [Ξ̂ ]G; [Ξ̂ ]M ([Ξ̂ ]F)I⊜ [Ξ̂ ]dΘ ; [Ξ̂ ]R.

Proof. Similar to proof of Lemma C.57 (Unrolling Syntactic Substitution).

Lemma F.3 (Alg. Unrolling Output WF).

If Ξ̂ ▷ H
−→
β ;G;M (F)I⊜ dΘ ;R and Ξ̂ ▷G functor[ξG]

then there exists ξ such that Ξ̂ ▷∃dΘ . R∧ dΘ type[ξ ] and ξG ⊆ ξ .

Proof. Similar to proof of Lemma C.55 (Unrolling Output WF).

Appendix F.1 Algorithmic Extension

Lemma F.4 (Extension Sound). If Θ̂
SMT−−−→ Θ̂ ′ then Θ̂

SMT−−−→ Θ̂ ′.

Proof. Almost immediate from definitions.

Lemma F.5 (Ext. Reflexive). If Θ̂ algctx then

(1) Θ̂
SMT−−−→ Θ̂

(2) Θ̂
SMT−−−→ Θ̂

Proof. Almost immediate from definitions.

Lemma F.6 (Ext. Transitive).
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(1) If Θ̂1
SMT−−−→ Θ̂2 and Θ̂2

SMT−−−→ Θ̂3 then Θ̂1
SMT−−−→ Θ̂3.

(2) If Θ̂1
SMT−−−→ Θ̂2 and Θ̂2

SMT−−−→ Θ̂3 then Θ̂1
SMT−−−→ Θ̂3.

(3) If Θ̂1
SMT−−−→ Θ̂2 and Θ̂2

SMT−−−→ Θ̂3 then Θ̂1
SMT−−−→ Θ̂3.

Proof. Each part by straightforward induction on the first given extension derivation. Parts

(2) and (3) use Lemma C.27 (Prop. Truth Equiv. Relation).

Lemma F.7 (Ext. Weakening (Ixs.)). Assume Ξ̂
SMT−−−→ Ξ̂ ′ or Ξ̂

SMT−−−→ Ξ̂ ′.

(1) If Ξ̂ ▷ t : τ [ξ ] then Ξ̂ ′▷ t : τ [ξ ].

(2) If Ξ̂ ; [τ]▷ t : κ then Ξ̂ ′; [τ]▷ t : κ .

Proof. By mutual induction on the structure of the given sorting derivation

We often use the following lemma Lemma F.8 (Extension Restriction) implicitly.

Lemma F.8 (Extension Restriction).

(1) If Θ̂
SMT−−−→ Θ̂ ′ then d÷Θ̂

SMT−−−→ d÷Θ̂ ′.

(2) If Ξ̂
SMT−−−→ Ξ̂ ′ then d÷Ξ̂

SMT−−−→ d÷Ξ̂ ′.

(3) If Θ̂
SMT−−−→ Θ̂ ′ then Θ̂

SMT−−−→ Θ̂ ′.

(The same statements but with relaxed extension do not hold because relaxed extension

may use propositions which d÷− and − remove.)

Proof. (1) By structural induction on the given extension derivation. All evars are value-

determined, so dom(d÷Θ̂) has every evar of dom(Θ̂) (by definition of d÷−). Further,

each evar solution is well-formed under its (restricted, prefix) context because it is
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presupposed that Θ̂ and Θ̂ ′ are well-formed, and solutions in well-formed algorith-

mic contexts are value-determined. Also, d÷− removes propositions, so we need not

worry about their well-formedness in the goal extension (as they cannot exist there).

(2) By structural induction on the given extension derivation. The extension is relaxed

but a Ξ̂ does not have propositions.

(3) By structural induction on the given extension derivation. Propositions aren’t used in

extension (relaxed or otherwise) to check propositional truth because d÷− removes

propositions.

Lemma F.9 (Ext. Weakening (Types)). Assume Ξ̂
SMT−−−→ Ξ̂ ′ or Ξ̂

SMT−−−→ Ξ̂ ′.

(1) If Ξ̂ ▷A type[ξ ] then Ξ̂ ′▷A type[ξ ].

(2) If Ξ̂ ▷F functor[ξ ] then Ξ̂ ′▷F functor[ξ ].

(3) If Ξ̂ ▷α : F(τ)⇒ τ then Ξ̂ ′▷α : F(τ)⇒ τ .

(4) If Ξ̂ ▷M (F)msmts[ξ ] then Ξ̂ ′▷M (F)msmts[ξ ].

Proof. By mutual induction on the structure of the given well-formedness derivation. Use

Lemma F.7 (Ext. Weakening (Ixs.)) and Lemma F.8 (Extension Restriction) as needed.

Lemma F.10 (Ext. Weaken (Unroll)).

If Ξ̂ ▷ H
−→
β ;G;M (F)I⊜ dΘ ;R and Ξ̂

SMT−−−→ Ξ̂ ′ then Ξ̂ ′▷ H
−→
β ;G;M (F)I⊜ dΘ ;R.

Proof. By structural induction on the given unrolling derivation. Use Lemma F.9 (Ext.

Weakening (Types)).

Lemma F.11 (Inst. Extends).
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(1) If Θ̂ ⊢ (∀)W Inst ⊣ Θ̂ ′ then Θ̂
SMT−−−→ Θ̂ ′.

(2) If Θ̂ ⊢W Inst▶ ⊣ Θ̂ ′ then Θ̂
SMT−−−→ Θ̂ ′.

(3) If Θ̂ ⊢W fixInst ⊣ Θ̂ ′ then Θ̂
SMT−−−→ Θ̂ ′.

(4) If Θ̂ ;Γ ⊢ χ fixInstChk ⊣Ω then Θ̂
SMT−−−→Ω .

Proof. (1) By structural induction on Θ̂ ⊢ (∀)W Inst ⊣ Θ̂ ′; case analyze its structure. Use

Lemma F.5 (Ext. Reflexive) and Lemma F.6 (Ext. Transitive).

(2) By structural induction on Θ̂ ⊢W Inst▶ ⊣ Θ̂ ′. Similar to part (1).

(3) By structural induction on Θ̂ ⊢W fixInst ⊣ Θ̂ ′. Use part (1) and Lemma F.6 (Ext.

Transitive).

(4) By part (3), part (2), and Lemma F.6 (Ext. Transitive).

Appendix F.2 Algorithmic Substitution and Well-Formedness Properties

Lemma F.12 (Alg. to Decl. WF). Assume Ξ̂
SMT−−−→Ω or Ξ̂

SMT−−−→Ω .

(1) If Ξ̂ ▷ t : τ [ξ ] then ∥Ξ̂∥ ⊢ [Ω ]2t : τ [d[Ω ]2ξ ].

(2) If Ξ̂ ; [τ]▷ t : κ then ∥Ξ̂∥; [τ] ⊢ [Ω ]2t : κ .

(3) If Ξ̂ ▷A type[ξ ] then ∥Ξ̂∥ ⊢ [Ω ]2A type[d[Ω ]2ξ ].

(4) If Ξ̂ ▷F functor[ξ ] then ∥Ξ̂∥ ⊢ [Ω ]2F functor[d[Ω ]2ξ ].

(5) If Ξ̂ ▷α : F(τ)⇒ τ then ∥Ξ̂∥ ⊢ [Ω ]2α : ([Ω ]2F)(τ)⇒ τ .

(6) If Ξ̂ ▷M (F)msmts[ξ ] then ∥Ξ̂∥ ⊢ [Ω ]2M (F)msmts[d[Ω ]2ξ ].
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Proof. By Lemma F.7 (Ext. Weakening (Ixs.)) and Lemma F.9 (Ext. Weakening (Types))

and Lemma F.1 (Right-hand Subst) and the straightforward correspondence between ground

algorithmic derivations and declarative derivations. For example, for part (1), we get

Ω ▷ [Ω ]2t : τ [d[Ω ]2ξ ]. Because [Ω ]2t ground, we have ∥Ω∥ ⊢ [Ω ]2t : τ [d[Ω ]2ξ ]. But

∥Ω∥= ∥Ξ̂∥.

Lemma F.13 (Complete Unroll). If Ξ̂ ▷ H
−→
β ;G;M (F)I⊜ dΘ ;R and Ξ̂

SMT−−−→Ω

then ∥Ξ̂∥ ⊢ H[Ω ]2
−→
β ; [Ω ]2G; [Ω ]2M ([Ω ]2F)I⊜ [Ω ]2(dΘ); [Ω ]2R.

Proof. By Lemma F.10 (Ext. Weaken (Unroll)), Ω ▷ H
−→
β ;G;M (F)I ⊜ dΘ ;R. By Lemma

F.2 (Right-hand Subst. (Unroll)) Ω ▷ H[Ω ]2
−→
β ; [Ω ]2G; [Ω ]2M ([Ω ]2F)I ⊜ [Ω ]2dΘ ; [Ω ]2R.

We know [Ω ]Ω (which is complete) has ground solutions under ∥Ω∥= ∥Ξ̂∥.

Therefore, ∥Ω∥ ⊢ H[Ω ]2
−→
β ; [Ω ]2G; [Ω ]2M ([Ω ]2F)I ⊜ [Ω ]2dΘ ; [Ω ]2R. (By Barendregt’s

lemma, [Ω ]2−= [[Ω ]Ω ]−.) The goal follows by ∥Ω∥= ∥Ξ̂∥.

Lemma F.14 (Uncomplete Unrolling).

If Θ̂
SMT−−−→Ω and Θ̂ present and d÷∥Θ̂∥,dΞ ⊢ H[Ω ]

−→
β ; [Ω ]G; [Ω ]M ([Ω ]F)I⊜ [Ω ](dΘ); [Ω ]R

and Θ̂ ▷M (F)msmts[_] and Θ̂ ,dΞ ▷
−→
β : G(M (F))⇒M (F)

then there exist dΘ ′ and R′ such that d÷Θ̂ ,dΞ ▷ H
−→
β ;G;M (F)I⊜ dΘ

′;R′

and [Ω ](dΘ
′
) = dΘ and [Ω ]R′ = R.

Proof. By structural induction on the given unrolling derivation, using similar but unstated

and straightforward counterparts of this lemma (“Uncomplete Unrolling”) for other judg-

ments. Use the algorithmic version of Lemma C.20 (Ix. Barendregt) in the AlgHII case.

Lemma F.15 (Unroll Applied). If Ξ̂ ▷ H
−→
β ;G;M (F)I⊜ dΘ ;R

and [Ξ̂ ]F = F and [Ξ̂ ](M (F)) = M (F) and [Ξ̂ ]G = G and [Ξ̂ ]
−→
β =
−→
β

then [Ξ̂ ]dΘ = dΘ and [Ξ̂ ]R = R.
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Proof. By structural induction on the given unrolling derivation, case analyzing its con-

cluding rule. Each case is straightforward. Use similar but unstated and straightforward

counterparts of this lemma (“Unroll Applied”) for other judgments (such as β ◦ inj1 ⊜

β1).

Appendix F.3 Decidability

When giving judgments an induction metric, we only take input metavariables into account,

and often put “_” (“don’t care”) for outputs to reflect this.

It is straightforward to check that all the well-formedness (including index and index

spine sorting) judgments are decidable (and we often don’t mention this in subsequent

proofs). For example consider the judgment ξ ⊢D det, used in type well-formedness:

Lemma F.16 (Det. Decidable). Given ξ and D it is decidable whether ξ ⊢D det.

Proof. There are only finitely many d ∈D↾FV(ξ ) to check whether ξ ⊢ d det. Rule DetUnit

is decidable because checking whether an element is in a finite set is decidable. In rule

DetCut, the cardinality of the finite set neg(ξ ) strictly decreases for each premise.

Lemma F.17 (Prop. Truth Decidable). Given Θ ctx and Θ ⊢ t : B,

it is decidable whether Θ ⊢ t true.

Proof. See Barrett et al. [2009].

Lemma F.18 (Ix. Equiv. Decidable). Given Ξ ⊢ u : τ [_] and Ξ ⊢ t : τ [_],

it is decidable whether Ξ ⊢ u≡ t : τ .

Proof. In each rule concluding Ξ ⊢ u ≡ t : τ , for every premise of this form, the struc-

ture of both u and t decreases in size. The Ix≡SMT case uses Lemma F.17 (Prop. Truth

Decidable).
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Lemma F.19 (Ix. Spine Equiv. Decidable). Given Ξ ; [τ] ⊢ u : κ and Ξ ; [τ] ⊢ t : κ ,

it is decidable whether Ξ ; [τ] ⊢ u≡ t : κ .

Proof. The IxSpine≡Nil case has no premises. For rules IxSpine≡Entry and IxSpine≡Projk,

for each premise of form Ξ ; [τ] ⊢ u≡ t : κ , the structure of both u and t get smaller. The

IxSpine≡Entry case uses Lemma F.17 (Prop. Truth Decidable).

Lemma F.20 (Inst. Succeeds). Assume Θ̂ algctx.

(1) Given Θ̂ ⊢ (∀)W wf, we can compute the unique Θ̂ ′ such that Θ̂ ⊢ (∀)W Inst ⊣ Θ̂ ′.

(2) Given Θ̂ ⊢W wf, we can compute the unique Θ̂ ′ such that Θ̂ ⊢W Inst▶ ⊣ Θ̂ ′.

(3) Given Θ̂ ⊢W wf, we can compute the unique Θ̂ ′ such that Θ̂ ⊢W fixInst ⊣ Θ̂ ′.

Proof. Straightforward.

Lemma F.21 (Algebra Pattern Match Succeeds).

(1) Given algebra α , we can compute the unique α1 such that α ◦ inj1 ⊜ α1.

(2) Given algebra α , we can compute the unique α2 such that α ◦ inj2 ⊜ α2.

Proof. Straightforward (measure α ◦ injk ⊜ _ by the number of clauses in α).

Theorem F.1 (Subtyping Decidable).

(1) Given Θ ctx and Θ ⊢ (∀)W wf, it is decidable whether Θ |= (∀)W.

(2) Given Θ̂ algctx and Θ̂ ▷A type[_] and Θ̂ ▷B type[_],

it is decidable whether there exists (∀)W such that Θ̂ ⊢ A <:± B / (∀)W.

(3) Given Θ̂ algctx and ∥Θ̂∥▷A type[_] and ∥Θ̂∥▷B type[_],

it is decidable whether ∥Θ̂∥ ⊢ A <:± B.
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(4) Given Ξ ctx and Ξ ▷α : F(τ)⇒ τ and Ξ ▷β : G(τ)⇒ τ ,

it is decidable whether Ξ ▷α;F <:τ β ;G.

(5) Given Θ̂ algctx and Θ̂ ▷M ′(F ′)msmts[_] and Θ̂ ▷M (F)msmts[_],

it is decidable whether there exists W such that Θ̂ ⊢M ′(F ′)≥M (F) /W.

(6) Given Θ̂ ⊢W wf,

it is decidable whether there exists Ω such that Θ̂ ; · ⊢W fixInstChk ⊣Ω .

Proof. By mutual induction the structure of the given derivation

Θ |= (∀)W or

Θ̂ ⊢ A <:± B / _ or

Θ̂ ⊢ A <:± B or

Ξ ▷α;F <:τ β ;G or

Θ̂ ⊢M ′(F ′)≥M (F) / _ or

Θ̂ ; · ⊢W fixInstChk ⊣ _

For each rule deriving one of the above judgments, every premise is either smaller than

the conclusion (according to the above measure) or already known to be decidable.

Use Lemma F.20 (Inst. Succeeds), Lemma F.21 (Algebra Pattern Match Succeeds),

Lemma F.17 (Prop. Truth Decidable), Lemma F.18 (Ix. Equiv. Decidable), and Lemma

F.19 (Ix. Spine Equiv. Decidable).

Regarding part (5), fixInstChk: There are finitely many possible choices of
−→
W o; after

running Inst▶ on a
−→
W o, it is decidable to check whether its output context is complete (Ω ),

and then whether ∥Θ̂∥ |= [Ω ][Ω ]W .
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Lemma F.22 (Unrolling Decidable).

Given Ξ̂ algctx and Ξ̂ ▷
−→
β : G(M (F))⇒M (F) and Ξ̂ ▷M (F)msmts[_] it is decidable

whether there exist dΘ and R such that Ξ̂ ▷ H
−→
β ;G;M (F)I⊜ dΘ ;R.

Proof. Measuring the judgment Ξ̂ ▷ H
−→
β ;G;M (F)I ⊜ _;_ (putting “_” for the outputs)

by the structure of G, it is easy to show that, in each rule deriving said judgment, every

main premise gets smaller. In the AlgH⊕I case use Lemma F.21 (Algebra Pattern Match

Succeeds). Similarly, it is easy to see that the side conditions of other cases are decidable.

Theorem F.2 (Decidability of Typing). Assume Θ̂ algctx and ∥Θ̂∥ ⊢ Γ ctx.

(1) Given ∥Θ̂∥ ⊢ χ Wf, it is decidable whether ∥Θ̂∥;Γ ◁χ .

(2) Given head h, it is decidable whether there exists P such that ∥Θ̂∥;Γ ▷h⇒ P.

(3) Given bound expression g,

it is decidable whether there exists P such that ∥Θ̂∥;Γ ▷g⇒↑P.

(4) Given Θ̂ ▷P type[_] and value v,

it is decidable whether there exist χ and ∆ such that Θ̂ ;Γ ⊢ v⇐ P / χ ⊣ ∆ .

(5) Given ∥Θ̂∥ ⊢ P type[_] and value v,

it is decidable whether such that ∥Θ̂∥;Γ ▷ v⇐ P.

(6) Given ∥Θ̂∥ ⊢ N type[_] and expression e,

it is decidable whether ∥Θ̂∥;Γ ▷ e⇐ N.

(7) Given ∥Θ̂∥ ⊢ P type[_] and ∥Θ̂∥ ⊢ N type[_] and match expression {ri⇒ ei}i∈I ,

it is decidable whether ∥Θ̂∥;Γ ; [P]▷{ri⇒ ei}i∈I ⇐ N.
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(8) Given Θ̂ ▷N type[_] and spine s,

it is decidable whether there exist P, χ , and ∆

such that Θ̂ ;Γ ; [N] ⊢ s⇒↑P / χ ⊣ ∆ .

(9) Given ∥Θ̂∥ ⊢ N type[_] and spine s,

it is decidable whether there exists P such that ∥Θ̂∥;Γ ; [N]▷ s⇒↑P.

(10) Given ∥Θ̂∥ ⊢ χ Wf,

it is decidable whether there exists Ω such that Θ̂ ;Γ ⊢ χ fixInstChk ⊣Ω .

Proof. Let Θ = ∥Θ̂∥. For rules deriving judgments of the form

Θ ;Γ ◁χ or

Θ ;Γ ▷h⇒ _ or

Θ ;Γ ▷g⇒ _ or

Θ̂ ;Γ ⊢ v⇐ A / _ ⊣ _ or

Θ ;Γ ▷ v⇐ A or

Θ ;Γ ▷ e⇐ A or

Θ ;Γ ; [A]▷{ri⇒ ei}i∈I ⇐ N or

Θ̂ ;Γ ; [A] ⊢ s⇒ _ / _ ⊣ _ or

Θ ;Γ ; [A]▷ s⇒ _ or

Θ̂ ;Γ ⊢ χ fixInstChk ⊣Ω

(where we write “_” for parts of the judgments that are outputs), the following induction

measure on such judgments is adequate to prove decidability: the structure of the derivation

of the judgment (these judgments are all mutually recursive).

Use Lemma F.22 (Unrolling Decidable), Lemma F.3 (Alg. Unrolling Output WF),
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Lemma F.17 (Prop. Truth Decidable), and Lemma F.20 (Inst. Succeeds).

Appendix F.4 Algorithmic Soundness

Lemma F.23 (Erase ▶ From Extension).

If Θ̂
SMT−−−→Ω and no ▶-evar is solved in Θ̂ then |Θ̂ |▶

SMT−−−→ |[Ω ]Ω |▶

where |−|▶ merely removes all occurrences of ▶,

that is, |−|▶ is defined by

|Θ |▶ =Θ

|Θ̂ , [▶]a d÷κ|▶ = |Θ̂ |▶,a d÷κ

|Θ̂ , [▶]â : κ=t|▶ = |Θ̂ |▶, â : κ=t

Proof. Straightforward.

Theorem F.3 (Alg. Sub. Sound).

(1) If Θ̂ ⊢ R <:+ Q / (∀)W and Θ̂
SMT−−−→Ω and ∥Θ̂∥ |= [Ω ](∀)W

and Rground and Θ̂ ▷Q type[ξ ] and [Θ̂ ]Q = Q and Θ̂ present

then ∥Θ̂∥ ⊢ R≤+ [Ω ]Q.

(2) If Θ ⊢ R <:+ P then Θ ⊢ R≤+ P.

(3) If Θ̂ ⊢M <:− L / (∀)W and Θ̂
SMT−−−→Ω and ∥Θ̂∥ |= [Ω ](∀)W

and Θ̂ ▷L type[Ξ ] and Lground and [Θ̂ ]M = M and Θ̂ present

then ∥Θ̂∥ ⊢ [Ω ]M ≤− L.

(4) If Θ ⊢ N <:− L then Θ ⊢ N ≤− L.



F.4. ALGORITHMIC SOUNDNESS 569

(5) If Ξ ▷α;F <:τ β ;G then Ξ ⊢ α;F ≤τ β ;G.

Proof. By induction on the sum of the height of the given subtyping derivation and the

height of the given subtyping constraint derivation. All parts are mutually recursive. Use

Lemma F.11 (Inst. Extends), Lemma F.23 (Erase ▶ From Extension), Barendregt’s substi-

tution distribution lemma, and Lemma F.5 (Ext. Reflexive).

Theorem F.4 (Alg. Typing Sound).

(1) If Θ ;Γ ▷h⇒ P then Θ ;Γ ⊢ h⇒ P.

(2) If Θ ;Γ ▷g⇒↑P then Θ ;Γ ⊢ g⇒↑P.

(3) If Θ̂ ;Γ ⊢ v⇐ P / χ ⊣ ∆ and Θ̂ ,∆ SMT−−−→Ω and ∥Θ̂∥;Γ ◁ [Ω ]χ

and Θ̂ ▷P type[ξ ] and [Θ̂ ]P = P and Θ̂ present

then ∥Θ̂∥;Γ ⊢ [Ω ]v⇐ [Ω ]P.

(4) If Θ ;Γ ▷ v⇐ P then Θ ;Γ ⊢ v⇐ P.

(5) If Θ ;Γ ▷ e⇐ N then Θ ;Γ ⊢ e⇐ N.

(6) If Θ ;Γ ; [P]▷{ri⇒ ei}i∈I ⇐ N then Θ ;Γ ; [P] ⊢ {ri⇒ ei}i∈I ⇐ N.

(7) If Θ̂ ;Γ ; [M] ⊢ s⇒↑P / χ ⊣ ∆ and Θ̂ ,∆ SMT−−−→Ω and ∥Θ̂∥;Γ ◁ [Ω ]χ

and Θ̂ ▷M type[ξ ] and [Θ̂ ]M = M and Θ̂ present

then ∥Θ̂∥;Γ ; [[Ω ]M] ⊢ [Ω ]s⇒ [Ω ]↑P.

(8) If Θ ;Γ ; [N]▷ s⇒↑P then Θ ;Γ ; [N] ⊢ s⇒↑P.

Proof. By induction on the sum of the height of the given typing derivation and the height

of the given constraint verification derivation. All parts are mutually recursive.
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Straightforward.

Use (roughly in order of part numbers) Lemma F.3 (Alg. Unrolling Output WF), Lemma

F.15 (Unroll Applied), Lemma F.13 (Complete Unroll), Lemma F.11 (Inst. Extends), Lemma

F.23 (Erase ▶ From Extension), Barendregt’s substitution distribution lemma, Lemma F.5

(Ext. Reflexive) as needed.
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Appendix G

Algorithmic Completeness

Lemma G.1 (Weaken Inst.). Assume Ξ̂ ⊆ Ξ̂0 and Θ , Ξ̂0 algctx.

(1) If Θ , Ξ̂ ⊢ (∀)W Inst ⊣Θ , Ξ̂ ′ and [Ξ̂ ]2(∀)W = (∀)W

then Θ , Ξ̂0 ⊢ (∀)W Inst ⊣Θ , Ξ̂ ′0 and Ξ̂ ′0↾dom(Ξ̂ ′) = Ξ̂ ′ and Ξ̂ ′0− Ξ̂ ′ = Ξ̂0− Ξ̂ .

(2) If Θ , Ξ̂ ⊢ (∀)W Inst▶ ⊣Θ , Ξ̂ ′ and [Ξ̂ ]2(∀)W = (∀)W

then Θ , Ξ̂0 ⊢ (∀)W Inst▶ ⊣Θ , Ξ̂ ′0 and Ξ̂ ′0↾dom(Ξ̂ ′) = Ξ̂ ′ and Ξ̂ ′0− Ξ̂ ′ = Ξ̂0− Ξ̂ .

(3) If Θ , Ξ̂ ⊢W fixInst ⊣Θ , Ξ̂ ′ and [Ξ̂ ]2W =W

then Θ , Ξ̂0 ⊢W fixInst ⊣Θ , Ξ̂ ′0 and Ξ̂ ′0↾dom(Ξ̂ ′) = Ξ̂ ′ and Ξ̂ ′0− Ξ̂ ′ = Ξ̂0− Ξ̂ .

Proof. Each part by structural induction on the given instantiation derivation. Part (3) uses

part (2). Part (2) is similar to part (1).

Lemma G.2 (Inst. Compose).

(1) If Θ , Ξ̂1 ⊢ (∀)W1 Inst ⊣Θ , Ξ̂ ′1 and Θ , Ξ̂2 ⊢ (∀)W2 Inst ⊣Θ , Ξ̂ ′2

and [Ξ̂1]
2(∀)W1 =

(∀)W1 and [Ξ̂2]
2(∀)W2 =

(∀)W2 and dom(Ξ̂1)∩dom(Ξ̂2) = /0

then Θ , Ξ̂1, Ξ̂2 ⊢ (∀)W1

V(∀)W2 Inst ⊣Θ , Ξ̂ ′1, Ξ̂ ′2.
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(2) If Θ , Ξ̂1 ⊢ (∀)W1 Inst▶ ⊣Θ , Ξ̂ ′1 and Θ , Ξ̂2 ⊢ (∀)W2 Inst▶ ⊣Θ , Ξ̂ ′2

and [Ξ̂1]
2(∀)W1 =

(∀)W1 and [Ξ̂2]
2(∀)W2 =

(∀)W2 and dom(Ξ̂1)∩dom(Ξ̂2) = /0

then Θ , Ξ̂1, Ξ̂2 ⊢ (∀)W1

V(∀)W2 Inst▶ ⊣Θ , Ξ̂ ′1, Ξ̂ ′2.

(3) If Θ , ˆdΞ ⊢W fixInst ⊣Θ , ˆdΞ 0 and Θ , ˆdΞ
′
⊢W ′ fixInst ⊣Θ , ˆdΞ

′
0

and [ ˆdΞ ]2W =W and [ ˆdΞ
′
]2W ′ =W ′ and dom( ˆdΞ)∩dom( ˆdΞ

′
) = /0

then Θ , ˆdΞ , ˆdΞ
′
⊢W

V

W ′ fixInst ⊣Θ , ˆdΞ 0, ˆdΞ
′
0.

(4) If Θ , ˆdΞ ; · ⊢W fixInstChk ⊣Θ ,Ω and Θ , ˆdΞ
′
; · ⊢W ′ fixInstChk ⊣Θ ,Ω ′

and [ ˆdΞ ]2W =W and [ ˆdΞ
′
]2W ′ =W ′ and dom( ˆdΞ)∩dom( ˆdΞ

′
) = /0

then Θ , ˆdΞ , ˆdΞ
′
; · ⊢W

V

W ′ fixInstChk ⊣Θ ,Ω −Θ ,Ω ′−Θ .

(5) If Θ , ˆdΞ ;Γ ⊢ χ fixInstChk ⊣Θ ,Ω and Θ , ˆdΞ
′
;Γ ⊢ χ ′ fixInstChk ⊣Θ ,Ω ′

and [ ˆdΞ ]2W =W and [ ˆdΞ
′
]2W ′ =W ′ and dom( ˆdΞ)∩dom( ˆdΞ

′
) = /0

then Θ , ˆdΞ , ˆdΞ
′
;Γ ⊢ χ , χ ′ fixInstChk ⊣Θ ,Ω −Θ ,Ω ′−Θ .

Proof. (1)

Θ , Ξ̂1 ⊢ (∀)W1 Inst ⊣Θ , Ξ̂ ′1 Given

Θ , Ξ̂1, Ξ̂2 ⊢ (∀)W1 Inst ⊣Θ , Ξ̂ ′1, Ξ̂2 By Lemma G.1 (Weaken Inst)

Θ , Ξ̂2 ⊢ (∀)W2 Inst ⊣Θ , Ξ̂ ′2 Given

Θ , Ξ̂ ′1, Ξ̂2 ⊢ (∀)W2 Inst ⊣Θ , Ξ̂ ′1, Ξ̂ ′2 By Lemma G.1 (Weaken Inst)

Θ , Ξ̂1, Ξ̂2 ⊢ (∀)W1

V(∀)W2 Inst ⊣Θ , Ξ̂ ′1, Ξ̂ ′2 By a rule

(2) Similar to previous part.

(3) By structural induction on the given instantiation derivations, using part (1) and

Lemma G.1 (Weaken Inst) and Lemma F.11 (Inst. Extends) (with WF presupposi-

tions and substitution properties) as needed.
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(4) Straightforward. Use part (2) and part (3) and an unstated lemma about composing

select.

(5) Similar to previous part.

Appendix G.1 Intermediate Metatheory

Lemma G.3 (Semidecl. Sub. Sound).

(1) If Θ ⊢̃ R <:+ P / (∀)W and Θ |̃= (∀)W then Θ ⊢ R≤+ P.

(2) If Θ ⊢̃ N <:− L / (∀)W and Θ |̃= (∀)W then Θ ⊢ N ≤− L.

(3) If Ξ ⊢̃ α;F <:τ α ′;F ′ then Ξ ⊢ α;F ≤τ α ′;F ′.

(4) If Θ ⊢̃M (F)≥M ′(F ′) /W and Θ |̃=W then Θ ⊢M (F)≥M ′(F ′).

Proof. By mutual induction on the structure of the given derivation. Straightforward. We

show one case of part (3).

• Case
Ξ ,−→ϕ ⊢̃ R <:+ Q′ / (∀)W Ξ ,−→ϕ |̃= (∀)W Ξ ⊢̃ q⇒ t; P̂ <:τ q′⇒ t ′; P̂′

Ξ ⊢̃ (⊤,q)⇒ t;R∧−→ϕ ⊗ P̂ <:τ (⊤,q′)⇒ t ′;Q′⊗ P̂′
<̃:τConst
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Ξ ,−→ϕ ⊢̃R <:+ Q′ / (∀)W Subderivation

Ξ ,−→ϕ |̃= (∀)W Subderivation

Ξ ,−→ϕ ⊢R≤+ Q′ By i.h.

Ξ ⊢R∧−→ϕ ≤+ Q′ By ≤+∧L

Ξ ⊢̃ q⇒ t; P̂ <:τ q′⇒ t ′; P̂′ Subderivation

Ξ ⊢ q⇒ t; P̂≤τ q′⇒ t ′; P̂′ By i.h.

Ξ ⊢ (⊤,q)⇒ t;R∧−→ϕ ⊗ P̂≤τ (⊤,q′)⇒ t ′;Q′⊗ P̂′ By Meas≤Const

Lemma G.4 (Semidecl. Sub. Complete).

(1) If Θ ⊢ R≤+ P then Θ ⊢̃ R <:+ P / (∀)W and Θ |̃= (∀)W.

(2) If Θ ⊢ N ≤− L then Θ ⊢̃ N <:− L / (∀)W and Θ |̃= (∀)W.

(3) If Ξ ⊢ α;F ≤τ β ;G then Ξ ⊢̃ α;F <:τ β ;G.

(4) If Θ ⊢M ′(F ′)≥M (F) then Θ ⊢̃M ′(F ′)≥M (F) /W and Θ |̃=W.

Proof. By mutual induction on the structure of the given subtyping/submeasuring deriva-

tion. Straightforward. We show one case of part (3).

• Case
Ξ ⊢ Q≤+ Q′ Ξ ⊢ q⇒ t; P̂≤τ q′⇒ t ′; P̂′

Ξ ⊢ (⊤,q)⇒ t;Q⊗ P̂≤τ (⊤,q′)⇒ t ′;Q′⊗ P̂′
Meas≤Const
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Ξ ⊢Q≤+ Q′ Subderivation

Q = R∧−→ϕ Canonical form of Q

Ξ ⊢R∧−→ϕ ≤+ Q′ By equality

Ξ ,−→ϕ ⊢R≤+ Q′ By inversion

Ξ ,−→ϕ ⊢̃R <:+ Q′ / (∀)W1 By i.h.

Ξ ,−→ϕ |̃= (∀)W1
′′

Ξ ⊢ q⇒ t; P̂≤τ q′⇒ t ′; P̂′ Subderivation

Ξ ⊢̃ q⇒ t; P̂ <:τ q′⇒ t ′; P̂′ By i.h.

Z Ξ ⊢̃ (⊤,q)⇒ t;R∧−→ϕ ⊗ P̂ <:τ (⊤,q′)⇒ t ′;Q′⊗ P̂′ <̃:τConst

Lemma G.5 (Alg. to Semidecl. Chk. (Sub.)).

(1) If Θ |= (∀)W then Θ |̃= (∀)W.

(2) If Θ̂ ; · ⊢W fixInstChk ⊣Ω ′ then Θ̂ ; · ⊢̃W fixInstChk ⊣Ω ′.

Proof.

(1) By structural induction on the given derivation. In the case for literal subtyping

constraints, use Theorem F.3 and Lemma G.4 (Semidecl. Sub. Complete).

(2) Follows from part (1).

Lemma G.6 (Semidecl. Typing Sound).

(1) If Θ ;Γ ⊢̃ h⇒ P then Θ ;Γ ⊢ h⇒ P.

(2) If Θ ;Γ ⊢̃ g⇒↑P then Θ ;Γ ⊢ g⇒↑P.
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(3) If Θ ;Γ ⊢̃ v⇐ P / χ and Θ ;Γ ◁̃ χ then Θ ;Γ ⊢ v⇐ P.

(4) If Θ ;Γ ⊢̃ e⇐ N then Θ ;Γ ⊢ e⇐ N.

(5) If Θ ;Γ ; [P] ⊢̃ {ri⇒ ei}i∈I ⇐ N then Θ ;Γ ; [P] ⊢ {ri⇒ ei}i∈I ⇐ N.

(6) If Θ ;Γ ; [N] ⊢̃ s⇒↑P / χ and Θ ;Γ ◁̃ χ then Θ ;Γ ; [N] ⊢ s⇒↑P.

Proof. By mutual induction on the structure of the given derivation(s).

Use Lemma G.3 (Semidecl. Sub. Sound).

Lemma G.7 (Semidecl. Typing Complete).

(1) If Θ ;Γ ⊢ h⇒ P then Θ ;Γ ⊢̃ h⇒ P.

(2) If Θ ;Γ ⊢ g⇒↑P then Θ ;Γ ⊢̃ g⇒↑P.

(3) If Θ ;Γ ⊢ v⇐ P then there exists χ such that Θ ;Γ ⊢̃ v⇐ P / χ and Θ ;Γ ◁̃ χ .

(4) If Θ ;Γ ⊢ e⇐ N then Θ ;Γ ⊢̃ e⇐ N.

(5) If Θ ;Γ ; [P] ⊢ {ri⇒ ei}i∈I ⇐ N then Θ ;Γ ; [P] ⊢̃ {ri⇒ ei}i∈I ⇐ N.

(6) If Θ ;Γ ; [N] ⊢ s⇒↑P

then there exists χ such that Θ ;Γ ; [N] ⊢̃ s⇒↑P / χ and Θ ;Γ ◁̃ χ .

Proof. By mutual induction on the structure of the given derivation. Use Lemma G.4

(Semidecl. Sub. Complete).

Lemma G.8 (Alg. to Semidecl. Chk.).

(1) If Θ ;Γ ◁χ then Θ ;Γ ◁̃ χ .

(2) If Θ̂ ;Γ ⊢ χ fixInstChk ⊣Ω ′ then Θ̂ ;Γ ⊢̃ χ fixInstChk ⊣Ω ′.
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Proof. Similar to proof of Lemma G.5 (Alg. to Semidecl. Chk. (Sub.)) but using Theorem

F.4 and Lemma G.7 (Semidecl. Typing Complete) rather than Theorem F.3 and Lemma G.4

(Semidecl. Sub. Complete).

Lemma G.9 (Equiv. Weakening). If Θ |̃= (∀)W ↔ (∀)W ′ and Θ ⊆Θ ′

then Θ ′ |̃= (∀)W ↔ (∀)W ′.

Proof. By structural induction on the given constraint equivalence derivation, using Lemma

C.41 (Ix.-Level Weakening) as needed.

Lemma G.10 (Tp./Meas. Equiv. Syn. Subs.). Assume Θ0; · ⊢ σ : Θ ; ·.

(1) If Θ ⊢ A≡± B then Θ0 ⊢ [σ ]A≡± [σ ]B.

(2) If Θ ⊢M ′(F)≡M (F) then Θ0 ⊢ [σ ]M ′(F)≡ [σ ]M (F).

(3) If Θ ⊢ α;F ≡τ β ;G, then Θ0 ⊢ [σ ]α; [σ ]F ≡τ [σ ]β ; [σ ]G.

Proof. Each part is proved separately by induction on the structure of the given equivalence

derivation. Part (1) uses part (2). Part (3) uses part (1). Use Lemma C.30 (Prop. Truth Syn.

Subs), Lemma C.58 (Ix. Equiv. Syn. Subs), Lemma C.11 (Ix. Id. Subs. Extension), and

Lemma C.12 (Value-Det. Substitution) as needed.

Lemma G.11 (Tp./Meas. Equiv. Reflexive).

(1) If Ξ ⊢ A type[ξ ] then Ξ ⊢ A≡± A.

(2) If Ξ ⊢M (F)msmts[ξ ] then Ξ ⊢M (F)≡M (F).

(3) If Ξ ⊢ α : F(τ)⇒ τ , then Ξ ⊢ α;F ≡τ α;F.
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Proof. By mutual induction on the structure of the given formation derivation. Use Lemma

C.27 (Prop. Truth Equiv. Relation) and Lemma C.34 (Ix. Equiv. Reflexive) as needed. Parts

(1) and (2) are mutually recursive.

Lemma G.12 (Tp./Meas. Equiv. Symmetric).

(1) If Θ ⊢ A≡± B then Θ ⊢ B≡± A by a derivation of equal structure and height.

(2) If Θ ⊢M ′(F)≡M (F) then Θ ⊢M (F)≡M ′(F)

by a derivation of equal structure and height.

(3) If Ξ ⊢ α;F ≡τ α ′;F ′ then Ξ ⊢ α ′;F ′ ≡τ α;F

by a derivation of equal structure and height.

Proof. By induction on the structure of the given type or measure equivalence derivation,

using Lemma C.27 (Prop. Truth Equiv. Relation) and Lemma C.69 (Ix. Equiv. Symmetric)

as needed. Parts (1) and (2) are mutually recursive.

Lemma G.13 (Equiv. Transitive).

(1) If Θ ⊢ A≡± C and Θ ⊢C ≡± B then Θ ⊢ A≡± B.

(2) If Θ ⊢M ′(F)≡M ′′(F) and Θ ⊢M ′′(F)≡M (F) then Θ ⊢M ′(F)≡M (F).

(3) If Ξ ⊢ α;F ≡τ α ′′;F ′′ and Ξ ⊢ α ′′;F ′′ ≡τ α ′;F ′ then Ξ ⊢ α;F ≡τ α ′;F ′.

Proof. By induction on the structure of the derivations. Parts (1) and (2) are mutually

recursive. Use Lemma C.27 (Prop. Truth Equiv. Relation) and Lemma C.35 (Ix. Equiv.

Transitive).

Lemma G.14 (Prob. Equiv. Reflexive).

If Θ ctx and Θ ⊢ (∀)W wf then Θ |̃= (∀)W ↔ (∀)W.
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Proof. By structural induction on (∀)W , using Lemma C.34 (Ix. Equiv. Reflexive) and

Lemma C.34 (Ix. Equiv. Reflexive) and Lemma G.11 (Tp./Meas. Equiv. Reflexive) as

needed.

Lemma G.15 (Prob. Equiv. Symmetric).

If Θ |̃= (∀)W1↔ (∀)W2 then Θ |̃= (∀)W2↔ (∀)W1.

Proof. By structural induction on (∀)W1, using Lemma C.69 (Ix. Equiv. Symmetric) and

Lemma C.69 (Ix. Equiv. Symmetric) and Lemma G.12 (Tp./Meas. Equiv. Symmetric) as

needed.

Lemma G.16 (Prob. Equiv. Transitive).

If Θ |̃= (∀)W ↔ ˜(∀)W and Θ |̃= ˜(∀)W ↔ (∀)W ′ then Θ |̃= (∀)W ↔ (∀)W ′.

Proof. By structural induction on (∀)W , using Lemma C.35 (Ix. Equiv. Transitive) and

Lemma G.13 (Equiv. Transitive) as needed.

Lemma G.17 (Probs. Equiv. Reflexive). If Θ ;Γ ⊢ χ wf then Θ ◁̃ χ ↔ χ .

Proof. By structural induction on χ , using Lemma G.14 (Prob. Equiv. Reflexive) and

Lemma G.11 (Tp./Meas. Equiv. Reflexive) as needed.

Lemma G.18 (Probs. Equiv. Symmetric). If Θ ◁̃ χ1↔ χ2 then Θ ◁̃ χ2↔ χ1.

Proof. By structural induction on χ1, using Lemma G.15 (Prob. Equiv. Symmetric) and

Lemma G.12 (Tp./Meas. Equiv. Symmetric) as needed.

Lemma G.19 (Probs. Equiv. Transitive).

If Θ ◁̃ χ ↔ χ̃ and Θ ◁̃ χ̃ ↔ χ ′ then Θ ◁̃ χ ↔ χ ′.

Proof. By structural induction on χ , using Lemma G.13 (Equiv. Transitive) and Lemma

G.16 (Prob. Equiv. Transitive) as needed.



G.1. INTERMEDIATE METATHEORY 580

Lemma G.20 (Equiv. Implies Subtyping).

(1) If Θ ⊢ A≡± B then Θ ⊢ A≤± B.

(2) If Θ ⊢M ′(F)≡M (F) then Θ ⊢M ′(F)≥M (F).

Proof. By mutual induction on the height of the given equivalence derivation. Use Lemma

C.41 (Ix.-Level Weakening), Lemma C.28 (Assumption), Lemma C.69 (Ix. Equiv. Sym-

metric), Lemma C.71 (Ctx. Equiv. Compat), and Lemma G.12 (Tp./Meas. Equiv. Symmet-

ric).

Lemma G.21 (Ctx. Equiv. Compat. (Prob.)). If Θ1 ⊢Θ ≡Θ ′ and Θ1,Θ ,Θ2 |̃= (∀)W

then Θ1,Θ ′,Θ2 |̃= (∀)W.

Proof. By structural induction on Θ1,Θ ,Θ2 |̃= (∀)W . Use Lemma C.71 (Ctx. Equiv. Com-

pat) as needed. Note Θ =Θ ′.

Lemma G.22 ((∀)W Checking Respects Equiv.).

If Θ |̃= (∀)W and Θ |̃= (∀)W ↔ (∀)W ′

then Θ |̃= (∀)W ′ by a derivation of equal height and structure.

Proof. By structural induction on (∀)W . We case analyze rules concluding Θ |̃= (∀)W ↔
(∀)W ′. The |̃=↔Prp case uses Lemma C.70 (Equiv. Resp. Prp. Truth). The |̃=↔IxEq and

|̃=↔tEq cases use Lemma C.35 (Ix. Equiv. Transitive). The |̃=↔⊃ case uses Lemma G.21

(Ctx. Equiv. Compat. (Prob.)). The |̃=∀ and |̃=

V

cases are straightforward.

• Case
Θ ⊢ R1 ≡+ R′1 Θ ⊢ P2 ≡+ P′2

Θ |̃= R1 <:+ P2↔ R′1 <:
+ P′2

|̃=↔<:±

The only possible rule concluding Θ |̃= R1 <:+ P2 is |̃=<:+.
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– Case
Θ ⊢̃ R1 <:+ P2 /

˜(∀)W Θ |̃= ˜(∀)W
Θ |̃= R1 <:+ P2

|̃=<:±

Θ ⊢̃R1 <:+ P2 /
˜(∀)W Subderivation

Θ |̃= ˜(∀)W Subderivation

Θ ⊢R1 ≤+ P2 By Lemma G.3 (Semidecl. Sub. Sound)

Θ ⊢R1 ≡+ R′1 Subderivation

Θ ⊢R′1 ≡+ R1 By Lemma G.12 (Tp./Meas. Equiv. Symmetric)

Θ ⊢R′1 ≤+ R1 By Lemma G.20 (Equiv. Implies Subtyping)

Θ ⊢P2 ≡+ P′2 Subderivation

Θ ⊢P2 ≤+ P′2 By Lemma G.12 (Tp./Meas. Equiv. Symmetric)

Θ ⊢R′1 ≤+ P′2 By two uses of Lemma C.63 (Subtyping Transitive)

Θ ⊢̃R′1 <:
+ P′2 /

˜(∀)W ′ By Lemma G.4 (Semidecl. Sub. Complete)

Θ |̃= ˜(∀)W ′ ′′

Θ |̃=R′1 <:
+ P′2 By |̃=<:±

• Case |̃=<:−: Similar to |̃=<:+ case.

Lemma G.23 (Subtyping Respects Equiv.).

(1) If Θ ⊢̃ R <:+ P / (∀)W and Θ ⊢ P≡+ P′

then Θ ⊢̃ R <:+ P′ / (∀)W ′ and Θ |̃= (∀)W ↔ (∀)W ′ for some (∀)W ′.

(2) If Ξ ⊢̃ α;F <:τ β ;G and Ξ ⊢ β ;G≡τ β ′;G′ then Ξ ⊢̃ α;F <:τ β ′;G′.



G.1. INTERMEDIATE METATHEORY 582

(3) If Θ ⊢̃ N <:− L / (∀)W and Θ ⊢ N ≡− N′

then Θ ⊢̃ N′ <:− L / (∀)W ′ and Θ |̃= (∀)W ↔ (∀)W ′ for some (∀)W ′.

(4) If Θ ⊢̃M0(F0)≥M (F) /W and Θ ⊢M (F)≡M ′(F)

then Θ ⊢̃M0(F0)≥M ′(F) /W ′ and Ξ |̃=W ↔W ′ for some W ′.

Moreover, the subtyping/submeasuring derivation does not change in height.

Proof. Each part by structural induction on the given semideclarative derivation. Part (1)

uses part (4). Part (2) uses part (1). In some cases, use weakening, Lemma C.34 (Ix. Equiv.

Reflexive), Lemma G.11 (Tp./Meas. Equiv. Reflexive), or Lemma G.10 (Tp./Meas. Equiv.

Syn. Subs); also Lemma G.22 ((∀)W Checking Respects Equiv).

Lemma G.24 (Equiv. liftapps). If Ξ ⊢M (F)≡M ′(F), then for all ak,Fk,αk,τk,

(ak,(foldFk αk)ν tk =τk tk) ∈ zip(−→a )(M (F)) for some tk, tk if and only if

(ak,(foldFk αk)ν t′k =τk t ′k) ∈ zip(−→a )(M ′(F)) for some t′k, t ′k.

Proof. By structural induction on dΞ ⊢M (F) ≡M ′(F). Straightforward. Equivalence

of measurements requires alpha-equivalent algebras and functors. The point is liftapps

ignores the spines and right-hand side indices of measurements, and only uses the algebras,

functors, and sorts of measurements.

Lemma G.25 (Unroll to Equiv. Type).

If dΞ ,Ξ ⊢ H
−→
β ;G;M (F)I⊜ dΘ ;R and dΞ ⊢M (F)≡M ′(F)

then there exist dΘ ′ and R′ such that dΞ ,Ξ ⊢ H
−→
β ;G;M ′(F)I⊜ dΘ

′;R′

and dΞ ,Ξ ⊢ ∃dΘ ′. R′∧ dΘ
′ ≡+ ∃dΘ . R∧ dΘ .

Proof. By structural induction on the given unrolling derivation. Lemma G.24 (Equiv.

liftapps), Lemma C.58 (Ix. Equiv. Syn. Subs), and Lemma C.59 (Sub. Syn. Subs) in the



G.1. INTERMEDIATE METATHEORY 583

HIdI case; and Lemma C.37 (Ix. App. Respects Equivalence) and Lemma C.72 (Equal Ix.

Equalities) in the HII case.

Lemma G.26 (Typing Respects Equiv.). Assume Θ ⊢ Γ ≡+ Γ ′.

(1) If Θ ;Γ ◁̃ χ and Θ ◁̃ χ ↔ χ ′

then Θ ;Γ ′ ◁̃ χ ′ by a derivation of equal height and structure.

(2) If Θ ;Γ ⊢̃ h⇒ P then there exists P′ such that Θ ⊢ P≡+ P′

and Θ ;Γ ′ ⊢̃ h⇒ P′ by a derivation of equal height and structure.

(3) If Θ ;Γ ⊢̃ g⇒↑P then there exists P′ such that Θ ⊢ ↑P≡− ↑P′

and Θ ;Γ ′ ⊢̃ g⇒↑P′ by a derivation of equal height and structure.

(4) If Θ ;Γ ⊢̃ v⇐ P / χ and Θ ⊢ P≡+ P′ then there exists χ ′ such that Θ ◁̃ χ ↔ χ ′

and Θ ;Γ ′ ⊢̃ v⇐ P′ / χ ′ by a derivation of equal height and structure.

(5) If Θ ;Γ ⊢̃ e⇐ N and Θ ⊢ N ≡− N′

then Θ ;Γ ′ ⊢̃ e⇐M by a derivation of equal height and structure.

(6) If Θ ;Γ ; [P] ⊢̃ {ri⇒ ei}i∈I ⇐ N and Θ ⊢ P≡+ P′ and Θ ⊢ N ≡− N′

then Θ ;Γ ′; [P′] ⊢̃ {ri⇒ ei}i∈I ⇐ N′

by a derivation of equal height and structure.

(7) If Θ ;Γ ; [N] ⊢̃ s⇒↑P / χ and Θ ⊢ N ≡− N′

then there exist P′ and χ ′ such that Θ ⊢ ↑P≡− ↑P′ and Θ ◁̃ χ ↔ χ ′

and Θ ;Γ ′; [N′] ⊢̃ s⇒↑P′ / χ ′ by a derivation of equal height and structure.

Proof. By mutual induction on the structure of the given semideclarative typing derivation.
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Use Lemma G.23 (Subtyping Respects Equiv), Lemma G.22 ((∀)W Checking Respects

Equiv), Lemma G.11 (Tp./Meas. Equiv. Reflexive), Lemma G.25 (Unroll to Equiv. Type),

Lemma G.10 (Tp./Meas. Equiv. Syn. Subs) Lemma C.41 (Ix.-Level Weakening), Lemma

C.71 (Ctx. Equiv. Compat) as needed.

Lemma G.27 (Equiv. Solutions). Assume Θ̂
SMT−−−→Ω .

(1) If Θ̂ ▷ t : κ then ∥Θ̂∥ ⊢ [Ω ]2t = [Ω ]2[Θ̂ ]2t true.

(2) If Θ̂ ▷u : τ then ∥Θ̂∥ ⊢ [Ω ]2u≡ [Ω ]2[Θ̂ ]2u : τ .

(3) If Θ̂ ; [τ]▷ t : κ then ∥Θ̂∥; [τ] ⊢ [Ω ]2t≡ [Ω ]2[Θ̂ ]2t : κ .

(4) If Θ̂ ▷A type[_] then ∥Θ̂∥ ⊢ [Ω ]2A≡± [Ω ]2[Θ̂ ]2A.

(5) If Θ̂ ▷M (F)msmts[_] then ∥Θ̂∥ ⊢ [Ω ]2M ([Ω ]2F)≡ [Ω ]2[Θ̂ ]2M ([Ω ]2[Θ̂ ]2F).

(6) If Θ̂ ▷α : F(τ)⇒ τ then ∥Θ̂∥ ⊢ [Ω ]2α; [Ω ]2F ≡τ [Ω ]2[Θ̂ ]2α; [Ω ]2[Θ̂ ]2F.

(7) If Θ̂ ⊢ (∀)W wf then ∥Θ̂∥ |̃= [Ω ]2(∀)W ↔ [Ω ]2[Θ̂ ]2(∀)W.

(8) If Θ̂ ⊢ χ Wf then ∥Θ̂∥ ◁̃ [Ω ]2χ ↔ [Ω ]2[Θ̂ ]2χ .

Proof. (1) By structural induction on Θ̂ ▷ t : κ . This part is mutually recursive with

part (2). Use Lemma C.27 (Prop. Truth Equiv. Relation) and Lemma C.37 (Ix. App.

Respects Equivalence). We show the case where t is an evar â for some â ∈ dom(Θ̂).

Either Θ̂ does not solve â or it does. If it does not, then [Ω ]2[Θ̂ ]2t = [Ω ]2t and the

goal follows by Lemma C.27 (Prop. Truth Equiv. Relation). Suppose Θ̂ does solve

â. Either ▶â : κ=t ∈ Θ̂ or â : κ=t ∈ Θ̂ . In either case, the goal follows by inversion

on Θ̂
SMT−−−→Ω and properties of substitution.
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(2) By structural induction on Θ̂ ▷ u : τ . This part is mutually recursive with part (3).

Use part (1).

(3) By structural induction on Θ̂ ; [τ]▷t : κ . This part is mutually recursive with part (2).

(4) By structural induction on the given well-formedness derivation using previous parts

as needed. This part is mutually recursive with parts (5).

(5) By structural induction on the given well-formedness derivation using previous parts

as needed. This part is mutually recursive with part (5).

(6) By structural induction on the given well-formedness derivation using previous parts

as needed.

(7) By structural induction on Θ̂ ⊢ (∀)W wf, using previous parts as needed. Use Lemma

G.9 (Equiv. Weakening) and Lemma F.12 (Alg. to Decl. WF) in the (∀)W =⊃ case.

(8) By structural induction on Θ̂ ⊢ χ wf using previous parts as needed.

Lemma G.28 (Constraint Checking Sandwich).

(1) If Θ̂
SMT−−−→Ω and ∥Θ̂∥ |̃= [Ω ]2((∀)W ) and Θ̂ ⊢ (∀)W wf

then ∥Θ̂∥ |̃= [Ω ]2[Θ̂ ]2((∀)W ) by a derivation of equal height and structure.

(2) If Θ̂
SMT−−−→Ω and ∥Θ̂∥;Γ ◁̃ [Ω ]2χ and Θ̂ ⊢ χ Wf

then ∥Θ̂∥;Γ ◁̃ [Ω ]2[Θ̂ ]2χ by a derivation of equal height and structure.

Proof. By Lemma G.27 (Equiv. Solutions) and Lemma G.22 ((∀)W Checking Respects

Equiv). or Lemma G.26 (Typing Respects Equiv).
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Lemma G.29 (Only Evars Solved Later Remain Unsolved).

If Θ̂ ⊢W wf[ξ ] and [Θ̂ ]2W =W

and cl(ξ −∥[ξ ]Θ̂∥)( /0) = unsol([ξ ]Θ̂) and [ξ ]Θ̂ ⊢W fixInst ⊣ Θ̂ ′

then unsol(Θ̂ ′) =▶unsol([ξ ]Θ̂).

Proof. Under the given the conditions, there’s a bijection

between newly solved evars in Θ̂ ′ relative to Θ̂ and non-▶ unsolved evars of [ξ ]Θ̂ :

dom(sol(Θ̂ ′)− sol([ξ ]Θ̂)) = dom(unsol([ξ ]Θ̂)−▶([ξ ]Θ̂))

unsol(Θ̂ ′) = unsol([ξ ]Θ̂)− sol(Θ̂ ′) As Θ̂
SMT−−−→ Θ̂ ′

= unsol([ξ ]Θ̂)− (sol(Θ̂ ′)− sol([ξ ]Θ̂)) sol([ξ ]Θ̂)∩unsol([ξ ]Θ̂) = /0

= unsol([ξ ]Θ̂)− (unsol([ξ ]Θ̂)−▶([ξ ]Θ̂)) By equality

= ▶unsol([ξ ]Θ̂) Straightforward

Lemma G.30 (True Inst. Preserves Relaxed Ext.).

Assume ∥Ω∥,▶Ω ,Θ̂ −∥Ω∥−▶Ω
SMT−−−→Ω ′.

(1) If ∥Θ̂∥ |̃= [Ω ′]2((∀)W ) and Θ̂ ⊢ (∀)W Inst ⊣ Θ̂ ′′

and Θ̂ ′′
SMT−−−→Ω and [Θ̂ ]((∀)W ) = (∀)W

then ∥Θ̂ ′′∥,▶Ω ,Θ̂ ′′−∥Θ̂ ′′∥−▶Θ̂ ′′
SMT−−−→Ω ′.

(2) If ∥Θ̂∥ |̃= [Ω ′]2W and Θ̂ ⊢W fixInst ⊣ Θ̂0

and Θ̂0
SMT−−−→Ω and unsol(Θ̂0) =▶unsol(Θ̂) and [Θ̂ ]2W =W

then Ω
SMT−−−→Ω ′.

Proof. Each part by structural induction on the given instantiation derivation. Part (2) uses

part (1). Use Lemma F.11 (Inst. Extends), Lemma F.6 (Ext. Transitive), Lemma C.27
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(Prop. Truth Equiv. Relation), Lemma G.27 (Equiv. Solutions), Lemma G.28 (Constraint

Checking Sandwich), and the fact that the Inst judgment does not touch later evars.

Lemma G.31 (fixInstChk Unapply). If Θ̂ present and [Θ̂ ]χ = χ

and Θ̂ ⊢ χ Wf[ξ ] and cl(ξ −∥[ξ ]Θ̂∥)( /0) = unsol([ξ ]Θ̂)

and Θ̂
SMT−−−→ Θ̂ ′ and [ξ ]Θ̂ ′;Γ ⊢̃ [Θ̂ ′]χ fixInstChk ⊣Ω ′

then there exists a derivation [ξ ]Θ̂ ;Γ ⊢̃ χ fixInstChk ⊣Ω such that Ω
SMT−−−→Ω ′.

Proof.

[ξ ]Θ̂ ′;Γ ⊢̃ [Θ̂ ′]χ fixInstChk ⊣Ω ′ Given

[ξ ]Θ̂ ′ ⊢ ⌊[Θ̂ ′]χ⌋ fixInst ⊣ Θ̂ ′′ By inversion

select
−→
W ′o from [Θ̂ ′′]2⌊[Θ̂ ′]χ⌋ ′′

Θ̂ ′′ ⊢
V−→

W ′o Inst▶ ⊣Ω ′ ′′

∥Θ̂ ′∥;Γ ◁̃ [Ω ′]2[Θ̂ ′]χ ′′

Θ̂
SMT−−−→ Θ̂ ′ Given

[ξ ]Θ̂
SMT−−−→ [ξ ]Θ̂ ′ As (Θ̂ ,Θ̂ ′)present so all solutions ground

[ξ ]Θ̂ ′
SMT−−−→ Θ̂ ′′ By Lemma F.11 (Inst. Extends)

Θ̂ ′′
SMT−−−→Ω ′ By Lemma F.11 (Inst. Extends)

[ξ ]Θ̂ ′
SMT−−−→Ω ′ By Lemma F.6 (Ext. Transitive)

[ξ ]Θ̂
SMT−−−→Ω ′ By Lemma F.6 (Ext. Transitive)

[ξ ]Θ̂
SMT−−−→Ω ′ By Lemma F.4 (Extension Sound)

select
−→
W ′o from [Θ̂ ′′]2⌊χ⌋ As [Θ̂ ′′]2⌊[Θ̂ ′]χ⌋= [Θ̂ ′′]2⌊χ⌋

Θ̂ ′′ ⊢

V−→
W ′o Inst▶ ⊣Ω ′ Above

∥Θ̂∥;Γ ◁̃ [Ω ′]2χ As ∥Θ̂∥= ∥Θ̂ ′∥ and [Ω ′]2[Θ̂ ′]χ = [Ω ′]2χ
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[ξ ]Θ̂ ⊢ ⌊χ⌋ fixInst ⊣ Θ̂0 By Lemma F.20 (Inst. Succeeds)

unsol(Θ̂0) = ▶unsol([ξ ]Θ̂) By Lemma G.29 (Only Evars Solved Later Remain Unsolved)

Let ⌊χ⌋⇝ X where⇝ is (re)defined locally in this proof as follows:

(∀)W ⇝ X (∀)W ′⇝ X ′

(∀)W

V(∀)W ′⇝ X ∪X ′

(_

V

t ≡κ â) ∈ −→W∨−→
W ⇝ {

∨−→
W }

(∀)W ̸=−

V

− and (∀)W ̸=
∨−→

W with _

V

_≡_ â ∈ −→W

(∀)W ⇝ /0

For each â ∈ unsol(Θ̂0),

pick exactly one
∨−→

W ∈ X and exactly one u≡[τ] t

V

u≡κ â in
−→
W

such that ∥Θ̂∥ |̃= u≡[τ] [Ω
′]2t

V

u≡κ [Ω ′]2â

(at least one such constraint exists, by inversion on ∥Θ̂∥;Γ ◁̃ [Ω ′]2χ)

and collect each u≡κ â in
−→
Wo. By construction, the following three lines hold:

select
−→
Wo from [Θ̂0]

2⌊χ⌋

Θ̂0 ⊢

V−→
Wo Inst▶ ⊣Ω

∥Θ̂∥,▶Ω
SMT−−−→∥Θ̂∥,▶Ω ′

Z Ω
SMT−−−→Ω ′ By Lemma G.30 (True Inst. Preserves Relaxed Ext)

∥Θ̂∥;Γ ◁̃ [Ω ′]2[Ω ]2χ By Lemma G.28 (Constraint Checking Sandwich)

∥Θ̂∥;Γ ◁̃ [Ω ]2χ Solutions already applied

Z Θ̂ ;Γ ⊢̃ χ fixInstChk ⊣Ω By rule
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Appendix G.2 Dependency Mediation

(We don’t need most of the machinery here for algorithmic subtyping completeness, it’s

mainly for algorithmic typing completeness.)

∆ ⊢ ξ ′∠ξ Presupposes FV(ξ ′)∪FV(ξ ) is a set of evars and FV(ξ ′)∩dom(∆) = /0

dom(∆)⊆ cl(ξ )(FV(ξ )−∆)

for all D̃�ĉ ∈ ξ
′ there exists B̃�ĉ ∈ ξ such that B̃⊆ D̃∪∆ and B̃∩∆ ⊆ cl(ξ )(D̃)

∆ ⊢ ξ
′∠ξ

Figure G.1: Dependency mediation

Lemma G.32 (Admissible Premise). If ∆ ⊢ ξ ′∠ξ then cl(ξ ′)( /0)⊆ cl(ξ )( /0).

Proof. It suffices to show (by induction on n) cln(ξ ′)( /0)⊆ cl(ξ )( /0) for all n ∈ N.

If n = 0 then cln(ξ ′)( /0) = cl0(ξ ′)( /0) = /0⊆ cl(ξ )( /0).

Assume n = m+1.

Suppose â ∈ cln(ξ ′)( /0).

By definition of clm+1, we know â ∈ clm(ξ ′)( /0)∪{c | A⊆ clm(ξ ′)( /0)}.

If â ∈ clm(ξ ′)( /0) then â ∈ cl(ξ )( /0) by the induction hypothesis.

Assume â /∈ clm(ξ ′)( /0).

Then there exists D�â ∈ ξ ′ such that D⊆ clm(ξ ′)( /0).

By inversion on ∆ ⊢ ξ ′∠ξ ,

∆ ⊆ cl(ξ )(FV(ξ )−∆)

and (*):

for all D̃�ĉ ∈ ξ ′ there exists B̃�ĉ ∈ ξ such that B̃⊆ D̃∪∆ and B̃∩∆ ⊆ cl(ξ )(D̃).
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D′�â ∈ ξ By (*)

D′ ⊆ D∪∆ ′′

D′∩∆ ⊆ cl(ξ )(D) ′′

D′∩D ⊆ D

⊆ clm(ξ ′)( /0) Above

⊆ cl(ξ )( /0) By i.h.

D′∩∆ ⊆ cl(ξ )(D) Above

= cl(ξ )( /0) By Lemma B.5 (Weaken cl)

D′ = D′∩ (D∪∆) As D′ ⊆D∪∆

= (D′∩D)∪ (D′∩∆)

⊆ cl(ξ )( /0)

â ∈ cl(ξ ∪D′�â)( /0) By Lemma B.6 (cl transitive)

= cl(ξ )( /0) As D′�â ∈ ξ

Lemma G.33 (No ∆ Mediates Reflexive). If FV(ξ ) is a set of evars then · ⊢ ξ ∠ξ .

Proof. Straightforward.

Lemma G.34 (Compose Mediates).

If dom(∆1)∩dom(∆2) = /0

and dom(∆1,∆2)∩FV(ξ ′1∪ξ ′2) = /0 and ∆1∩FV(ξ2) = /0 = ∆2∩FV(ξ1)
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and ∆1 ⊢ ξ ′1∠ξ1 and ∆2 ⊢ ξ ′2∠ξ2

then ∆1,∆2 ⊢ ξ ′1∪ξ ′2∠ξ1∪ξ2.

Proof. For all k ∈ {1,2}, by inversion on ∆k ⊢ ξ ′k∠ξk, we know that

dom(∆k) ⊆ cl(ξk)(FV(ξk)−∆k)

and (*): for all D̃�ĉ ∈ ξ ′k there exists B̃�ĉ ∈ ξk such that B̃⊆ D̃∪∆k and B̃∩∆k ⊆ cl(ξk)(D̃)

We show the two conditions

needed to apply the rule to obtain the goal ∆1,∆2 ⊢ ξ ′1∪ξ ′2∠ξ1∪ξ2.

Suppose D�c ∈ (ξ ′1∪ξ ′2).

Then D�c ∈ ξ ′j for some j ∈ {1,2}.

By (*), there exists D′�c ∈ ξ j such that D′ ⊆D∪∆ j and D′∩∆ j ⊆ cl(ξ j)(D).

D′�c ∈ ξ j Above

⊆ ξ1∪ξ2

D′ ⊆ D∪∆ j Above

⊆ D∪ (∆1,∆2)

D′∩∆3− j = /0 As D′ ⊆D∪∆ j and (D∪∆ j)∩∆3− j = /0

D′∩ (∆1,∆2) = D′∩∆ j

⊆ cl(ξ j)(D) Above

⊆ cl(ξ1∪ξ2)(D) cl(−)(O) monotone

Therefore,

∀D̃�ĉ ∈ ξ
′
1∪ξ

′
2,∃B̃�ĉ ∈ ξ1∪ξ2 s.t. B̃⊆ D̃∪ (∆1,∆2) and B̃∩ (∆1,∆2)⊆ cl(ξ1∪ξ2)(D̃)
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• We show the other condition:

FV(ξ1)−∆1 = FV(ξ1)− (∆1,∆2) FV(ξ1)∩∆2 = /0

⊆ (FV(ξ1)− (∆1,∆2))∪ (FV(ξ2)− (∆1,∆2))

= (FV(ξ1)∪FV(ξ2))− (∆1,∆2)

= FV(ξ1∪ξ2)− (∆1,∆2)

FV(ξ2)−∆2 ⊆ FV(ξ1∪ξ2)− (∆1,∆2) Similarly

(∆1,∆2) ⊆ cl(ξ1)(FV(ξ1)−∆1)∪ cl(ξ2)(FV(ξ2)−∆2) ∆k ⊆ cl(ξk)(FV(ξk)−∆k)

⊆ cl(ξ1∪ξ2)(FV(ξ1)−∆1)∪ cl(ξ1∪ξ2)(FV(ξ2)−∆2) cl(−)(O) monotone (x2)

⊆ cl(ξ1∪ξ2)(FV(ξ1∪ξ2)− (∆1,∆2))

∪cl(ξ1∪ξ2)(FV(ξ1∪ξ2)− (∆1,∆2)) cl(O)(−) monotone (x2)

= cl(ξ1∪ξ2)(FV(ξ1∪ξ2)− (∆1,∆2)) ∪ idempotent

Lemma G.35 (Main Complete).

(1) If Θ̂ ⊢ R′ <:+ Q /W and R′ ground and Θ̂ ⊢ Q type[ξQ] and [Θ̂ ]Q = Q

then Θ̂ ⊢W wf[ξW ] and · ⊢ ξQ−∥Θ̂∥∠ξW −∥Θ̂∥;

moreover, if Q = R then ▶(pos(ξQ−∥Θ̂∥))⊆ ξW −∥Θ̂∥.

(2) If Θ̂ ▷M (F) type[ξ ′] and ∄x. v =
−−−→iinjki

(−−−−→j⟨_ j,−⟩ x
)

and d÷Θ̂ ▷ H
−→
β ;G;M (F)I⊜ dΘ ;R and Θ̂ ;Γ ⊢ v⇐∃dΘ . R∧ dΘ / χ ⊣ ∆

and [Θ̂ ](F ,M ,G,
−→
β ) = (F ,M ,G,β )

then Θ̂ ,∆ ⊢ ⌊χ⌋ wf[ξχ ] and ∆ ⊢ ξ ′−∥Θ̂∥∠ξχ −∥Θ̂∥.

(3) If Θ̂ ;Γ ⊢ v⇐ Q / χ ⊣ ∆ and Θ̂ ▷Q type[ξQ] and [Θ̂ ]Q = Q

then Θ̂ ,∆ ⊢ ⌊χ⌋ wf[ξχ ] and ∆ ⊢ ξQ−∥Θ̂∥∠ξχ −∥Θ̂∥.
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(4) If Θ̂ ;Γ ; [M] ⊢ s⇒↑P / χ ⊣ ∆

and Θ̂ ▷M type[ξM] and [Θ̂ ]M = M

then Θ̂ ,∆ ⊢ ⌊χ⌋ wf[ξχ ] and ∆ ⊢ ξM−∥Θ̂∥∠ξχ −∥Θ̂∥.

Proof. Parts (2) and (3) are mutually recursive. It is easy to check the presuppositions of

∆ ⊢ _∠_.

(1) By induction on the structure of the given subtyping derivation. Straightforward. Use

Lemma G.34 in the <:+× case, similar to Alg⇐× case of part (3). In the <:+∧R

case, use Lemma G.34 (Compose Mediates) with Lemma G.33 (No ∆ Mediates Re-

flexive).

(2) By lexicographic induction, first on v structure, second on unrolling height.

Let Ξ = dΘ .

Let Ξ̂ = Ξ̂ .

Let Ψ = [Ξ̂/Ξ ](dΘ − dΘ).

• Case −→
β ◦ inj1 ⊜

−→
β1

−→
β ◦ inj2 ⊜

−→
β2

d÷Θ̂ ▷ H
−→
β1;G1;M (F)I⊜ d

Θ 1;R1

d÷Θ̂ ▷ H
−→
β2;G2;M (F)I⊜ d

Θ 2;R2

d÷Θ̂ ▷ H
−→
β ;G1⊕G2;M (F)I⊜ ·;(∃dΘ 1. (R1∧ d

Θ 1))+(∃dΘ 2. (R2∧ d
Θ 2))

AlgH⊕I

– Case
Θ̂ ;Γ ⊢ v0⇐∃dΘ k. (Rk∧ d

Θ k) / χ ⊣ ∆

Θ̂ ;Γ ⊢ injk v0⇐ (∃dΘ 1. (R1∧ d
Θ 1))+(∃dΘ 2. (R2∧ d

Θ 2)) / χ ⊣ ∆

Alg⇐+k



G.2. DEPENDENCY MEDIATION 594

d÷Θ̂ ▷ H
−→
βk ;Gk;M (F)I⊜ dΘ k;Rk Subderivation

Θ̂ ;Γ ⊢ v0⇐∃dΘ k. (Rk∧ dΘ k) / χ ⊣ ∆ Premise

∄x. injk v0 =
−−−→iinjki

(−−−−→j⟨_ j,−⟩ x
)

Given

∄x. v0 =
−−−→iinjki

(−−−−→j⟨_ j,−⟩ x
)

Straightforward

Z Θ̂ ,∆ ⊢ ⌊χ⌋ wf[ξχ ] By i.h.

Z ∆ ⊢ ξ ′−∥Θ̂∥∠ξχ −∥Θ̂∥ ′′

• Case
(dΞ

′
may be · and −→ϕ may be ·)

−→
β ⇝

−→
β
′

d
Ξ
′
, d÷Θ̂ ⊢ H

−→
β
′; P̂;M (F)I⊜ d

Θ
′
0;R′

d÷Θ̂ ▷ H
−→
β ;∃dΞ

′
. RQ∧−→ϕ ⊗ P̂;M (F)I⊜ d

Ξ
′
,dΘ

′
0,−→ϕ︸ ︷︷ ︸

dΘ

;RQ×R′︸ ︷︷ ︸
R

AlgHConstI

We assume (dΞ
′,dΘ ′0) ̸= ·. The empty case is similar.

Let dΘ 0 =
dΘ
′
0,−→ϕ .

– Case
Θ̂ , ̂dΞ

′,dΘ 0;Γ ⊢ v⇐ [
̂dΞ
′,dΘ 0/

d
Ξ
′
,dΘ 0](R∧ (dΞ

′
,dΘ 0)) / χ ⊣ ∆0

Θ̂ ;Γ ⊢ v⇐∃dΞ
′
,dΘ 0. R∧ (dΞ

′
,dΘ 0) / χ ⊣ ̂dΞ

′,dΘ 0,∆0︸ ︷︷ ︸
∆

Alg⇐∃

Θ̂ , ̂dΞ
′,dΘ 0;Γ ⊢ v⇐ [

̂dΞ
′,dΘ 0/

dΞ
′,dΘ 0](R∧ (dΞ

′,dΘ 0)) / χ ⊣ ∆0 Premise

Θ̂ , ̂dΞ
′,dΘ 0;Γ ⊢ v⇐ [

̂dΞ
′,dΘ 0/

dΞ
′,dΘ 0](R∧ dΘ 0) / χ ⊣ ∆0 By def. ∧

Θ̂ , ̂dΞ
′,dΘ 0;Γ ⊢ v⇐ [

̂dΞ
′,dΘ 0/

dΞ
′,dΘ 0]R / χ0 ⊣ ∆0 By inversion on Alg⇐∧

χ = Ψ , χ0
′′
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By equality and def. [−]− and FV(RQ)∩dom(dΘ 0) = /0,

Θ̂ , ̂dΞ
′,dΘ 0;Γ ⊢ v⇐ [d̂Ξ

′
/dΞ ]RQ× [

̂dΞ
′,dΘ 0/

dΞ
′,dΘ 0]R′ / χ0 ⊣ ∆0

∄x. v =
−−−→iinjki

(−−−−→j⟨_ j,−⟩ x
)

Given

v not a var. Straightforward

Θ̂ , ̂dΞ
′,dΘ 0;Γ ⊢ v1⇐ [d̂Ξ

′
/dΞ

′
]RQ / χ1 ⊣ ∆1 By inversion on Alg⇐×

Θ̂ , ̂dΞ
′,dΘ 0;Γ ⊢ v2⇐ [

̂dΞ
′,dΘ 0/

dΞ
′,dΘ 0]R′ / χ2 ⊣ ∆2

′′

v = ⟨v1,v2⟩ ′′

χ0 = χ1, χ2
′′

∆0 = ∆1,∆2
′′

Θ̂ , ̂dΞ
′,dΘ 0;Γ ⊢ v1⇐ [d̂Ξ

′
/dΞ

′
]RQ∧ [d̂Ξ

′
/dΞ

′
]−→ϕ / [d̂Ξ

′
/dΞ

′
]−→ϕ , χ1 ⊣ ∆1 Alg⇐∧

Θ̂ , ̂dΞ
′,dΘ 0;Γ ⊢ v1⇐ [d̂Ξ

′
/dΞ

′
]Q / [d̂Ξ

′
/dΞ

′
]−→ϕ , χ1 ⊣ ∆1 By def. [−]−

and equality

∆1 ⊢ ξ
[d̂Ξ
′
/dΞ

′
]Q
−∥Θ̂∥∠ξ

[d̂Ξ
′
/dΞ

′
]−→ϕ ,χ1
−∥Θ̂∥ By i.h. (3), definitions

[d̂Ξ
′
/dΞ

′
]−→ϕ ⊆Ψ

∆1 ⊢ ξ
[d̂Ξ
′
/dΞ

′
]Q
−∥Θ̂∥∠ξΨ ,χ1,χ2−∥Θ̂∥ O ⊢ O ′∠− monotone

∆1 ⊆ cl(ξχ −∥Θ̂∥)(FV(ξχ −∥Θ̂∥)−∆1) By inversion

d̂Ξ
′ ⊆ cl(ξ

[d̂Ξ
′
/dΞ

′
]Q
−∥Θ̂∥)( /0) By type WF, Lemma B.4

⊆ cl(ξχ −∥Θ̂∥)( /0) By Lemma G.32

⊆ cl(ξχ −∥Θ̂∥)(FV(ξχ −∥Θ̂∥)−∆) cl(O)(−) monotone
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Let χ ′2 = [d̂Θ
′
0/

dΘ
′
0][

d̂Ξ
′
/dΞ

′
]dΘ

′
0, χ2.

Θ̂ , ̂dΞ
′,dΘ 0;Γ ⊢ v2⇐ [

̂dΞ
′,dΘ 0/

dΞ
′,dΘ 0]R′ / χ2 ⊣ ∆2

Θ̂ ,
̂dΞ
′,dΘ ′0;Γ ⊢ v2⇐ [

̂dΞ
′,dΘ ′0/

dΞ
′,dΘ ′0]R

′ / χ2 ⊣ ∆2

Θ̂ , d̂Ξ
′, d̂Θ ′0;Γ ⊢ v2⇐ [d̂Ξ

′, d̂Θ ′0/
dΞ
′,dΘ ′0]R

′ / χ2 ⊣ ∆2

Θ̂ , d̂Ξ
′, d̂Θ ′0;Γ ⊢ v2⇐ [d̂Θ

′
0/

dΘ
′
0][

d̂Ξ
′
/dΞ

′
](R′∧ dΘ

′
0) / χ ′2 ⊣ ∆2

Θ̂ , d̂Ξ
′;Γ ⊢ v2⇐∃dΘ ′0. ([d̂Ξ

′
/dΞ ]R′∧ [d̂Ξ

′
/dΞ ]dΘ

′
0) / χ ′2 ⊣ d̂Θ

′
0,∆2

By exchange, renaming on D0 :: dΞ
′, d÷Θ̂ ⊢ H

−→
β ′; P̂;M (F)I⊜ dΘ

′
0;R′,

d̂Ξ
′, d÷Θ̂ ⊢ H[d̂Ξ

′
/dΞ

′
]
−→
β ′; P̂;M (F)I⊜ [d̂Ξ

′
/dΞ

′
]dΘ

′
0; [d̂Ξ

′
/dΞ

′
]R′

by a derivation of height equal to that of D0.

∄x. ⟨v1,v2⟩=
−−−→iinjki

(−−−−→j⟨_ j,−⟩ x
)

Given

∄x. v2 =
−−−→iinjki

(−−−−→j⟨_ j,−⟩ x
)

Straightforward

d̂Θ
′
0,∆2 ⊢ ξ ′−∥Θ̂ , d̂Ξ

′∥∠ξχ ′2
−∥Θ̂ , d̂Ξ

′∥ By i.h.

d̂Θ
′
0,∆2 ⊢ ξ ′−∥Θ̂∥∠ξχ ′2

−∥Θ̂∥ By definitions

d̂Θ
′
0,∆2 ⊢ ξ ′−∥Θ̂∥∠ξχ −∥Θ̂∥ O ′ ⊢ O ∠− monotone

∆1, d̂Ξ
′ ⊆ cl(ξχ −∥Θ̂∥)(FV(ξχ −∥Θ̂∥)−∆) Above

d̂Ξ
′, d̂Θ ′0,∆1,∆2 ⊢ ξ ′−∥Θ̂∥∠ξχ −∥Θ̂∥ Inversion, set theory, rule

̂dΞ
′,dΘ ′0,∆1,∆2 ⊢ ξ ′−∥Θ̂∥∠ξχ −∥Θ̂∥ −̂, append commute

̂dΞ
′,dΘ 0,∆1,∆2 ⊢ ξ ′−∥Θ̂∥∠ξχ −∥Θ̂∥ def., equality

Z ∆ ⊢ ξ ′−∥Θ̂∥∠ξχ −∥Θ̂∥ By equalities
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• Case AlgHIdI

−−−→
a d÷ τ =−→a d÷M (F)

−−−−−−→
a d÷ τ ,a Id, d÷Θ̂ ▷ H

−−−→
q⇒ t ′; Î;M (F)I⊜ d

Ξ
′
,−→ψ ;R′

d÷Θ̂ ;dΞ
′
;zip(−→a )(M (F)) ⊢ −→ψ ⇝ Ξ̌1;M1(F);

−→
ψ
′

d÷Θ̂ ;dΞ
′
;zip(−→a )(M (F)) ⊢ R′′⇝ Ξ̌2;M2(F);R′′

Ξ̌
′′ = Ξ̌1∪ Ξ̌2 M ′(F) = M1(F)∪M2(F)

dom(dΞ
′′
)∩dom(d÷Θ̂ ,

−−−→
a d÷ τ ,dΞ

′
, Ξ̌ ′′) = /0 ρ is the variable renaming d

Ξ
′′
/Ξ̌
′′

d÷Θ̂ ▷ H
−−−−−−→
(a,q)⇒ t ′; Id⊗ Î;M (F)I⊜ d

Ξ
′′
,dΞ

′
, [ρ]
−→
ψ
′︸ ︷︷ ︸

dΘ

;
{

ν : µF
∣∣ [ρ]M ′(F)

}
× [ρ]R′′︸ ︷︷ ︸

R

Assume (dΞ
′′,dΞ

′
) ̸= ·. The empty case is similar.

−−−−−−→
a d÷ τ ,a Id, Ξ̂ ▷ H

−−−→
q⇒ t ′; Î;M (F)I⊜ dΞ

′,−→ψ ;R′ Subderivation

d÷Θ̂ ;dΞ
′;zip(−→a )(M (F)) ⊢−→ψ ⇝ Ξ̌1;M1(F);

−→
ψ ′ Premise

d÷Θ̂ ;dΞ
′;zip(−→a )(M (F)) ⊢R′⇝ Ξ̌2;M2(F);R′′ Premise

cl((ξ[ρ]M ′− d÷Θ̂)− dΞ
′
)( /0) = dom(dΞ

′′
) Lemma C.54 (liftapps WF)

(algo. version)

−→
ψ ′ =

−−−−−−→
t = ⟨t ′ | t⟩ By inversion

M (F) =
−−−−−−−−−−−→
(foldF α)ν t=τ t ′′
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Θ̂ ;Γ ⊢ v⇐∃dΘ . R∧ dΘ / χ ⊣ ∆ Given

Θ̂ , Ξ̂ ;Γ ⊢ v⇐ [Ξ̂/dΘ ]R∧Ψ / χ ⊣ ∆ ′ By inversion on Alg⇐∃, definitions

∆ = Ξ̂ ,∆ ′ ′′

Ξ̂ = d̂Ξ
′′, d̂Ξ

′ By equality, −̂ property

Ψ = [Ξ̂/Ξ ][ρ]
−→
ψ ′ By equalities

By inversion on Alg⇐∧, definitions, substitution properties, FV(F) = /0,

Θ̂ , d̂Ξ
′′, d̂Ξ

′;Γ ⊢ v⇐
{

ν : µF
∣∣ [Ξ̂/Ξ ][ρ]M ′}× [Ξ̂/Ξ ][ρ]R′′ / χ0 ⊣ ∆ ′

χ = Ψ , χ0

Ψ = [Ξ̂/Ξ ][ρ]
−→
ψ ′

= [Ξ̂/Ξ ][ρ]
(−−−−−−→

t = ⟨t ′ | t⟩
)

=
−−−−−−−−−−−−−→
t = [Ξ̂/Ξ ][ρ]⟨t ′ | t⟩ By def. subst.

and FV(t)∩dom(Ξ) = /0

Let R0 =
{

ν : µF
∣∣ [Ξ̂/Ξ ][ρ]M ′}× [Ξ̂/Ξ ][ρ]R′′.

Let D′ = FV([Ξ̂/Ξ ][ρ]
−−−→
⟨t ′ | t⟩)−∥Θ̂∥.

Let D = FV(
−→
t )−∥Θ̂∥.
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D′ = FV([Ξ̂/Ξ ]
−−−→
⟨t ′ | t⟩)−∥Θ̂∥

⊆ (FV([Ξ̂/Ξ ]
−→
t ′ )∪FV([Ξ̂/Ξ ]

−→
t ))−∥Θ̂∥

⊆ (FV([Ξ̂/Ξ ]
−→
t ′ )∪FV(

−→
t ))−∥Θ̂∥ As FV(

−→
t )∩dom(dΞ

′′,dΞ
′
) = /0

= (FV([Ξ̂/Ξ ]
−→
t ′ )−∥Θ̂∥)∪D

⊆ dom(Ξ̂)∪D

⊆ D∪ (Ξ̂ ,∆ ′)

= D∪∆

To apply the rule for the goal, we need to show (SG1) and (SG2), respectively:

∆ ⊆ cl(ξχ −∥Θ̂∥)(FV(ξχ −∥Θ̂∥)−∆)

and

∀D̃�ĉ∈ ξ
′−∥Θ̂∥,∃B̃�ĉ∈ ξχ −∥Θ̂∥ s.t. B̃⊆ D̃∪∆ and B̃∩∆ ⊆ cl(ξχ−∥Θ̂∥)(D̃)

∄x. v =
−−−→iinjki

(−−−−→j⟨_ j,−⟩ x
)

Given

Θ̂ , d̂Ξ
′′, d̂Ξ

′;Γ ⊢ v1⇐
{

ν : µF
∣∣ [Ξ̂/Ξ ][ρ]M ′} / χ1 ⊣ ∆ ′1 By inversion on Alg⇐×

Θ̂ , d̂Ξ
′′, d̂Ξ

′;Γ ⊢ v2⇐ [Ξ̂/Ξ ][ρ]R′′ / χ2 ⊣ ∆ ′2
′′

v = ⟨v1,v2⟩ ′′

χ0 = χ1, χ2
′′

∆ ′ = ∆ ′1,∆ ′2
′′
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Extend the liftapps judgment in the obvious way to perform the substitution on

lambda abstraction indices. Then we can instead perform the substitution on

the principal input measures of unrolling subderivation

D0 ::
−−−−−−→
a d÷ τ ,a Id, d÷Θ̂ ▷ H

−−−→
q⇒ t ′; Î;M (F)I⊜ d

Ξ
′
,−→ψ ;R′

to get the result on the outputs by an unrolling derivation of the same height.

Different variables can be generated (the input has not been hereditarily applied

like in the output so Id), but we can rename them (ρ ′) to the ones corresponding

to the unrolling output:

d÷Θ̂ ; ·;zip(−→a )(M (F)) ⊢
−→
t ′ ⇝ Ξ̌ ′′′;_;

−→
t ′′

ρ ′ = Ξ̌ ′′/Ξ̌ ′′′

D ′0 :: dΞ
′′, d÷Θ̂ ▷ H

−−−−−−−−→
q⇒ [ρ][ρ ′]t ′′; Î;M (F)I⊜ dΞ

′, [ρ]
−→
ψ ′; [ρ]R′′

hgt(D ′0) = hgt(D0)

By renaming, exchange, and FV(M )∩dom(d̂Ξ
′′
) = /0,

D ′′0 :: d÷Θ̂ , d̂Ξ
′′ ▷ H

−−−−→
q⇒ t ′′′; Î;M (F)I⊜ dΞ

′, [d̂Ξ
′′
/dΞ

′′
][ρ]
−→
ψ ′; [d̂Ξ

′′
/dΞ

′′
][ρ]R′′

−→
t ′′′ =

−−−−−−−−−−−−−→
[d̂Ξ
′′
/dΞ

′′
][ρ][ρ ′]t ′′

hgt(D ′′0 ) = hgt(D ′0)

By Alg⇐∧ and def. of substitution,

Θ̂ , d̂Ξ
′′, d̂Ξ

′;Γ ⊢ v2⇐ [d̂Ξ
′
/dΞ

′
]Q′ /Ψ , χ2 ⊣ ∆ ′2

Q′ = [d̂Ξ
′′
/dΞ

′′
][ρ]R′′∧ [d̂Ξ

′′
/dΞ

′′
][ρ]
−→
ψ ′

Assume dΞ
′′ ̸= ·. The empty case is similar. By Alg⇐∃,
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Θ̂ , d̂Ξ
′′;Γ ⊢ v2⇐∃dΞ

′. Q′ /Ψ , χ2 ⊣ d̂Ξ
′,∆ ′2

∄x. v2 =
−−−→iinjki

(−−−−→j⟨_ j,−⟩ x
)

Straightforward

d̂Ξ
′,∆ ′2 ⊢ ξ ′−∥Θ̂∥∠ξΨ ,χ2−∥Θ̂∥ By i.h.

By inversion,

d̂Ξ
′,∆ ′2 ⊆ cl(ξΨ ,χ2−∥Θ̂∥)(FV(ξΨ ,χ2−∥Θ̂∥)− (d̂Ξ

′,∆ ′2))

∀D̃�ĉ ∈ ξ ′−∥Θ̂∥,∃B̃�ĉ ∈ ξΨ ,χ2−∥Θ̂∥ s.t. B̃⊆ D̃∪ (d̂Ξ
′,∆ ′2) and B̃∩ (d̂Ξ

′,∆ ′2)⊆ cl(ξΨ ,χ2−∥Θ̂∥)(D̃) (*)

– Case v1 = x

Θ̂ , d̂Ξ
′′, d̂Ξ

′;Γ ⊢ x⇐
{

ν : µF
∣∣ [Ξ̂/Ξ ][ρ]M ′} / χ1 ⊣ ∆ ′1 By equality

∆ ′1 = · By inversion

▶(d̂Ξ
′′
) = ▶(pos(ξ[Ξ̂/Ξ ][ρ]M ′−∥Θ̂∥)) ′′

⊆ ξχ1−∥Θ̂∥ By part (1)

⊆ ξΨ ,χ1,χ2−∥Θ̂∥ By set theory

= ξχ −∥Θ̂∥ By equalities

d̂Ξ
′′ ⊆ cl(ξχ −∥Θ̂∥)( /0) ▶(d̂Ξ

′′
)⊆ ξχ −∥Θ̂∥

⊆ cl(ξχ −∥Θ̂∥)(FV(ξχ −∥Θ̂∥)−∆) cl(O)(−) monotone

d̂Ξ
′,∆ ′2 ⊢ ξ ′−∥Θ̂∥∠ξΨ ,χ2−∥Θ̂∥ Above

d̂Ξ
′,∆ ′2 ⊢ ξ ′−∥Θ̂∥∠ξΨ ,χ1,χ2−∥Θ̂∥ O ⊢ O ′∠− monotone

d̂Ξ
′,∆ ′2 ⊢ ξ ′−∥Θ̂∥∠ξΨ ,χ0−∥Θ̂∥ By equality
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∆ = d̂Ξ
′′, d̂Ξ

′,∆ ′1,∆ ′2 By equalities

= d̂Ξ
′′, d̂Ξ

′,∆ ′2 By equality

⊆ cl(ξχ −∥Θ̂∥)(FV(ξχ −∥Θ̂∥)−∆) By property of union

That establishes (SG1).

Assume D�t ∈ ξ ′−∥Θ̂∥. Goal (SG2) reduces to

∃B̃�t ∈ ξχ −∥Θ̂∥. B̃⊆D∪∆ and B̃∩∆ ⊆ cl(ξχ −∥Θ̂∥)(D).

D′′�t ∈ ξΨ ,χ2−∥Θ̂∥ By (*)

D′′ ⊆ D∪ (d̂Ξ
′,∆ ′2)

′′

D′′∩ (d̂Ξ
′,∆ ′2) ⊆ cl(ξΨ ,χ2−∥Θ̂∥)(D) ′′

D′′�t ∈ ξΨ ,χ2−∥Θ̂∥ Above

⊆ ξΨ ,χ1,χ2−∥Θ̂∥

= ξχ −∥Θ̂∥ By equalities

D′′ ⊆ D∪ (d̂Ξ
′,∆ ′2) Above

⊆ D∪∆
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D′′∩ (d̂Ξ
′,∆ ′2) ⊆ cl(ξΨ ,χ2−∥Θ̂∥)(D) Above

⊆ cl(ξΨ ,χ1,χ2−∥Θ̂∥)(D) cl(−)(O) monotone

= cl(ξχ −∥Θ̂∥)(D) By equalities

d̂Ξ
′′ ⊆ cl(ξχ −∥Θ̂∥)( /0) Above

⊆ cl(ξχ −∥Θ̂∥)(D) cl(O)(−) monotone

D′′∩∆ ⊆ cl(ξχ −∥Θ̂∥)(D) By properties of union

and intersection

Z ∆ ⊢ ξ ′−∥Θ̂∥∠ξχ −∥Θ̂∥ By rule

– Case v1 = into(v′1)

Let X ′ = FV(ξΨ ,χ2−∥Θ̂∥)− (d̂Ξ
′,∆ ′2).

Let X = FV(ξΨ ,χ2−∥Θ̂∥)− (d̂Ξ
′,∆ ′1,∆ ′2).

Let Y = FV(ξΨ , χ1, χ2︸ ︷︷ ︸
χ

−∥Θ̂∥)− (d̂Ξ
′′, d̂Ξ

′,∆ ′1,∆ ′2)︸ ︷︷ ︸
∆

.

X− d̂Ξ
′′ ⊆ Y Straightforward

X ⊆ Y ∪ d̂Ξ
′′ Set theory

X ∪Y ⊆ Y ∪ d̂Ξ
′′ Set theory
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d̂Ξ
′,∆ ′2 ⊆ cl(ξΨ ,χ2−∥Θ̂∥)(X ′) Above

= cl(ξΨ ,χ2−∥Θ̂∥)(X) FV(ξΨ ,χ2−∥Θ̂∥)∩∆ ′1 = /0

⊆ cl(ξχ −∥Θ̂∥)(X) cl(−)(O) monotone

⊆ cl(ξχ −∥Θ̂∥)(X ∪Y ) cl(O)(−) monotone

⊆ cl(ξχ −∥Θ̂∥)(Y ∪ d̂Ξ
′′
) cl(O)(−) monotone

= cl(ξχ −∥Θ̂∥)(FV(ξχ −∥Θ̂∥)−∆︸ ︷︷ ︸
Y

) By Lemma B.5, equalities

Θ̂ , d̂Ξ
′′, d̂Ξ

′;Γ ⊢ into(v′1)⇐
{

ν : µF
∣∣ [Ξ̂/Ξ ][ρ]M ′} / χ1 ⊣ ∆ ′1 By equality

[Ξ̂/Ξ ][ρ]M ′⇝−→α By inversion on Alg⇐µ

d÷Θ̂ , d̂Ξ
′′, d̂Ξ

′ ▷ H−→α ;F ; [Ξ̂/Ξ ][ρ]M ′(F)I⊜ dΘ 2;R2
′′

Θ̂ , d̂Ξ
′′, d̂Ξ

′;Γ ⊢ v′1⇐∃dΘ 2. R2∧ dΘ 2 / χ1 ⊣ ∆ ′1
′′

∄x. v′1 =
−−−→iinjki

(−−−−→j⟨_ j,−⟩ x
)

′′

∆ ′1 ⊢ ξ[Ξ̂/Ξ ][ρ]M ′−∥Θ̂∥∠ξχ1−∥Θ̂∥ By i.h.

By inversion,

∆ ′1 ⊆ cl(ξχ1−∥Θ̂∥)(FV(ξχ1−∥Θ̂∥)−∆ ′1)

∀D̃�ĉ ∈ ξ[Ξ̂/Ξ ][ρ]M ′−∥Θ̂∥,∃B̃�ĉ ∈ ξχ1−∥Θ̂∥ s.t. B̃⊆ D̃∪∆ ′1 and B̃∩∆ ′1 ⊆ cl(ξχ1−∥Θ̂∥)(D̃)
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∆ ′1 ⊆ cl(ξχ1−∥Θ̂∥)(FV(ξχ1−∥Θ̂∥)−∆ ′1) Above

= cl(ξχ1−∥Θ̂∥)(FV(ξχ1−∥Θ̂∥)− (d̂Ξ
′,∆ ′1,∆ ′2)) FV(ξχ1−∥Θ̂∥) and

(d̂Ξ
′,∆ ′2) disjoint

= cl(ξχ1−∥Θ̂∥)(FV(ξχ1−∥Θ̂∥)−∆) By Lemma B.5

⊆ cl(ξΨ ,χ1,χ2−∥Θ̂∥)(FV(ξχ1−∥Θ̂∥)−∆) cl(−)(O) monotone

⊆ cl(ξΨ ,χ1,χ2−∥Θ̂∥)(FV(ξΨ ,χ1,χ2−∥Θ̂∥)−∆) cl(O)(−) monotone

= cl(ξχ −∥Θ̂∥)(FV(ξχ −∥Θ̂∥)−∆) By equalities

∆ ′1 ⊢ ξ[Ξ̂/Ξ ][ρ]M ′−∥Θ̂∥− d̂Ξ
′∠ξχ1−∥Θ̂∥− d̂Ξ

′

cl((ξ[ρ]M ′− d÷Θ̂)− dΞ
′
)( /0) = dom(dΞ

′′
) Above

cl((ξ[Ξ̂/Ξ ][ρ]M ′− d÷Θ̂)− d̂Ξ
′
)( /0) = dom(d̂Ξ

′′
) By renaming

d̂Ξ
′′ ⊆ cl((ξ[Ξ̂/Ξ ][ρ]M ′− d÷Θ̂)− d̂Ξ

′
)( /0)

⊆ cl(ξ[Ξ̂/Ξ ][ρ]M ′−∥Θ̂∥− d̂Ξ
′
)(FV(ξχ1−∥Θ̂∥)−∆ ′1)

= cl(ξ[Ξ̂/Ξ ][ρ]M ′−∥Θ̂∥− d̂Ξ
′
)(FV(ξχ1−∥Θ̂∥)−∆)

⊆ cl(ξχ1−∥Θ̂∥− d̂Ξ
′
)(FV(ξχ1−∥Θ̂∥)−∆)

⊆ cl(ξχ −∥Θ̂∥− d̂Ξ
′
)(FV(ξχ −∥Θ̂∥)−∆)

⊆ cl(ξχ −∥Θ̂∥)(FV(ξχ −∥Θ̂∥)−∆) By Lemma B.9

∆ ⊆ cl(ξχ −∥Θ̂∥)(FV(ξχ −∥Θ̂∥)−∆) By property of union

That establishes (SG1).
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Assume D�t ∈ ξ ′−∥Θ̂∥; (SG2) reduces to

∃B̃�t ∈ ξχ −∥Θ̂∥. B̃⊆D∪∆ and B̃∩∆ ⊆ cl(ξχ −∥Θ̂∥)(D).

D′′′�t ∈ ξΨ ,χ2−∥Θ̂∥ By (*)

D′′′ ⊆ D∪ (d̂Ξ
′,∆ ′2)

′′

D′′′∩ (d̂Ξ
′,∆ ′2) ⊆ cl(ξΨ ,χ2−∥Θ̂∥)(D) ′′

⊆ cl(ξχ −∥Θ̂∥)(D) cl(−)(O) monotone

D′′′�t ∈ ξΨ ,χ2−∥Θ̂∥ Above

⊆ ξχ −∥Θ̂∥

D′′′ ⊆ D∪ (d̂Ξ
′,∆ ′2) Above

⊆ D∪∆

D′′′∩ d̂Ξ
′′
= /0 D′′′ ⊆D∪ (

̂̂
dΞ
′
,∆ ′2)

and (D∪ (d̂Ξ
′,∆ ′2))∩ d̂Ξ

′′
= /0

D′′′∩∆ ′1 = /0 D′′′ ⊆D∪ (d̂Ξ
′,∆ ′2)

and (D∪ (d̂Ξ
′,∆ ′2))∩∆ ′1 = /0

D′′′∩∆ ⊆ cl(ξχ −∥Θ̂∥)(D) By properties of ∩ and ∪

and ∆ = d̂Ξ
′′, d̂Ξ

′,∆ ′1,∆ ′2

Z ∆ ⊢ ξ ′−∥Θ̂∥∠ξχ −∥Θ̂∥ By rule
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• Case −→
t ′ @M (F)⊜−→ϕ

Ξ̂ ▷ H
−−−−→
()⇒ t ′; I;M (F)I⊜−→ϕ ;1

AlgHII

By inversion −→ϕ =
−−−−−−→
t = ⟨t ′ | t⟩.

Given ∄x. v =
−−−→iinjki

(−−−−→j⟨_ j,−⟩ x
)

, we know v cannot be a variable.

– Case

Θ̂ ;Γ ⊢ v⇐ 1 / tt ⊣ ·
Alg⇐1

Θ̂ ;Γ ⊢ v⇐ (1∧−→ϕ ) /−→ϕ , tt︸︷︷︸
χ

⊣ ·︸︷︷︸
∆

Alg⇐∧

Let A = FV(
−→
t )−∥Θ̂∥.

Let A′ = (FV(
−−−−→
⟨t ′ | t⟩)−∥Θ̂∥).

∥d÷Θ̂∥ ⊢
−−−−→
()⇒ t ′ : I(τ)⇒ τ Presupposed derivations

d÷∥d÷Θ̂∥ ⊢
−→
t ′ : τ By inversion

∥Θ̂∥ ⊢
−→
t ′ : τ By definitions and weakening

FV(
−→
t ′ ) ⊆ dom(∥Θ̂∥) Straightforward

A′ = FV(
−−−→
⟨t ′ | t⟩)−∥Θ̂∥ By definition of A′

⊆ (FV(
−→
t ′ )∪FV(

−→
t ))−∥Θ̂∥ Straightforward

= FV(
−→
t )−∥Θ̂∥ As FV(

−→
t ′ )⊆ dom(∥Θ̂∥)

= A By definition of A

The goal follows by the rule (its two premises are straightforward, the latter
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using A′ ⊆ A).

(3) By structural induction on v.

• Case
(x : R′) ∈ Γ Θ̂ ⊢ R′ <:+ R /W

Θ̂ ;Γ ⊢ x⇐ R︸︷︷︸
Q

/ W︸︷︷︸
χ

⊣ ·︸︷︷︸
∆

Alg⇐Var

Θ̂ ⊢R′ <:+ R /W Premise

Θ̂ ▷Q type[ξQ] Given

R′ ground By inversion on presupposed ctx. WF

[Θ̂ ]Q = Q Given

Z Θ̂ ⊢W wf[ξ ] By part (1)

· ⊢ ξR−∥Θ̂∥∠ξ −∥Θ̂∥ ′′

Z ∆ ⊢ ξQ−∥Θ̂∥∠ξ −∥Θ̂∥ By equalities

• Case
Θ̂ ;Γ ⊢ v1⇐ R1 / χ1 ⊣ ∆1 Θ̂ ;Γ ⊢ v2⇐ R2 / χ2 ⊣ ∆2

Θ̂ ;Γ ⊢ ⟨v1,v2⟩ ⇐ (R1×R2) / χ1, χ2︸ ︷︷ ︸
χ

⊣ ∆1,∆2︸ ︷︷ ︸
∆

Alg⇐×
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Θ̂ ;Γ ⊢ v1⇐ R1 / χ1 ⊣ ∆1 Subderivation

Θ̂ ,∆1 ⊢ ⌊χ1⌋ wf[ξ1] By i.h.

∆1 ⊢ ξR1−∥Θ̂∥∠ξ1−∥Θ̂∥ ′′

Θ̂ ;Γ ⊢ v2⇐ R2 / χ2 ⊣ ∆2 Subderivation

Θ̂ ,∆2 ⊢ ⌊χ2⌋ wf[ξ2] By i.h.

∆2 ⊢ ξR2−∥Θ̂∥∠ξ2−∥Θ̂∥ ′′

∆1,∆2 ⊢ (ξR1−∥Θ̂∥)∪ (ξR2−∥Θ̂∥)∠ (ξ1−∥Θ̂∥)∪ (ξ2−∥Θ̂∥) By Lemma G.34

Z ∆1,∆2 ⊢ (ξR1 ∪ξR2)−∥Θ̂∥∠ (ξ1∪ξ2)−∥Θ̂∥ Subtraction distributes over ∪

• Case
∄x. v0 =

−−−→iinjki

(−−−−→j⟨_ j,−⟩ x
)

M (F)⇝−→α ;−→τ
d÷Θ̂ ▷ H−→α ;F ;M (F)I⊜ d

Θ ;R′

Θ̂ ;Γ ⊢ v0⇐∃dΘ . R′∧ d
Θ / χ ⊣ ∆

Θ̂ ;Γ ⊢ into(v0)⇐{ν : µF |M (F)}︸ ︷︷ ︸
Q

/ χ ⊣ ∆

Alg⇐µ

Θ̂ ;Γ ⊢ v0⇐∃dΘ . R′∧ dΘ / χ ⊣ ∆ Subderivation

d÷Θ̂ ▷ H−→α ;F ;M (F)I⊜ dΘ ;R′ Premise

∄x. v0 =
−−−→iinjki

(−−−−→j⟨_ j,−⟩ x
)

Premise

Z Θ̂ ,∆ ⊢ ⌊χ⌋ wf[ξ ] By i.h., part (2)

Z ∆ ⊢ ξQ−∥Θ̂∥∠ξ −∥Θ̂∥ ′′

• Case Alg⇐∧: Similar to Alg⇐× case.
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• Cases Alg⇐+k, Alg⇐1, Alg⇐↓:

In these cases, ξQ = · and ∆ = ·.

By a rule, · ⊢ ·∠ξχ −∥Θ̂∥.

By equalities and def. of subtraction, ∆ ⊢ ξQ−∥Θ̂∥∠ξχ −∥Θ̂∥.

• Case Alg⇐∃:

Impossible because Q ̸= ∃.

(4) Similar to part (3).

Lemma G.36 (cl to Mediated cl).

If ∆ ⊢ ξ ′∠ξ and FV(ξ ′)⊆ cl(ξ ′)( /0) and FV(ξ )⊆ FV(ξ ′)∪dom(∆)

then FV(ξ ′),∆ ⊆ cl(ξ )( /0).

Proof.

∆ ⊢ ξ ′∠ξ Given

/0 = FV(ξ ′)∩dom(∆) By inversion

FV(ξ ′) ⊆ cl(ξ ′)( /0) Given

⊆ cl(ξ )( /0) By Lemma G.32 (Admissible Premise)

FV(ξ ) ⊆ FV(ξ ′)∪dom(∆) Given

FV(ξ )−∆ ⊆ FV(ξ ′) Subtraction monotone and FV(ξ ′)∩dom(∆) = /0

∆ ⊆ cl(ξ )(FV(ξ )−∆) By inversion on ∆ ⊢ ξ ′∠ξ

⊆ cl(ξ )(FV(ξ ′)) cl(O)(−) monotone (with FV(ξ )−∆ ⊆ FV(ξ ′))

= cl(ξ )( /0) By Lemma B.5 (Weaken cl) with FV(ξ ′)⊆ cl(ξ )( /0)
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Z FV(ξ ′),∆ ⊆ cl(ξ )( /0) By property of union

The following lemma is never directly used and we tend to use implicitly the lemma

stating the equivalence of cl and det.

Lemma G.37 (Det. to Mediated Det.).

If ξ ′ ⊢ FV(ξ ′) det and ∆ ⊢ ξ ′∠ξ and FV(ξ )⊆ FV(ξ ′)∪dom(∆)

then ξ ⊢ FV(ξ ′),∆ det.

Proof.

ξ ′ ⊢FV(ξ ′) det Given

FV(ξ ′) ⊆ cl(ξ ′)( /0) By Lemma B.4 (Equivalence of cl and det)

FV(ξ ) ⊆ FV(ξ ′)∪dom(∆) Given

∆ ⊢ ξ ′∠ξ Given

FV(ξ ′),∆ ⊆ cl(ξ )( /0) By Lemma G.36 (cl to Mediated cl)

Z ξ ⊢FV(ξ ′),∆ det By Lemma B.4 (Equivalence of cl and det)

Appendix G.3 Algorithmic Subtyping

Lemma G.38 (Aux. Alg. Sub. Complete).

(1) If Θ |̃=W then Θ |=W.

(2) If Θ̂
SMT−−−→Ω and ∥Θ̂∥ ⊢̃ R <:+ [Ω ]Q /W and ∥Θ̂∥ |̃=W

and Θ̂ present and [Θ̂ ]Q = Q and Rground and Θ̂ ▷Q type[ξ ]

then there exists W ′ such that Θ̂ ⊢ R <:+ Q /W ′

and ∥Θ̂∥; · ⊢ [Ω ]W ′ fixInstChk ⊣ ∥Θ̂∥ and ∥Θ̂∥ |̃=W ↔ [Ω ]W ′.
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(3) If Θ̂
SMT−−−→Ω and ∥Θ̂∥ ⊢̃ [Ω ]M <:− L /W and ∥Θ̂∥ |̃=W

and Θ̂ present and [Θ̂ ]M = M and Lground and Θ̂ ▷M type[ξ ]

then there exists W ′ such that Θ̂ ⊢ L <:− M /W ′

and ∥Θ̂∥; · ⊢ [Ω ]W ′ fixInstChk ⊣ ∥Θ̂∥ and ∥Θ̂∥ |̃=W ↔ [Ω ]W ′.

(4) If Ξ ⊢̃ α;F <:τ α ′;F ′ then Ξ ▷α;F <:τ α ′;F ′.

(5) If Θ ⊢̃ R <:+ P /W and Θ |̃=W then Θ ⊢ R <:+ P.

(6) If Θ ⊢̃ N <:− L /W and Θ |̃=W then Θ ⊢ N <:− L.

(7) If Θ̂
SMT−−−→Ω and ∥Θ̂∥ ⊢̃M ′(F ′)≥ [Ω ](M (F)) /W and ∥Θ̂∥ |̃=W

and Θ̂ present and [Θ̂ ](M (F))=M (F) and M ′(F ′)ground and Θ̂▷M (F)msmts[ξ ]

then there exists W ′ such that Θ̂ ⊢M ′(F ′)≥M (F) /W ′

and ∥Θ̂∥; · ⊢ [Ω ]W ′ fixInstChk ⊣ ∥Θ̂∥ and ∥Θ̂∥ |̃=W ↔ [Ω ]W ′.

Proof. By induction on the sum of the height of the given semideclarative subtyping/sub-

measuring derivation and the height of the given semideclarative (subtyping) constraint

checking derivation. All parts are mutually recursive.

(1) Straightforward

(2) • Case

∥Θ̂∥ ⊢̃ 0 <:+ 0︸︷︷︸
[Ω ]0

/ tt

<̃:+0

Z Θ̂ ⊢ 0 <:+ 0 / tt By <:+0

Z ∥Θ̂∥ |̃= tt↔ tt︸︷︷︸
[Ω ]tt

By Lemma G.14 (Prob. Equiv. Reflexive)

Z ∥Θ̂∥; · ⊢ tt︸︷︷︸
[Ω ]tt

fixInstChk ⊣ ∥Θ̂∥ Straightforward
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• Case <̃:+1: Similar to <̃:+0 case.

• Case
∥Θ̂∥ ⊢̃ R1 <:+ [Ω ]R′1 /W1 ∥Θ̂∥ ⊢̃ R2 <:+ [Ω ]R′2 /W2

∥Θ̂∥ ⊢̃ R1×R2 <:+ [Ω ]R′1× [Ω ]R′2 /W1

V

W2

<̃:+×

∥Θ̂∥ ⊢̃R1 <:+ [Ω ]R′1 /W1 Subderivation

Θ̂
SMT−−−→Ω Given

∥Θ̂∥ |̃=W1

V

W2 Given

∥Θ̂∥ |̃=W1 By inversion on |̃=↔

V

∥Θ̂∥ |̃=W2
′′

Θ̂ ⊢R1 <:+ R′1 /W ′1 By i.h.

∥Θ̂∥ |̃=W1↔ [Ω ]W ′1
′′

∥Θ̂∥; · ⊢ [Ω ]W ′1 fixInstChk ⊣ ∥Θ̂∥ ′′

Θ̂ ▷R′1×R′2 type[_] Given

Θ̂ ▷R′2 type[_] By inversion

∥Θ̂∥ ⊢̃R2 <:+ [Ω ]R′2 /W2 Subderivation

Θ̂ ⊢R2 <:+ R′2 /W ′2 By i.h.

∥Θ̂∥ |̃=W2↔ [Ω ]W ′2
′′

∥Θ̂∥; · ⊢ [Ω ]W ′2 fixInstChk ⊣ ∥Θ̂∥ ′′

Z Θ̂ ⊢R1×R2 <:+ R′1×R′2 /W ′1

V

W ′2 By <:+×
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∥Θ̂∥ |̃=W1

V

W2↔ [Ω ]W ′1

V

[Ω ]W ′2 By |̃=↔

V

Z ∥Θ̂∥ |̃=W1

V

W2↔ [Ω ](W ′1

V

W ′2) By def. of [−]−

Z ∥Θ̂∥; · ⊢ [Ω ]W ′1

V

[Ω ]W ′2︸ ︷︷ ︸
[Ω ](W ′1

V

W ′2)

fixInstChk ⊣ ∥Θ̂∥ By Lemma G.2 (Inst. Compose)

• Case <̃:++:

P1 = ∃dΞ 1. R1∧−→ϕ1 P2 = ∃dΞ 2. R2∧−→ϕ2

W = (∀dΞ 1.−→ϕ1 ⊃ R1 <:+ [Ω ]P′1)

V

(∀dΞ 2.−→ϕ2 ⊃ R2 <:+ [Ω ]P′2)

Θ ⊢̃ P1 +P2 <:+ [Ω ]P′1 +[Ω ]P′2 /W

By <:++,

Z Θ̂ ⊢P1 +P2 <:+ P′1 +P′2 / ∀dΞ 1.−→ϕ1 ⊃ R1 <:+ P′1

V

∀dΞ 2.−→ϕ2 ⊃ P2 <:+ P′2

The constraint equivalence follows from Lemma G.14 (Prob. Equiv. Reflexive),

the definition of substitution, and R1,R2 ground.

The fixInstChk goal is easy (like in the <̃:+1 case, nothing is instantiated).

• Case
∥Θ̂∥ ⊢̃ R <:+ [Ω ]R′ /W0

∥Θ̂∥ ⊢̃ R <:+ [Ω ]R′∧ [Ω ]−→ϕ /W0

V

[Ω ]−→ϕ
<̃:+∧R
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∥Θ̂∥ ⊢̃R <:+ [Ω ]R′ /W0 Subderivation

Θ̂
SMT−−−→Ω Given

∥Θ̂∥ |̃=W0

V

[Ω ]−→ϕ Given

∥Θ̂∥ |̃=W0 By inversion

∥Θ̂∥ ⊢ [Ω ]−→ϕ true ′′

Θ̂ ⊢R <:+ R′ /W ′0 By i.h.

∥Θ̂∥ |̃=W0↔ [Ω ]W ′0
′′

∥Θ̂∥; · ⊢ [Ω ]W ′0 fixInstChk ⊣ ∥Θ̂∥ ′′

Z Θ̂ ⊢R <:+ R′∧−→ϕ /W ′0

V

[Θ̂ ′]−→ϕ By <:+∧R

∥Θ̂∥ ⊢ [Ω ]−→ϕ ≡ [Ω ]−→ϕ : B By repeated Lemma C.34

∥Θ̂∥ |̃=W0
V

[Ω ]−→ϕ ↔ [Ω ]W ′0
V

[Ω ]−→ϕ By repeated |̃=↔Prp and |̃=↔
V

Z ∥Θ̂∥ |̃=W0

V

[Ω ]−→ϕ ↔ [Ω ](W ′0

V−→
ϕ ) By def. of [−]−

Z ∥Θ̂∥; · ⊢ [Ω ](W ′0

V−→
ϕ ) fixInstChk ⊣ ∥Θ̂∥ As [Ω ]−→ϕ is ground

• Case <̃:+µ: Follows from i.h. part (7).

• Case

∥Θ̂∥ ⊢̃ ↓N <:+ ↓∀dΞ . [Ω ]−→ϕ ⊃ [Ω ]L / ∀dΞ . [Ω ]−→ϕ ⊃ N <:− [Ω ]L
<̃:+↓

Z Θ̂ ⊢ ↓N <:+ ↓∀dΞ .−→ϕ ⊃ L︸ ︷︷ ︸
N′

/ ∀dΞ .−→ϕ ⊃ N <:− L By <:+↓

∥Θ̂∥ |̃=∀dΞ . [Ω ]−→ϕ ⊃ N <:− [Ω ]L↔∀dΞ . [Ω ]−→ϕ ⊃ N <:− [Ω ]L Lemma G.14

∥Θ̂∥ |̃=∀dΞ . [Ω ]−→ϕ ⊃ N <:− [Ω ]L↔∀dΞ . [Ω ]−→ϕ ⊃ [Ω ]N <:− [Ω ]L As N ground

Z ∥Θ̂∥ |̃=∀dΞ . [Ω ]−→ϕ ⊃ N <:− [Ω ]L↔ [Ω ](∀dΞ .−→ϕ ⊃ N <:− L) [−]− def.



G.3. ALGORITHMIC SUBTYPING 616

The fixInstChk goal is easy (like in the <̃:+1 case, nothing is instantiated).

(3) • Case <̃:–↑: Similar to <̃:+↓ case of part (2).

• Case <̃:–⊃L: Similar to <̃:+∧R case of part (2).

• Case <̃:–→: Similar to <̃:+× case of part (2).

(4) • Case
α ◦ inj1 ⊜ α1

α ◦ inj2 ⊜ α2

β ◦ inj1 ⊜ β1

β ◦ inj2 ⊜ β2

Ξ ⊢̃ α1;F1 <:τ β1;G1

Ξ ⊢̃ α2;F2 <:τ β2;G2

Ξ ⊢̃ α;F1⊕F2 <:τ β ;G1⊕G2

<̃:τ⊕

α ◦ injk ⊜αk Premises

β ◦ injk ⊜ βk Premises

Ξ ⊢̃αk;Fk <:τ βk;Gk Subderivations

Ξ ▷αk;Fk <:τ βk;Gk By i.h. (twice)

Z Ξ ▷α;F <:τ β ;G By Meas▷<:/⊕

• Case <̃:τ∃L

Ξ ,dΞ
′ ⊢̃ (⊤,q)⇒ t;Q⊗ P̂ <:τ ((o′,q′)⇒ t ′);(P⊗ P̂′)

Ξ ⊢̃ (pk(dΞ
′
,⊤),q)⇒ t;∃dΞ

′
. Q⊗ P̂ <:τ ((o′,q′)⇒ t ′);(P⊗ P̂′)

Ξ ,dΞ
′ ⊢̃ (⊤,q)⇒ t;Q⊗ P̂ <:τ ((o′,q′)⇒ t ′);(P⊗ P̂′) Subder.

Ξ ,dΞ
′
▷ (⊤,q)⇒ t;Q⊗ P̂ <:τ (o′,q′)⇒ t ′;P⊗ P̂′ By i.h.

Z Ξ ▷ (pk(dΞ
′,⊤),q)⇒ t;∃dΞ

′. Q⊗ P̂ <:τ (o′,q′)⇒ t ′;P⊗ P̂′ Meas▷<:/∃L
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• Case <̃:τ∃R

d÷Ξ ⊢ −→t /dΞ
′
: dΞ

′

Ξ ⊢̃ (⊤,q)⇒ t;Q⊗ P̂ <:τ (⊤,q′)⇒ [
−→t /dΞ

′
]t ′; [−→t /dΞ

′
]Q′⊗ P̂′

Ξ ⊢̃ (⊤,q)⇒ t;Q⊗ P̂ <:τ (pk(dΞ
′
,⊤),q′)⇒ t ′;∃dΞ

′
. Q′⊗ P̂′

d÷Ξ ⊢−→t /dΞ
′ : dΞ

′ Premise

Ξ ⊢̃ (⊤,q)⇒ t;Q⊗ P̂ <:τ (⊤,q′)⇒ [
−→t /dΞ

′
]t ′; [−→t /dΞ

′
]Q′⊗ P̂′ Subderivation

Q = R∧−→ϕ Canonical form of Q

Ξ ⊢̃ (⊤,q)⇒ t;R∧−→ϕ ⊗ P̂ <:τ (⊤,q′)⇒ [
−→t /dΞ

′
]t ′; [−→t /dΞ

′
]Q′⊗ P̂′ By equality

Ξ ,−→ϕ ⊢̃R <:+ [
−→t /dΞ

′
]Q′ / (∀)W By inversion on <̃:τConst

Ξ ,−→ϕ |̃= (∀)W ′′

Ξ ⊢̃ q⇒ t; P̂ <:τ q′⇒ [
−→t /dΞ

′
]t ′; P̂′ ′′

Ξ ,−→ϕ ⊢̃R <:+ [Ξ ,−→ϕ , d̂Ξ
′
=
−→t ][d̂Ξ

′
/dΞ

′
]Q′ / (∀)W By properties of [−]−

Ξ ,−→ϕ , d̂Ξ
′ ⊢R <:+ [d̂Ξ

′
/dΞ

′
]Q′ / (∀)W ′ By i.h.

∥Ξ ,−→ϕ , d̂Ξ
′∥ |̃= (∀)W ↔ [Ξ ,−→ϕ , d̂Ξ

′
=
−→t ](∀)W ′ ′′

Ξ ,−→ϕ ; · ⊢ [Ξ ,−→ϕ , d̂Ξ
′
=
−→t ](∀)W ′ fixInstChk ⊣ Ξ ,−→ϕ ′′

Ξ ,−→ϕ , [ξ(∀)W ′]
d̂Ξ
′
=
−→t ; · ⊢ [Ξ ,−→ϕ , d̂Ξ

′
=
−→t ](∀)W ′ fixInstChk ⊣ Ξ ,−→ϕ , [ξ(∀)W ′]

d̂Ξ
′
=
−→t Stfd.

Ξ ,−→ϕ , [ξ(∀)W ′]
d̂Ξ
′
=
−→t ; · ⊢̃ [Ξ ,−→ϕ , d̂Ξ

′
=
−→t ](∀)W ′ fixInstChk ⊣ Ξ ,−→ϕ , [ξ(∀)W ′]

d̂Ξ
′
=
−→t Lemma G.5
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Ξ ,−→ϕ , [ξ(∀)W ′]
d̂Ξ
′; · ⊢̃ (∀)W ′ fixInstChk ⊣Ω ′ By Lemma G.31 (fixInstChk Unapply)

with Lemma G.35 and Lemma G.36

Ω ′
SMT−−−→Ξ ,−→ϕ , [ξ(∀)W ′]

d̂Ξ
′
=
−→t ′′

Z Ξ ,−→ϕ |̃= (∀)W ↔ [Ω ′]2(∀)W ′ By Lemma G.27 (Equiv. Solutions)

and Lemma G.16 (Prob. Equiv. Transitive)

and subst. props.

Ξ ,−→ϕ |̃= [Ω ′]2(∀)W ′ By Lemma G.22 ((∀)W Checking Respects Equiv)

at same height

Ξ ,−→ϕ |= [Ω ′]2(∀)W ′ By i.h.

Ξ ,−→ϕ , [ξ(∀)W ′]
d̂Ξ
′; · ⊢ (∀)W ′ fixInstChk ⊣Ω ′ By inversion and then by the rule

Ξ ⊢̃ q⇒ t; P̂ <:τ q′⇒ [Ω ′]2[d̂Ξ
′
/dΞ

′
]t ′; P̂′ By Lemma G.23 (Subtyping Respects Equiv)

with Lemma G.27 (Equiv. Solutions)

and properties of substitution

at same height

Ξ ▷ q⇒ t; P̂ <:τ q′⇒ [Ω ′]2[d̂Ξ
′
/dΞ

′
]t ′; P̂′ By i.h.

Z Ξ ▷ (⊤,q)⇒ t;Q⊗ P̂ <:τ (pk(dΞ
′,⊤),q′)⇒ t ′;∃dΞ

′. Q′⊗ P̂′ Meas▷<:/∃R
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• Case
Ξ ,−→ϕ ⊢̃ R <:+ Q′ / (∀)W

Ξ ,−→ϕ |̃= (∀)W

Ξ ⊢̃ q⇒ t; P̂ <:τ q′⇒ t ′; P̂′

Ξ ⊢̃ (⊤,q)⇒ t;R∧−→ϕ ⊗ P̂ <:τ (⊤,q′)⇒ t ′;Q′⊗ P̂′
<̃:τConst

Ξ ,−→ϕ ⊢̃R <:+ Q′ / (∀)W Subderivation

Ξ ,−→ϕ |̃= (∀)W Subderivation

Ξ ,−→ϕ ⊢R <:+ Q′ By i.h.

Ξ ⊢̃ q⇒ t; P̂ <:τ q′⇒ t ′; P̂′ Subderivation

Ξ ▷ q⇒ t; P̂ <:τ q′⇒ t ′; P̂′ By i.h.

Z Ξ ▷ (⊤,q)⇒ t;R∧−→ϕ ⊗ P̂ <:τ (⊤,q′)⇒ t ′;Q′⊗ P̂′ By Meas▷<:/Const

• Case
Ξ ,a d÷ τ ,a Id ⊢̃ q⇒ t; Î <:τ q⇒ t ′; Î

Ξ ⊢̃ (a,q)⇒ t; Id⊗ Î <:τ (a,q)⇒ t ′; Id⊗ Î
<̃:τId

Straightforward.

• Case
d÷Ξ ⊢ u≡ t : τ

Ξ ⊢̃ ()⇒u; I <:τ ()⇒ t; I
<̃:τ I

Straightforward.

(5) • Case
d÷Θ ⊢ −→t /dΞ : dΞ Θ ⊢̃ R <:+ [

−→t /dΞ ]Q /W

Θ ⊢̃ R <:+ ∃dΞ . Q /W
<̃:+∃R
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Θ , d̂Ξ ⊢R <:+ [d̂Ξ/dΞ ]Q /W ′ By i.h. part (2)

Θ ; · ⊢ [Θ , d̂Ξ=
−→t ]W ′ fixInstChk ⊣Θ ′′

Θ |̃=W ↔ [Θ , d̂Ξ=
−→t ]W ′ ′′

Θ , [ξW ′]d̂Ξ=
−→t ; · ⊢ [Θ , d̂Ξ=

−→t ]W ′ fixInstChk ⊣Θ , [ξW ′]d̂Ξ=
−→t Weakening (stfd.)

Θ , [ξW ′]d̂Ξ=
−→t ; · ⊢̃ [Θ , d̂Ξ=

−→t ]W ′ fixInstChk ⊣Θ , [ξW ′]d̂Ξ=
−→t Lemma G.5

Θ , [ξW ′]d̂Ξ ; · ⊢̃W ′ fixInstChk ⊣Θ , [ξW ′]d̂Ξ=−→u By Lemma G.31

with Lemma G.35

and Lemma G.36

Θ , [ξW ′]d̂Ξ=−→u SMT−−−→Θ , [ξW ′]d̂Ξ=
−→t ′′

Θ |̃=W Given

Θ |̃= [Θ , d̂Ξ=
−→t ]W ′↔ [Θ , d̂Ξ=−→u ]W ′ By Lemma G.27

and subst. prop.

Θ |̃=W ↔ [Θ , d̂Ξ=−→u ]W ′ By Lemma G.16

Θ |̃= [Θ , d̂Ξ=−→u ]W ′ By Lemma G.22

at same height

Θ |= [Θ , d̂Ξ=−→u ]W ′ By i.h. part (1)

Θ , [ξW ′]d̂Ξ ; · ⊢W ′ fixInstChk ⊣Θ , [ξW ′]d̂Ξ=−→u By inversion

and by rule

Z Θ ⊢R <:+ ∃dΞ . Q By <:+

Note that this is a similar pattern as the <̃:τ∃R case of part (4) of the current

proof and the more complicated Decl⇐∃ case of part (4) of Lemma G.39 (Aux.
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Alg. Typing Complete).

• The case where P ̸= ∃ is similar but simpler (no need to use Lemma G.31).

(6) Similar to part (5).

(7) Straightforward. Use Lemma C.27 (Prop. Truth Equiv. Relation) and Lemma C.34

(Ix. Equiv. Reflexive).

Appendix G.4 Algorithmic Typing

Lemma G.39 (Aux. Alg. Typing Complete).

(1) If Θ ;Γ ◁̃ χ then Θ ;Γ ◁χ .

(2) If Θ ;Γ ⊢̃ h⇒ P then Θ ;Γ ▷h⇒ P.

(3) If Θ ;Γ ⊢̃ g⇒↑P

then there exists P′ such that Θ ;Γ ▷g⇒↑P′ and Θ ⊢ P≡+ P′.

(4) If Θ̂
SMT−−−→Ω and ∥Θ̂∥;Γ ⊢̃ v⇐ [Ω ]P / χ and ∥Θ̂∥;Γ ◁̃ χ

and Θ̂ present and [Θ̂ ]P = P and Θ̂ ▷P type[ξ ]

then there exist χ ′, ∆ ′, and Ω ′ such that Θ̂ ;Γ ⊢ v⇐ P / χ ′ ⊣ ∆ ′

and Θ̂ ,∆ ′ ⊢ χ ′Wf[ξ ′] and ∥Θ̂∥, [ξ ′]∆ ′;Γ ⊢ [Ω ]χ ′ fixInstChk ⊣ ∥Θ̂∥,Ω ′

and ∥Θ̂∥ ◁̃ χ ↔ [Ω ,Ω ′]2χ ′.

(5) If Θ ;Γ ⊢̃ v⇐ P / χ and Θ ;Γ ◁̃ χ then Θ ;Γ ▷ v⇐ P.

(6) If Θ ;Γ ⊢̃ e⇐ N then Θ ;Γ ▷ e⇐ N.

(7) If Θ ;Γ ; [P] ⊢̃ {ri⇒ ei}i∈I ⇐ N then Θ ;Γ ; [P]▷{ri⇒ ei}i∈I ⇐ N.
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(8) If Θ̂
SMT−−−→Ω and ∥Θ̂∥;Γ ; [[Ω ]M] ⊢̃ s⇒↑P / χ and ∥Θ̂∥;Γ ◁̃ χ

and Θ̂ present and Θ̂ ▷M type[ξ ] and [Θ̂ ]M = M

then there exist P′, χ ′, ∆ ′, and Ω ′ such that Θ̂ ;Γ ; [M] ⊢ s⇒↑P′ / χ ′ ⊣ ∆ ′

and Θ̂ ,∆ ′ ⊢ χ ′Wf[ξ ′] and ∥Θ̂∥, [ξ ′]∆ ′;Γ ⊢ [Ω ]χ ′ fixInstChk ⊣ ∥Θ̂∥,Ω ′

and ∥Θ̂∥ ◁̃ χ ↔ [Ω ,Ω ′]2χ ′ and ∥Θ̂∥ ⊢ P≡+ [Ω ,Ω ′]2P′.

(9) If Θ ;Γ ; [N] ⊢̃ s⇒↑P / χ and Θ ;Γ ◁̃ χ

then there exists P′ such that Θ ;Γ ; [N]▷ s⇒↑P′ and Θ ⊢ P≡+ P′.

Proof. By induction on the sum of the height of the given semideclarative typing derivation

and the height of the given semideclarative constraint checking derivation. Every part is

mutually recursive.

(1) • Case

Θ ;Γ ◁̃ ·
◁̃Empty

Θ ;Γ ◁ · By ◁Empty

• Case
Θ ;Γ ⊢̃ e⇐ N Θ ;Γ ◁̃ χ0

Θ ;Γ ◁̃ (e⇐ N), χ0︸ ︷︷ ︸
χ

◁̃NegChk

Θ ;Γ ⊢̃ e⇐ N Subderivation

Θ ;Γ ▷ e⇐ N By i.h.

Θ ;Γ ◁̃ χ0 Subderivation

Θ ;Γ ◁ χ0 By i.h.

Θ ;Γ ◁ (e⇐ N), χ0 By ◁NegChk
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• Case
Θ |̃=W Θ ;Γ ◁̃ χ0

Θ ;Γ ◁̃W , χ0

◁̃W

Θ |̃=W Subderivation

Θ |=W By Lemma G.38 (Aux. Alg. Sub. Complete)

Θ ;Γ ◁̃ χ0 Subderivation

Θ ;Γ ◁ χ0 By i.h.

Θ ;Γ ◁W , χ0 By ◁W

(2) • Case
(x : R) ∈ Γ

Θ ;Γ ⊢̃ x⇒ R
⇒̃Var

(x : R) ∈Γ Premise

Θ ;Γ ▷ x⇒ R By Alg⇒Var

• Case
Θ ⊢ P type[ξ ] Θ ;Γ ⊢̃ v⇐ P / χ Θ ;Γ ◁̃ χ

Θ ;Γ ⊢̃ (v : P)⇒ P
⇒̃ValAnnot

Θ ;Γ ⊢̃ v⇐ P / χ Subderivation

Θ ;Γ ◁̃ χ Subderivation

Θ ;Γ ▷ v⇐ P By i.h.

Z Θ ;Γ ▷ (v : P)⇒ P By Alg⇒ValAnnot

(3) • Case
Θ ;Γ ⊢̃ h⇒↓N Θ ;Γ ; [N] ⊢̃ s⇒↑P / χ Θ ;Γ ◁̃ χ

Θ ;Γ ⊢̃ h(s)⇒↑P
⇒̃App
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Θ ;Γ ⊢̃ h⇒↓N Subderivation

Θ ;Γ ▷ h⇒↓N By i.h.

Θ ;Γ ; [N] ⊢̃ s⇒↑P / χ Subderivation

Θ ;Γ ◁̃ χ Subderivation

Θ ;Γ ; [N] ▷ s⇒↑P′ By i.h.

Z Θ ⊢P≡+ P′ ′′

Z Θ ;Γ ▷ h(s)⇒↑P′ By Alg⇒App

• Case ⇒̃ExpAnnot: Similar to ⇒̃ValAnnot case of part (2).

(4) • Case
(x : R′) ∈ Γ ∥Θ̂∥ ⊢̃ R′ <:+ [Ω ]R /W

∥Θ̂∥;Γ ⊢̃ x⇐ [Ω ]R /W
⇐̃Var
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∥Θ̂∥ ⊢̃R′ <:+ [Ω ]R /W Subderivation

Θ̂ present Given

Θ̂
SMT−−−→Ω Given

Θ̂ ▷R type[ξ ] Given

[Θ̂ ]R =R Given

∥Θ̂∥ ⊢Γ ctx Presupposed derivation

(x : R′) ∈Γ Premise

R′ ground By inversion on Γ WF

∥Θ̂∥;Γ ◁̃W Given

∥Θ̂∥ |̃=W By inversion

Θ̂ ⊢R′ <:+ R /W ′ By Lemma G.38

∥Θ̂∥ |̃=W ↔ [Ω ]W ′ ′′

∥Θ̂∥; · ⊢ [Ω ]W ′ fixInstChk ⊣ ∥Θ̂∥ ′′

∥Θ̂∥ ◁̃ · ↔ · By ◁̃↔Empty

Z ∥Θ̂∥ ◁̃W ↔ [Ω ]2W ′ By ◁̃↔W , Ω present

Θ̂ ;Γ ⊢ x⇐ R /W ′ ⊣ · By Alg⇐Var

Let ∆ ′ = ·.

Let Ω ′ = ·.

Z ∥Θ̂∥, [ξ ′]∆ ′;Γ ⊢ [Ω ]W ′ fixInstChk ⊣ ∥Θ̂∥,Ω ′ By equalities

Z Θ̂ ;Γ ⊢ x⇐ R /W ′ ⊣ ∆ ′ By equality
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• Case

∥Θ̂∥;Γ ⊢̃ ⟨⟩ ⇐ 1 / ·
⇐̃1

Z Θ̂ ;Γ ⊢ ⟨⟩ ⇐ 1 / · ⊣ · By Alg⇐1

Θ̂
SMT−−−→Ω Given

Z ∥Θ̂∥ ◁̃ · ↔ · By ◁̃↔Empty

Let ∆ ′ = ·.

Let Ω ′ = Ω .

Z ∥Θ̂∥, [ξ ′]∆ ′;Γ ⊢ [Ω ]· fixInstChk ⊣ ∥Θ̂∥,Ω ′ By rules, equalities

• Case
∥Θ̂∥;Γ ⊢̃ v1⇐ [Ω ]R1 / χ1 ∥Θ̂∥;Γ ⊢̃ v2⇐ [Ω ]R2 / χ2

∥Θ̂∥;Γ ⊢̃ ⟨v1,v2⟩ ⇐ [Ω ]R1× [Ω ]R2 / χ1, χ2

⇐̃×

∥Θ̂∥;Γ ⊢̃ v1⇐ [Ω ]R1 / χ1 Subderivation

∥Θ̂∥;Γ ◁̃ χ1, χ2 Given

∥Θ̂∥;Γ ◁̃ χ1 By inversion

∥Θ̂∥;Γ ◁̃ χ2
′′

Θ̂
SMT−−−→Ω Given

Θ̂ ;Γ ⊢ v1⇐ R1 / χ ′1 ⊣ ∆1 By i.h.

∥Θ̂∥, [ξχ ′1
]∆1;Γ ⊢ [Ω ]χ ′1 fixInstChk ⊣ ∥Θ̂∥,Ω ′1 ′′

∥Θ̂∥ ◁̃ χ1↔ [Ω ′1]
2χ ′1

′′
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Θ̂ ▷R1×R2 type[ξ ] Given

Θ̂ ▷R2 type[_] By inversion

∥Θ̂∥;Γ ⊢̃ v2⇐ [Ω ]R2 / χ2 Subderivation

Θ̂ ;Γ ⊢ v2⇐ R2 / χ ′2 ⊣ ∆2 By i.h.

∥Θ̂∥, [ξχ ′2
]∆2;Γ ⊢ [Ω ]χ ′2 fixInstChk ⊣ ∥Θ̂∥,Ω ′2 ′′

∥Θ̂∥ ◁̃ χ2↔ [Ω ′2]
2χ ′2

′′

Z Θ̂ ;Γ ⊢ ⟨v1,v2⟩ ⇐ R1×R2 / χ ′1, χ ′2 ⊣ ∆1,∆2 By Alg⇐×

∥Θ̂∥, [ξχ ′1
]∆1, [ξχ ′2

]∆2;Γ ⊢ [Ω ]χ ′1, [Ω ]χ ′2 fIC ⊣ ∥Θ̂∥,Ω ′1,Ω ′2 By Lemma G.2

Z ∥Θ̂∥, [ξχ ′1,χ ′2
](∆1,∆2);Γ ⊢ [Ω ](χ ′1, χ ′2) fIC ⊣ ∥Θ̂∥,Ω ′1,Ω ′2 Distribute

Z ∥Θ̂∥ ◁̃ χ1, χ2↔ [Ω ,Ω1,Ω2]
2(χ ′1, χ ′2) Straightforward

• Case ⇐̃+k: Straightforward.

• Case
∥Θ̂∥;Γ ⊢̃ v⇐ [Ω ]R / χ0

∥Θ̂∥;Γ ⊢̃ v⇐ [Ω ]R∧ [Ω ]−→ϕ / [Ω ]−→ϕ , χ0

⇐̃∧
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∥Θ̂∥;Γ ⊢̃ v⇐ [Ω ]R / χ0 Subderivation

Θ̂ ;Γ ⊢ v⇐ R / χ ′0 ⊣ ∆ ′ By i.h.

∥Θ̂∥,∆ ′ ⊢ ⌊[Ω ]χ ′0⌋ fixInst ⊣ ∥Θ̂∥,Ω ′ ′′

∥Θ̂∥ ◁̃ χ0↔ [Ω ,Ω ′]2χ ′0
′′

Z Θ̂ ;Γ ⊢ v⇐ R∧−→ϕ /−→ϕ , χ ′0 ⊣ ∆ ′ By Alg⇐∧

Z ∥Θ̂∥,∆ ′ ⊢ ⌊[Ω ](−→ϕ , χ ′0)⌋ fixInst ⊣ ∥Θ̂∥,Ω ′ As [Ω ]−→ϕ ground

∥Θ̂∥ ◁̃ [Ω ]−→ϕ ↔ [Ω ]−→ϕ By reflexivity

∥Θ̂∥ ◁̃ [Ω ]−→ϕ ↔ [Ω ,Ω ′]−→ϕ As dom(Ω ′)∩FV(−→ϕ ) = /0

∥Θ̂∥ ◁̃ [Ω ]−→ϕ , χ0↔ [Ω ,Ω ′]−→ϕ , [Ω ,Ω ′]2χ ′0 Append

Z ∥Θ̂∥ ◁̃ [Ω ]−→ϕ , χ0↔ [Ω ,Ω ′]2(−→ϕ , χ ′0) Property of subst.

• Case
d÷∥Θ̂∥ ⊢ −→t /dΞ : dΞ ∥Θ̂∥;Γ ⊢̃ v⇐ [

−→t /dΞ ][Ω ]Q / χ

∥Θ̂∥;Γ ⊢̃ v⇐ (∃dΞ . [Ω ]Q) / χ

⇐̃∃

d÷∥Θ̂∥ ⊢−→t /dΞ : dΞ Premise

∥Θ̂∥;Γ ⊢̃ v⇐ [
−→t /dΞ ][Ω ]Q / χ Subderivation

∥Θ̂∥;Γ ⊢̃ v⇐ [Ω , d̂Ξ=
−→t ]([d̂Ξ/dΞ ]Q) / χ By properties of subst.

∥Θ̂∥;Γ ◁̃ χ Given

Θ̂ present Given

Θ̂
SMT−−−→Ω Given

Θ̂ , d̂Ξ
SMT−−−→Ω , d̂Ξ=

−→t By repeated −̃→Solve
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Θ̂ , d̂Ξ ;Γ ⊢ v⇐ [d̂Ξ/dΞ ]Q / χ ′ ⊣ ∆ ′′ By i.h.

∥Θ̂∥, [ξχ ′]∆
′′;Γ ⊢ [Ω , d̂Ξ=

−→t ]χ ′ fixInstChk ⊣ ∥Θ̂∥,Ω ′′ ′′

∥Θ̂∥ ◁̃ χ ↔ [Ω , d̂Ξ=
−→t ,Ω ′′]2χ ′ ′′

Z Θ̂ ;Γ ⊢ v⇐∃dΞ . Q / χ ′ ⊣ d̂Ξ ,∆ ′′ By Alg⇐∃

∥Θ̂∥;Γ ⊢ v⇐ [Ω ](∃dΞ . Q) / [Ω ]χ ′ ⊣ d̂Ξ ,∆ ′′ Substitution lemma

d̂Ξ ,∆ ′′ ⊢ ξ[Ω ](∃dΞ . Q)−∥Θ̂∥∠ξ[Ω ]χ ′−∥Θ̂∥ By Lemma G.35 (Main Complete)

d̂Ξ ,∆ ′′ ⊆ cl(ξ[Ω ]χ ′−∥Θ̂∥)((FV(ξ[Ω ]χ ′−∥Θ̂∥))− (d̂Ξ ,∆ ′′)) By inversion

= cl(ξ[Ω ]χ ′−∥Θ̂∥)( /0)

As FV(ξ[Ω ]χ ′−∥Θ̂∥)⊆ d̂Ξ ,∆ ′′

d̂Ξ ,∆ ′′ = cl(ξ[Ω ]χ ′−∥Θ̂∥)( /0) Also as FV(ξ[Ω ]χ ′−∥Θ̂∥)⊆ d̂Ξ ,∆ ′′

∥Θ̂∥, [ξ[Ω ]χ ′]∆
′′;Γ ⊢̃ [Ω , d̂Ξ=

−→t ]χ ′ fIC ⊣ ∥Θ̂∥,Ω ′′ Lemma G.8

∥Θ̂∥, [ξ[Ω ]χ ′]
d̂Ξ=
−→t , [ξ[Ω ]χ ′]∆

′′;Γ ⊢̃ [Ω , d̂Ξ=
−→t ]χ ′ fIC ⊣ ∥Θ̂∥, [ξ[Ω ]χ ′]

d̂Ξ=
−→t ,Ω ′′ Stfd.

∥Θ̂∥, [ξ[Ω ]χ ′](
d̂Ξ ,∆ ′′);Γ ⊢̃ [Ω ]χ ′ fixInstChk ⊣Ω ′0 By Lemma G.31 (fixInstChk Unapply)

Ω ′0
SMT−−−→∥Θ̂∥, d̂Ξ=

−→t ,Ω ′′ ′′

with ∥Θ̂∥, d̂Ξ ,∆ ′′ as Θ̂ ;

∥Θ̂∥, d̂Ξ=
−→t ,∆ ′′ as Θ̂ ′;

[Ω ]χ ′ as χ;

ξ[Ω ]χ ′ as ξ ;

∥Θ̂∥, [ξ[Ω ]χ ′]
d̂Ξ=
−→t ,Ω ′′ as Ω ′
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Ω ′0 = ∥Θ̂∥,Ω ′ By inversion

Ω ,Ω ′ SMT−−−→Ω , d̂Ξ=
−→t ,Ω ′′ Straightforward

Z ∥Θ̂∥ ◁̃ χ ↔ [Ω ,Ω ′]2χ ′ By Lemma G.27 (Equiv. Solutions)

and Lemma F.6 (Ext. Transitive)

and subst. props.

∥Θ̂∥;Γ ◁̃ [Ω ,Ω ′]2χ ′ By Lemma G.26 (Typing Respects Equiv)

at same height

∥Θ̂∥;Γ ◁ [Ω ,Ω ′]2χ ′ By i.h.

Z ∥Θ̂∥, [ξ[Ω ]χ ′](
d̂Ξ ,∆ ′′);Γ ⊢ [Ω ]χ ′ fixInstChk ⊣ ∥Θ̂∥,Ω ′ By inversion

and then by rule

and subst. properties

• Case

[Ω ](M (F))⇝ [Ω ]−→α ;−→τ
d÷∥Θ̂∥ ⊢ H[Ω ]−→α ; [Ω ]F ; [Ω ](M (F))([Ω ]F)I⊜ d

Θ ;R

∥Θ̂∥;Γ ⊢̃ v0⇐∃dΘ . R∧ d
Θ / χ

∥Θ̂∥;Γ ⊢̃ into(v0)⇐{ν : µ[Ω ]F | [Ω ](M (F))} / χ

⇐̃µ

Θ̂ ▷ {ν : µF |M (F)} type[ξ ] Given

FV(M (F)) = /0 By inversion
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d÷∥Θ̂∥ ⊢ H[Ω ]−→α ; [Ω ]F ; [Ω ]M ([Ω ]F)I⊜ dΘ ;R Subderivation

∥d÷Θ̂∥ ⊢ H[Ω ]−→α ; [Ω ]F ; [Ω ]M ([Ω ]F)I⊜ dΘ ;R As d÷− and ∥−∥ commute

Θ̂
SMT−−−→Ω Given

d÷Θ̂
SMT−−−→ d÷Ω By Lemma F.8

Θ̂ present Given

Ω present As Θ̂
SMT−−−→Ω

d÷Θ̂ ⊢ H−→α ;F ;M (F)I⊜ dΘ
′;R′ By Lemma F.14 (Uncomplete Unrolling)

[Ω ](R′,dΘ ′) = (R,dΘ) ′′

∥Θ̂∥;Γ ⊢̃ v0⇐∃dΘ . R∧ dΘ / χ Subderivation

∥Θ̂∥;Γ ⊢̃ v0⇐∃[Ω ]dΘ
′. [Ω ]R′∧ [Ω ]dΘ

′
/ χ By equalities

∥Θ̂∥;Γ ⊢̃ v0⇐ [Ω ](∃dΘ ′. R′∧ dΘ
′
) / χ Property of subst.

Θ̂ ▷∃dΘ ′. R∧ dΘ
′
type[_] By Lemma F.3

[Θ̂ ](R′,Θ̂ ′) = (R′,Θ̂ ′) By Lemma F.15

∥Θ̂∥;Γ ◁̃ χ Given

Θ̂
SMT−−−→Ω Given

Θ̂ ;Γ ⊢ v0⇐∃dΘ . R∧ dΘ / χ ′ ⊣ ∆ ′ By i.h.

Z ∥Θ̂∥,∆ ′;Γ ⊢ ⌊[Ω ]χ ′⌋ fixInstChk ⊣ ∥Θ̂∥,Ω ′ ′′

Z ∥Θ̂∥ ◁̃ χ ↔ [Ω ,Ω ′]2χ ′ ′′

Z Θ̂ ;Γ ⊢ into(v0)⇐{ν : µF |M (F)} / χ ′ ⊣ ∆ ′ By Alg⇐µ
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• Case

∥Θ̂∥;Γ ⊢̃ {e}⇐ ↓ [Ω ]N / (e⇐ [Ω ]N)

⇐̃↓

Z Θ̂ ;Γ ⊢{e}⇐ ↓N / (e⇐ N) ⊣ · By Alg⇐↓

Θ̂ ▷ ↓N type[_] Given

Θ̂ ▷N type[_] By inversion

∥Θ̂∥ ⊢ [Ω ]N type[_] By Lemma F.12

and Ω present

∥Θ̂∥ ⊢ [Ω ]N ≡− [Ω ]N Lemma G.11 (Tp./Meas. Equiv. Reflexive)

∥Θ̂∥ ⊢ [Ω ]N ≡− [Ω ]N Lemma C.41 (Ix.-Level Weakening)

∥Θ̂∥ ◁̃ · ↔ · By ◁̃↔Empty

∥Θ̂∥ ◁̃ (e⇐ [Ω ]N)↔ (e⇐ [Ω ]N) By ◁̃↔⇐−

Z ∥Θ̂∥ ◁̃ (e⇐ [Ω ]N)↔ [Ω ]2(e⇐ N) By def. of [−]− and eground

Let ∆ ′ = ·.

Let Ω ′ = ·.

Z ∥Θ̂∥,∆ ′ ⊢ tt︸︷︷︸
⌊e⇐[Ω ]N⌋

fixInst ⊣ ∥Θ̂∥,Ω ′ By a rule, equalities

(5)
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Θ
SMT−−−→Θ By Lemma F.5 (Ext. Reflexive)

Θ ;Γ ⊢̃ v⇐ P / χ Given

∥Θ∥;Γ ⊢̃ v⇐ [Θ ]P / χ By definitions

Θ ;Γ ◁̃ χ Given

∥Θ∥;Γ ◁̃ [Θ ]χ By definitions

[Θ ]P = P By def.

Θ ⊢P type[_] Presupposed derivation

Θ ▷P type[_] Decl. WF implies Algo. WF

Θ present

Θ ;Γ ⊢ v⇐ P / χ ′ ⊣ ∆ ′ By i.h.

∥Θ∥, [ξχ ′]∆
′;Γ ⊢ [Θ ]χ ′ fixInstChk ⊣ ∥Θ∥,Ω ′ ′′

Θ , [ξχ ′]∆
′;Γ ⊢ χ ′ fixInstChk ⊣Θ ,Ω ′ By definitions

Z Θ ;Γ ▷ v⇐ P By Alg⇐Val

(6) • Case
Θ ;Γ ⊢̃ v⇐ P / χ Θ ;Γ ◁̃ χ

Θ ;Γ ⊢̃ returnv⇐↑P
⇐̃↑
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Θ ;Γ ⊢̃ v⇐ P / χ Subderivation

[Θ ]P =P By def. of [−]−

Θ ;Γ ⊢̃ v⇐ [Θ ]P / χ By equality

Θ
SMT−−−→Θ By −̃→Empty

Θ ⊢ ↑P type[_] Presupposed derivation

Θ ⊢P type[_] By inversion

Θ ▷P type[_] Straightforward

Θ ;Γ ◁̃ χ Subderivation

Θ ;Γ ▷ v⇐ P By i.h.

Θ ;Γ ▷ returnv⇐↑P By Alg⇐↑

• Case
Θ ;Γ ⊢̃ g⇒↑(∃dΞ . R∧−→ψ ) Θ ,dΞ ,−→ψ ;Γ ,x : R ⊢̃ e0⇐ L

Θ ;Γ ⊢̃ let x=g; e0⇐ L
⇐̃let
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Θ ;Γ ⊢̃ g⇒↑(∃dΞ . R∧−→ψ ) Subderivation

Θ ;Γ ▷ g⇒↑P′ By i.h.

Θ ⊢∃dΞ . R∧−→ψ ≡+ P′ ′′

P′ = ∃dΞ . R′∧
−→
ψ ′ By inversion

Θ ,dΞ ⊢R≡+ R′ ′′

Θ ,dΞ ⊢−→ψ ≡
−→
ψ ′ : B ′′

Θ ,dΞ ,−→ψ ⊢R≡+ R′ By Lemma C.41 (Ix.-Level Weakening)

Θ ,dΞ ,−→ψ ;Γ ,x : R ⊢̃ e0⇐ L Subderivation

Θ ⊢Γ ≡+ Γ Lemma G.11

(repeated)

Θ ,dΞ ,−→ψ ⊢Γ ≡+ Γ By Lemma C.41 (Ix.-Level Weakening)

(repeated)

Θ ,dΞ ,−→ψ ⊢Γ ,x : R≡+ Γ ,x : R′ Add entry

Θ ⊢L type[_] Presupposed derivation

Θ ,dΞ ,−→ψ ⊢L≡− L Lemma G.11 (Tp./Meas. Equiv. Reflexive)

and Lemma C.41 (Ix.-Level Weakening)

Θ ,dΞ ,−→ψ ;Γ ,x : R′ ⊢̃ e0⇐ L Lemma G.26 (Typing Respects Equiv)

Θ ,dΞ ,−→ψ ;Γ ,x : R′ ⊢ e0⇐ L Lemma G.6 (Semidecl. Typing Sound)

Θ ,dΞ ,
−→
ψ ′;Γ ,x : R′ ⊢ e0⇐ L By Lemma C.71 (Ctx. Equiv. Compat)

Θ ,dΞ ,
−→
ψ ′;Γ ,x : R′ ⊢̃ e0⇐ L Lemma G.7 (Semidecl. Typing Complete)

Θ ,dΞ ,
−→
ψ ′;Γ ,x : R′ ▷ e0⇐ L By i.h.
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Z Θ ;Γ ▷ let x=g; e0⇐ L By Alg⇐let

• Case
Θ ⊢̃ ∀a d÷N,dΞ . M <:− L /W Θ |̃=W

Θ ,a÷N;Γ ,x : ↓∀a′ d÷N,dΞ . a′ < a⊃ [a′/a]M ⊢̃ e0⇐∀dΞ . M

Θ ;Γ ⊢̃ rec x : (∀a d÷N,dΞ . M). e0⇐ L
⇐̃rec

Θ ⊢̃ ∀a d÷N,dΞ . M <:− L /W Subderivation

Θ |̃=W Subderivation

Θ ⊢∀a d÷N,dΞ . M <:− L Lemma G.38

Θ ,a÷N;Γ ,x : ↓∀a′ d÷N,dΞ . a′ < a⊃ [a′/a]M ⊢̃ e0⇐∀dΞ . M Subderivation

Θ ,a÷N;Γ ,x : ↓∀a′ d÷N,dΞ . a′ < a⊃ [a′/a]M ▷ e0⇐∀dΞ . M By i.h.

Z Θ ;Γ ▷ rec x : (∀a d÷N,dΞ . M). e0⇐ L By Alg⇐rec

• The remaining cases for expression typing are straightforward.

(7) Similar to part (6).

(8) Similar to part (4).

• Case S̃pine⊃: Similar to ⇐̃∧ case of part (4).

• Case S̃pineApp: Similar to ⇐̃× case of part (4).

• Case S̃pineNil: Straightforward. Use Lemma G.11 (Tp./Meas. Equiv. Re-

flexive) and ◁̃↔Empty and Lemma G.14 (Prob. Equiv. Reflexive).

• Case S̃pine∀: Impossible because [Ω ]M ̸= ∀.



G.4. ALGORITHMIC TYPING 637

(9) Similar to a combination of part (5) and the ⇐̃∃ case of part (4), case analyzing

whether N = ∀.

Theorem G.1 (Alg. Typing Complete).

(1) If Θ ;Γ ⊢ h⇒ P then Θ ;Γ ▷h⇒ P.

(2) If Θ ;Γ ⊢ g⇒↑P then Θ ;Γ ▷g⇒↑P′ and Θ ⊢ P≡+ P′ for some P′.

(3) If Θ ;Γ ⊢ v⇐ P then Θ ;Γ ▷ v⇐ P.

(4) If Θ ;Γ ⊢ e⇐ N then Θ ;Γ ▷ e⇐ N.

(5) If Θ ;Γ ; [P] ⊢ {ri⇒ ei}i∈I ⇐ N then Θ ;Γ ; [P]▷{ri⇒ ei}i∈I ⇐ N.

(6) If Θ̂ ;Γ ; [N] ⊢ s⇒↑P then Θ ;Γ ; [N]▷ s⇒↑P′ and Θ ⊢ P≡+ P′ for some P′.

Proof.

(1)

Θ ;Γ ⊢ h⇒ P Given

Θ ;Γ ⊢̃ h⇒ P By Lemma G.7 (Semidecl. Typing Complete)

Θ ;Γ ▷ h⇒ P By Lemma G.39 (Aux. Alg. Typing Complete)

(2)

Θ ;Γ ⊢ g⇒↑P Given

Θ ;Γ ⊢̃ g⇒↑P By Lemma G.7 (Semidecl. Typing Complete)

Z Θ ;Γ ▷ g⇒↑P′ By Lemma G.39 (Aux. Alg. Typing Complete)

Z Θ ⊢P≡+ P′ ′′
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(3)

Θ ;Γ ⊢ v⇐ P Given

Θ ;Γ ⊢̃ v⇐ P / χ By Lemma G.7 (Semidecl. Typing Complete)

Θ ;Γ ◁̃ χ ′′

Z Θ ;Γ ▷ v⇐ P By Lemma G.39 (Aux. Alg. Typing Complete)

(4) Similar to part (1).

(5) Similar to part (1).

(6)

Θ ;Γ ; [N] ⊢ s⇒↑P Given

Θ ;Γ ; [N] ⊢̃ s⇒↑P / χ By Lemma G.7 (Semidecl. Typing Complete)

Θ ;Γ ◁̃ χ ′′

Z Θ ;Γ ; [N] ▷ s⇒↑P′ By Lemma G.39 (Aux. Alg. Typing Complete)

Z Θ ⊢P≡+ P′ ′′
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